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The examples in this paper were originally inspired by the following theorem,

which will appear in a forthcoming paper[Ny2].

Theorem A. [PFA] Let X be a locally compact, T5, hereditarily cwH, ω1-compact

space of Lindelöf degree ℵ1. There is a discrete collection W of copies of ω1 in

X such that every closed copy of ω1 in X meets some member of W in a closed

unbounded subset.

This paper presents an example (Example 3.4) to show that “ω1-compact” cannot

be eliminated. This is a special case of a more general construction which we

introduce here. It always gives a locally compact, Hausdorff, locally countable

(hence first countable) space which is the union of an ascending chain of clopen

countable subsets. Hence the spaces, which will be generically symbolized ∆ are of

cardinality ℵ1 and pseudonormal–that is, given two disjoint closed subsets F1 and

F2, one of which is countable, there are disjoint open sets U1 ⊃ F1 and U2 ⊃ F2.

There are ω1-compact versions of our construction under some set-theoretic hy-

potheses, and these will be automatically T5 (see Corollary 2.7), but no version of it

can be ω1-compact under the axioms for Theorem A (Corollary 3.2). Every version

does satisfy all the other hypotheses of Theorem A except, in some cases, “T5” but

none satisfies the conclusion (Lemma 2.8). And Example 3.4 is T5 under MA(ω1),

hence under the PFA, hence under the axioms for Theorem A.

Consequently, under the special axioms that give us Theorem A, the structure

theory of locally compact T5 hereditarily cwH spaces is substantially more compli-

cated than that of the locally connected spaces in this class: under the set-theoretic

hypotheses of Theorem A, the components of these spaces are ω1-compact [Ny4].

Since a locally connected space is the topological direct sum of its components, there

are many things we can conclude about the locally connected case that are either

false or unsolved problems about the general case. Among the latter is the question

of whether ω1-compactness can be eliminated from the following consequence of

Theorem A, in the same paper [Ny2]:
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Theorem B. [PFA] Every locally compact, T5, hereditarily cwH, ω1-compact space

satisfying L(X) = ℵ1 is countably paracompact and collectionwise normal.

Each version of our construction is hereditarily collectionwise normal and hered-

itarily countably paracompact if it is normal at all, as will be seen in Section 2. The

following theorem from another forthcoming paper [ENy] shows that it is consistent

with CH for no version to be ω1-compact; it would be interesting to know whether

CH alone is enough to produce a normal example.

Theorem C. [Axiom P] Let X be a locally compact Hausdorff space of cardinality

ℵ1; then at least one of the following is true:

(1) X is the union of countably many ω-bounded, hence countably compact sub-

spaces.

(2) X contains an uncountable closed discrete subspace.

(3) X has a countable subset with non-Lindelöf closure.

We will see that (1) fails for our spaces, and it is easy to see from the earlier

remarks that (3) fails too; so, under the axiom P of [AT], which is compatible with

CH, the spaces cannot be ω1-compact.

For pseudonormal spaces, (1) can be strengthened to:

(1+) X is the union of countably many closed ω-bounded, hence countably com-

pact subspaces; in particular, X is a Σ-space.

Σ-spaces are a well-behaved class of “generalized metric” spaces, and while ∆

never falls into this class, it is always an Σ#-space:

Definition. A space X is a Σ-space [resp. a Σ#-space] if it has a cover C by

countably compact closed subsets and a σ-locally finite [resp. s-closure-preserving]

collection F of closed subsets such that, for every open U ⊂ X and every C ⊂ U ,

C ∈ C, there exists F ∈ F such that C ⊂ F ⊂ U .

In fact, ∆ has a closure-preserving cover consisting of closed countably compact

subsets.

1. The frayed octants

Despite the scope for variation in our generic construction, the spaces it produces

have enough features in common for me to refer to them all by the term “frayed
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octant”. The term is motivated by an informal picture of the horizontal lines in

ω1 × ω1 being the “warp” and the vertical lines being the “woof” in an infinite

piece of fabric. In our generic construction, the woof loses its cohesiveness, yet its

adhesion to the main diagonal is only somewhat weakened.

1.1. General Example. As the underlying set for our generic construction, we

use the set ∆ of points on or below the diagonal of ω1 × ω1:

∆ = {〈ξ, η〉 : 〈ξ, η〉 ∈ ω1 × ω1, η ≤ ξ}.

The topology will depend on two parameters. One is the choice of a ladder system

L = {Lγ : γ ∈ Λ}, where each ladder Lγ is a set of ordinals of order type ω whose

supremum is γ, and Λ stands for the set of all countable limit ordinals. The other

parameter is the choice of the fundamental basic open neighborhood V η
0 when η

is a successor ordinal. Continuing the suggestive notation above, we define, for all

α ≤ β < ω1, the triangles

∆β
α = {〈ξ, η〉 : 〈ξ, η〉 ∈ ω1 × ω1, α ≤ η ≤ ξ ≤ β}.

We employ another suggestive notation for intervals along the diagonal:

Iβ
α = {〈η, η〉 : 〈η, η〉 ∈ ω1 × ω1, α ≤ η ≤ β}.

Basic open sets are of three kinds: (1) singletons {〈ξ, η〉} where neither ξ nor η is a

limit ordinal; (2) horizontal intervals (α, β]×{ξ} where α ≤ β < ω1; and (3) sets of

the form V γ
α , where α < γ < ω1, defined by induction, with variations at successor

ordinals that influence the later stages in the induction. The two main variations

result in ‘thick’ and ‘thin’ ∆’s respectively.

For the thick [resp. thin] ∆, we let V n
i = ∆n

i+1 [resp. V n
i = In

i+1] whenever

i < n < ω. If V δ
β has been defined for all β < δ < γ and γ is a limit ordinal, let

α0 = 0, let Lγ = {αn+1 : n ∈ ω}, let

V γ
0 = {〈γ, γ〉} ∪ {〈ξ, η〉 ∈ ∆γ

1 : η ∈ Lγ} ∪
⋃

{

V αn+1

αn
: n ∈ ω

}

and let V γ
α = V γ

0 ∩ ∆γ
α+1. If η is an infinite nonlimit ordinal, let γ be the greatest

limit ordinal that is less than η and, for the thick ∆’s, let V η
α = V γ

α ∪∆η
γ+1 whenever

α < γ while letting V η
α = ∆η

α+1 whenever γ ≤ α < η. The thin ∆’s are defined in
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the same way except that we use Iη
γ+1 in place of ∆η

γ+1 and Iη
α+1 in place of ∆η

α+1,

respectively.

The other variations in the topology consist of using various sets that are subsets

of ∆η
β and contain Iη

β whenever V η
α is defined for successor η; the only restriction is

that if 〈ξ, ζ〉 ∈ V β
α and ζ ≤ η ≤ ξ then 〈η, ζ〉 ∈ V β

α as well.

This induction produces a base for a topology on ∆ that is finer than the usual

topology (Corollary 1.3 below). Each open horizontal ray (α, ω1) × {α} is clopen

and has its usual topology, and the relative topology on the closed (but not open)

diagonal is also the usual topology. If γ is a limit ordinal, and αn ↗ γ, then

{V γ
αn

: n ∈ ω} is a nested local base at 〈γ, γ〉. Thus ∆ is first countable, and it is

easy to show by induction that each member of the base we have described just now

is compact. In fact, by the induction hypothesis, each V
αn+1

αn is compact, and each

horizontal interval of the form (η, α] × {ξ} is clopen and has the interval topology,

hence is compact. So 〈α, α〉 is the extra point in a one-point compactification.

Like γN and Ψ, the symbol ∆ denotes a large variety of spaces, depending on

the way the ladder system is chosen. If it is chosen to witness the axiom ♣ (see

Example 3.1 below), then ∆ is ω1-compact and hence (see Corollary 2.6) it is T5.

But it can also be rigged not to be ω1-compact or even T5: see Example 3.3 below.

On the other hand, as we have remarked, another version (Example 3.4) is T5 under

MA(ω1). The big unsolved problem is:

Problem 1. Is it consistent that ∆ is never T5?

We now embark on an analysis of the V γ
α which will make it easy to show that

each point of the intersection of two such sets has a basic neighborhood that is a

subset of the intersection, and that the sets of the form V ξ
α form a local base at

〈α, α〉.

Given a ladder system L = {Lγ : γ ∈ Λ} and Lγ ∈ L, let rγ(0) = 0 and for each

n > 0, let rγ(n) be the ‘rth rung of Lγ ’:

rγ(n) = the rth element of Lγ

Define Ln
γ by induction as follows:
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L0
γ = {γ}; if Li

γ has been defined, and δ ∈ Λ, δ < γ, then δ ∈ Li+1
γ if, and only if,

δ + n ∈ Lα for some n ∈ ω and α ∈ Li
γ , and β < δ for all β ∈ Li

γ such that β < α.

An easy induction shows that the sets Li
γ are disjoint for distinct i. If δ ≤ γ and

δ ∈ Λ, define

nγ(δ) = min{k : δ ∈ Lk
γ}.

It is easy to see that nγ(δ) exists for all limit ordinals δ ≤ γ: for each n ∈ ω, let

γn be the least member of Ln
γ that is greater than or equal to δ; so γ0 = γ and if

γi > α, then γi+1 exists and is strictly less than γi; so by the well-ordering principle,

we arrive at γm = α after finitely many steps. So we have shown part (1) of the

following lemma, while (2) follows by an easy induction on γ, using the sets V
αn+1

αn

in the definition of V γ
0 .

1.2. Lemma. With Ln
γ and nγ(δ) defined as above:

(1)
⋃

∞

i=0 Li
γ = [0, γ] ∩ Λ.

(2) If δ ∈ Λ and δ < γ, then 〈δ, δ〉 ∈ V γ
ξ if and only if ξ < δ < γ.

(3) For each 〈α, α〉 ∈ V γ
ξ , there exists η such that V α

η ⊂ V γ
ξ .

Proof of (3). If α = β + 1 then η = β is as desired since V α
β = {〈α, α〉}. So let α

be a limit ordinal. If α ∈ L1
γ then let η = ξ if α + n is the least member of Lγ for

some n ∈ ω; otherwise, let η be the greatest ordinal less than α in Lγ . For those

limit ordinals α < γ not in L1
γ , we define ordinals βn < α by induction as follows.

Let β0 = 0. If βn has been defined, let γn be as above with α in place of δ and let

α = γm. If n < m, let ξn be the greatest member of Lγn
that is less than α, unless

all members of Lγn
are greater than or equal to α, in which case we let ξn = 0. Let

βn+1 = max{βn, ξn}. A simple induction shows that

V α
βm

⊂ V
γm−1

βm−1
⊂ · · · ⊂ V γ1

β1
⊂ V γ

0 .

and so η = max{ξ, βm} is as desired. �

The following is clear from (3):

1.3. Corollary. The sets V α
ξ (ξ < α < ω1) form a base for a topology, and the

sets {V α
ξ : ξ < α} form a local base at 〈α, α〉. �

A key feature of the basic clopen sets we have chosen is that they go all the way

to the left in each row they meet; that is, if 〈η, α〉 ∈ V γ
β then 〈ξ, α〉 ∈ V γ

β for all



6 PETER J. NYIKOS

ξ < η satisfying ξ ≥ α. This will help facilitate a number of proofs later in this

paper.

2. Some ZFC properties of ∆.

One of the uses of the key feature mentioned just now is to show that ∆ is

hereditarily cwn whenever it is normal.

2.1. Definition. A space is collectionwise normal (abbreviated cwn) if every

discrete collection of closed sets expands to a discrete collection of open sets. A

space X is 2-fully normal (or strongly collectionwise normal) if each open cover

U of X has an open refinement V such that if V and V ′ are members of V with

nonempty intersection, there exists U ∈ U such that V ∪ V ′ ⊂ U . A space X is

ultraparacompact if every open cover of X can be refined to a partition of X into

clopen sets.

An elementary result is that every zero-dimensional Lindelöf space is ultrapara-

compact: the key is that any countable clopen cover of any space whatsoever can

be refined to a partition. Somewhat less elementary is the result that every locally

compact, zero-dimensional, paracompact space is ultraparacompact. This is a corol-

lary of the result that every locally compact paracompact space can be partitioned

into clopen Lindelöf subsets [E]. Another well known result, which we will not be

needing, is that 2-fully normal spaces are precisely the Tychonoff spaces such that

the set of all neighborhoods of the diagonal is a uniformity. As their alternative

name implies, 2-fully normal spaces are collectionwise normal: the usual proof that

fully normal spaces are collectionwise normal (cf.[E]) goes through without trouble.

2.2 Lemma. If X is an open subspace of ∆ which omits a club subset of the

diagonal, then X is 2-fully normal.

Proof. At the risk of confusion with ∆ itself, we will use the usual notation ∆ for

the diagonal {〈α, α〉} of ∆. Let C be a closed unbounded subset of ∆, let H = ∆\C

and let U be a collection of open subsets of ∆ such that (
⋃

U) ∩ ∆ = H. We will

show that
⋃

U can be covered by a family V as in Definiton 5.2., which will complete

the proof. Clearly, H is the disjoint union of countable intervals of ∆ of the form

Iξ = [(αξ, αξ+1) × ω1] ∩ ∆, ξ < ω1
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unless H is countable. If H is countable, then it is a subset of some countable

triangle ∆α
0 , and V can easily be defined by using metrizability of this triangle

together with the well-known fact that ω1 is 2-fully normal, proven in a way similar

to the use of the Rα and Kα below.

If H is uncountable, we use ultraparacompactness of each Iξ to define a partition

Jξ of Iξ into relatively open, compact intervals, each of which is a subset of some

member of U . Now Jξ has a natural well-ordering in type ω, as follows. Let J 0
ξ be

the interval in Jξ which projects farthest to the left in ω1. With Jn
ξ defined, let

Jn+1
ξ be the interval in Jξ \ {J

0
ξ , . . . , Jn

ξ } with the smallest ordinal in its projection

to ω1. If Jξ is infinite and 〈βn, βn〉 ∈ Jn
ξ for each n then βξ = sup{βn : n ∈ ω}

cannot be in Iξ, otherwise Jξ could not be a relatively discrete collection of subsets

of Iξ. Hence Jξ = {Jn
ξ : n ∈ ω}, and each point of Jn projects to a smaller ordinal

than any point of Jm whenever n < m. Since each Jn
ξ (ξ < ω1, n ∈ ω) is compact,

it has a least element 〈αn
ξ , αn

ξ 〉 and a greatest element 〈βn
ξ , βn

ξ 〉 in its natural order,

and if αn
ξ < η < βn

ξ then 〈η, η〉 ∈ Jn
ξ also. In other words, in teh notation we

introduced in 1.1, we have Jn
ξ = I

βn
ξ

αn
ξ
. Since Iξ is open, α0

ξ is a successor ordinal, as

are all the other αn
ξ ; in fact, αn+1

ξ = βn
ξ +1 for all n because Iξ is an interval; so let

β−1
ξ be the immediate predecessor of α0

ξ . We may assume without loss of generality

that Jξ was chosen in such a way that W n
ξ is a subset of some member of U , where

Wn
ξ is the natural expansion of Jn

ξ to a basic clopen set. [Explicitly: W n
ξ = V ν

µ

where µ = βn−1
ξ and ν = βn

ξ .] Then

W = {W n
ξ : ξ < ω1, n ∈ ω}

is an expansion of J =
⋃

{Jξ : ξ < ω1} to a discrete collection of clopen subsets of

∆, each a subset of some member of U . So W =
⋃

W is a clopen subset of ∆, and

it is a routine matter to cover ∆ \W with basic open sets of the form (ξα
η , η]×{α},

each missing W . The Pressing Down Lemma (PDL) then gives ξ(α) ∈ ω1 such that

ξ(α) = ξα
η for uncountably many η ∈ ω1. Let

Hα = {(ξ(α), η] × {α} : ξα
η = ξ(α)} and let H = ∪{Hα : α < ω1}.

We can easily cover the horizontal interval (α, ξ(α))×{α} by a countable collection

Kα of disjoint compact open intervals, each of which is a subset of some memeber of

U and each missing W . Let K =
⋃

{Kα : α < ω1}. The desired open refinement of
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U is then V = H∪J ∪K∪W. Indeed, two distinct members of V can only meet if

they are members of the same Hα, and their union is the greater of the two, hence

is a subset of some member of U . �

2.3. Corollary. ∆ is hereditarily cwH.

Proof. We use the elementary fact that a space is hereditarily cwH iff every discrete

subspace expands to a disjoint collection of open sets. If D is a discrete subspace of

∆ then there is a club subset C of the diagonal ∆ missing D, and the complement

V of C is as in the statement of Lemma 2.2. Let W = V \ (D \ D). Then, as

in Lemma 2.2, W is an open subspace of ∆ missing C and D is a closed discrete

subspace of W . Now use the fact that every 2-fully normal space is cwH. �

2.4. Lemma. A given version of ∆ is T5 if, and only if, every open set containing

the diagonal contains a closed neighborhood of the diagonal.

Proof. We will use the elementary fact that a space is hereditarily normal iff every

open subspace is normal. Let V be an open subspace of ∆ and let F and K be

disjoint relatively closed subsets of V . If neither K nor F meets the diagonal in an

uncountable set, say no point above 〈α, α〉 meets either K or F , then V \ {〈ξ, ξ〉 :

ξ > α} is an open subspace of V containing K and F and we can use Lemma 2.2

to conclude that K and F can be put into disjoint open sets. Hence it suffices to

prove the claim for the case where one of the sets, say K, meets the diagonal in a

club. If F also meets the diagonal, it does so in a countable closed set which can

be expanded to a countable clopen set missing K inside some countable clopen ∆α
0 .

Hence we may assume that F does not meet the diagonal.

Now we use the hypothesis on the diagonal ∆, as follows. Let G = ∆ \ F , and

suppose there is a closed nbhd N of ∆ such that N ⊂ G. Now K \∆ and F are easy

to put into disjoint open subsets of V \ ∆: just use the fact that the complement

of ∆ is the union of relatively open subsets of horizontal rays, each of which is a

copy of an open subspace of the hereditarily normal space ω1. So let H be an open

subset of ∆ \ ∆ containing K \ ∆, such that the closure of H misses F . Then if

we let G1 be the interior of N , let G2 be the complement of N , let H1 = G1 ∪ H

and let H2 = G2 \ H, then H1 and H2 are disjoint open sets containing K and F

respectively. �
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2.5. Corollary. If ∆ is normal, it is hereditarily collectionwise normal.

Proof. We will use the elementary fact that a space is hereditarily collectionwise

normal (abbreviated ‘hereditarily cwn’) iff every open subspace is cwn. If {Cα :

α ∈ κ} is a discrete family of closed subsets in some open subspace V of ∆, then

at most one of the Cα meet the diagonal ∆ in a club set. If none do, then there is

a club subset K of the diagonal that misses
⋃

{Cα : α ∈ κ}, and we argue as for

Lemma 2.2 applied to the open subspace V \ K to put the Cα into disjoint open

sets. So suppose some Cα meets the diagonal ∆ in a club. In that case, we put Cα

and
⋃

{Cβ : β 6= α} into disjoint open sets G and H, respectively, using the fact

that ∆ is T5, and treat H like we did V \ K in the earlier case. �

2.6. Lemma. If ∆ is not normal, then there is a closed discrete subspace of ∆\∆

that cannot be separated from ∆ by disjoint open sets.

Proof by contrapositive. Let F be a closed subspace of ∆ that does not meet the

diagonal. For each horizontal ray Rξ = (ξ, ω1) × {ξ} that meets F , let 〈ηξ, ξ〉 be

the leftmost point of Rξ ∩ A. Let D be the set of all such points 〈ηξ, ξ〉. Since

D ⊂ F and D meets each horizontal line in at most one point, D is easily seen

to be closed and discrete. Suppose there is an open set U such that ∆ ⊂ U and

U ∩ D = ∅. For each 〈α, α〉 ∈ ∆, pick a basic nbhd V α
β(α) ⊂ U . The closure of

⋃

{V α
β(α) : 〈α, α〉 ∈ ∆} = V misses each 〈ηξ, ξ〉 ∈ D, and every point of V has all

points to the left of it in V as well, so no point of F is in V . So ∆ is normal by

Lemma 2.4. �

2.7. Corollary. If ∆ is ω1-compact, it is T5.

Proof. Thanks to Lemma 2.6, it suffices to show that ∆ is always pseudonormal;

that is, given two disjoint closed sets D and F , one of which (say D) is countable,

there are disjoint open sets U and V such that D ⊂ U, F ⊂ V . Now each countable

D ⊂ ∆ is contained in some countable clopen ∆α
0 which is first countable, hence

metrizable by Urysohn’s metrization theorem. Let U and W be disjoint open subsets

of ∆α
0 containing D and F ∩ ∆α

0 respectively, and then U and V = W ∪ (∆ \ ∆α
0 )

are as desired. �

The following theorem is also a corollary of Lemma 2.6. Recall that a space

is called [strongly] collectionwise Hausdorff (abbreviated ‘[s]cwH’) if every closed
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discrete subspace expands to a disjoint [resp. discrete] collection of open sets; “ex-

pands” refers to the following concept: if D is a (discrete) subspace of a space X,

an expansion of D is a family of sets {Ud : d ∈ D} such that Ud ∩ D = d for all

d ∈ D.

2.8. Theorem. ∆ is T5 if, and only if, it is strongly cwH.

Proof. If ∆ is T5, then Corollary 2.5 shows it is cwH, and every normal cwH space

is strongly cwH. Indeed, if D is closed discrete and {Ud : d ∈ D} is a disjoint open

expansion of D, let V and W be disjoint open sets containing D and the complement

of
⋃

{Ud : d ∈ D} respectively. Then {V ∩Ud : d ∈ D} is a discrete open expansion

of D. Conversely, if ∆ is strongly cwH, we apply Lemmas 2.4 and 2.6. Let D be

a closed discrete subspace of ∆ disjoint from the diagonal ∆. Let {Ud : d ∈ D}

be a discrete open expansion of D. Then Ud contains an open interval of the form

[f(d), d] × π2(d) where π2(d), as usual, is the second coordinate of d: if d is an

isolated point then f(d) = d works, otherwise d = 〈γ, ξ〉 where γ is a limit ordinal,

and there is an open interval (η, ξ] × {γ} contained in Ud, and letting f(d) = η + 1

works. Now
⋃

{[f(d), d] : d ∈ D} is an open set containing ∆ whose closure misses

∆. Now Lemmas 2.6 and 2.4 show ∆ is T5. �

Due to the simplicity of the neighborhoods of the off-diagonal points, the fore-

going equivalence provides us with a nice geometrical interpretation of when ∆ is

normal (hence T5, etc.). It has to do with being able to define a function fD for each

closed discrete subspace D missing the diagonal, like the function f of the proof we

have just been through. By the proof of Lemma 2.6, it suffices to take care of those

D ⊂ (∆ \∆) which meet each horizontal ray [ξ + 1, ω1)×{ξ} in at most one point.

Given such a closed discrete subspace D, let D# be the set of nonisolated points of

D. Then if ∆ is normal, there is a function gD : D# −→ ∆ such that gD(d) is an

isolated point strictly to the left of d (in other words, if d = 〈γ, α〉 then γ ∈ Λ and

gD(d) = 〈ξ +1, α〉 where ξ < γ) and such that {gD(d) : d ∈ D#} is a closed discrete

subspace of ∆. This much is clear from the proof of Lemma 2.6, and we can let

fD : D → ∆ be the function extending gD which takes each isolated point of D to

itself. The existence of an fD with closed discrete range, sending each nonisolated

point d of D to a point strictly to the left of d on the same horizontal line, and each

isolated point of D to itself, is necessary and sufficient for ∆ to be (hereditarily)

normal. We will be making use of this geometric criterion in Section 4 to show
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that certain versions of ∆ are T5 under MA(ω1). This, coupled with the following

lemma, will establish that ω1-compactness cannot be dropped from the hypotheses

of Theorem A, even if “countable” is dropped along with the final sentence.

2.9. Lemma. If K is a discrete family of copies of ω1 in ∆, then ∆\
⋃

K contains

a copy of ω1.

Proof. Let K be a family of disjoint copies of ω1 in ∆. If ∆ \
⋃

K does not contain

a copy of ω1, then K must include, for each α ≤ ω1, a member Kα which meets the

horizontal ray Lα = (α, ω1) in a club. Moreover, these members of K are uniquely

determined, and by cutting down Kα if necessary, we may assume Kα ⊂ Lα. For

each α < ω1, let Cα be the image of Kα under the first coordinate projection

π : ∆ → ω1. Let C be the diagonal intersection of 〈Cα : α < ω1〉. That is,

C = {γ ∈ ω1 : γ ∈ Cξ for all ξ < γ}.

Since the diagonal intersection of clubs is a club, C is a club, and from its definition

it is easy to see that if γ is a limit point of C, then the point 〈γ, γ〉 of the diagonal ∆

is a limit point of the sets Kξ satisfying ξ < γ; in fact, 〈g, ξ〉 ∈ Kξ for all ξ. Hence

K is not a discrete collecton. �

From Lemma 2.9 it follows that it is not possible to cover ∆\
⋃

K by a relatively

locally finite collection of open sets, each of which is a subset of some basic open

set. This leads directly to:

2.10. Corollary. ∆ is not monotone normal.

Proof. In [BZ], it was shown that in a monotone normal space, every open cover U

can be associated with a discrete family K of copies of stationary subsets of regular

uncountable cardinals in such a way that what is left of the space when
⋃

K is

subtracted can be covered by a family of disjoint open subsets, each of which is a

subset of some member of U . However, if ∆ is covered by countable open sets, then

every discrete family of copies of regular uncountable cardinals (each of which is

necessarily ω1) leaves a copy of ω1 uncovered, and no collection of countable open

sets covering ω1 can be disjoint. �

Problem 4. Can ∆ ever be hereditarily 2-fully normal?
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3. Four examples and the T5 property

The examples in this section are families of versions of ∆. In the first family,

everything depends on the ladder system: the spaces can be thin, thick, or anywhere

in between. The second family consists of thick spaces, the third of thin spaces. The

fourth is a subfamily of the third. The first family depends on the special axiom ♣,

which is negated by MA(ω1) and hence by the PFA. The second and third families

use only ZFC for construction and verification of properties claimed. The fourth

family is a special case of the third in which the axiom ♦ (which is equivalent to

♣ + CH) is used to get the space to be T5; on the other hand, this is automatic

under MA(ω1) for all members of the third family, as will be shown in Section 4.

3.1 Example. [♣] If the ladder system used to define the topology on ∆ witnesses

♣, then the space is ω1-compact and hence T5. To see this, let D be a closed

discrete subspace of ∆; then D meets each horizontal line in a finite set. If D

is uncountable, then by cutting D down if necessary, we may assume that D =

{〈αξ, βξ〉 : ξ < ω1} where max{αξ, βξ} < min{αη, βη} whenever ξ < η. Let S be

the set of 2nd coordinates of the points of D. Let γ be such that Lγ ⊂ S. Then

{〈αξ, βξ〉 : βξ ∈ Lγ} ⊂ ∆γ
0 , because βξ < γ for all ξ. Moreover, since the βξ in Lγ

are of order type ω with supremum γ, every V γ
ζ contains all but finitely many of

the points {〈αξ, βξ〉 : βξ ∈ Lγ}. Since each V γ
ζ is compact, these points converge to

〈γ, γ〉.

On the other hand, as noted in the introduction, it is compatible with CH for ∆

never to be ω1-compact. This is also the case with the set-theoretic hypotheses of

Theorem A:

Corollary 3.2. [PFA + Axiom F] There is an uncountable closed discrete subspace

in ∆.

Proof. If ∆ were ω1-compact, it would satisfy all the hypotheses of Theorem A. In

particular, it would be T5 by Corollary 2.7. However, it is immediate from Lemma

2.9 that ∆ can never satisfy the conclusion of Theorem A. �

Actually, a close study of the proof of Lemma 5.1 in [Ny1] shows that the PFA is

already enough to produce an uncountable closed discrete subspace of ∆. The next

example, done in ZFC, is not ω1-compact and is not even normal. We will explicitly
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define an uncountable closed discrete subspace D which meets each horizontal line

in at most one point, and which cannot be separated from the diagonal by disjoint

open sets. As we saw in Lemma 2.6, any non-normal frayed octant contains such a

D.

3.3. Example. This example, which is thick, uses the triangles ∆γ+n
γ where γ ∈ Λ

to approach the points 〈γ + ω, γ + 1〉 from the left. It will have the property that

the union of all the line segments [γ +1, γ +ω)×{γ +1} is ω1-compact and yet the

subspace D = {〈γ + ω, γ + 1〉 : γ ∈ Λ} is closed discrete. This makes it impossible

to put D in an open set whose closure misses the diagonal: if U is an open set

containing D, then each 〈γ + ω, γ + 1〉 has a neighborhood [γ + n, γ + ω)× {γ + 1}

in U ; and the uncountably many 〈γ + n, γ + 1〉 have an accumulation point, which

can only be in ∆.

The construction will inductively be made to satisfy four conditions (let γ be any

limit ordinal):

(1) Lγ ⊂ (ω1 \ Λ).

(2) For all δ ∈ Λ, we have γ + 1 /∈ Lδ.

(3) For all δ ∈ Λ, there is at most one γ + n in Lδ.

(4) If 〈γn : n ∈ ω〉 is a strictly increasing sequence in Λ with supremum γ, and

k(γn, γ) is defined as max{k : 〈γn + k, γn + 1〉 ∈ V γ
0 }, then k(γn, γ) → ∞.

Condition (4) insures that Zk = ∆∪{〈γ+k, γ+1〉 : γ ∈ Λ} is countably compact

for all k and hence that the union of all the line segments [γ + 1, γ + ω) × {γ + 1}

is ω1-compact. Condition (2) insures that D is closed discrete: an easy induction

shows that 〈γ + ω, γ + 1〉 /∈ V δ
0 for all δ ∈ Λ, and D meets each horizontal line

in at most one point while the sets V δ
0 cover the diagonal. Condition (3) is done

for bookkeeping purposes, while (1) is in anticipation of Example 3.4: the same

identical construction we have below, but with a thin ∆, will give us an example

in which the sub-diagonal s∆ = {〈ξ + 1, ξ〉 : ξ ∈ ω1} is a countable union of closed

discrete subspaces. Example 3.5, using ♦, will be a T5 version of Example 3.4.

For complicated limit ordinals, (4) is achieved by induction. First, we give an

alternative characterization of k(λ, γ) for any pair λ < γ of limit ordinals. Let

β0 = γ and let β1 be the least member of Lγ that is above λ. If β1 ≥ λ + ω we

continue, letting β2 be the least member of Lβ1
above λ; continue like this until
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βj < λ + ω; in other words, βj = λ + i for some i ≥ 2. Next, an easy induction

shows that V γ
0 meets the horizontal line [βi, ω1) × {βi} in the (infinite) interval

[βi, βi−1] × {βi} whenever 0 < i ≤ j. But when we reach βj , there are no members

of any of the ladders associated with any of the Ln
γ between λ+1 and βj = λ+ i; so

in a thick ∆, the basic open set V γ
0 meets the i lines immediately above [λ, ω1)×{λ}

in ∆λ+i
λ+1 \ {〈λ + i, λ + i〉}. It is then clear that k(λ, γ) = i. So we can characterize

k(λ, γ) as the first integer k for which V γ
0 ∩ (ω1 × {λ + k} is infinite.

Let Λ′ denote the derived set of Λ; that is, Λ′ is the set of all countable ordinals

that are limits of limit ordinals. If γ ∈ (Λ \ Λ′) — in other words, γ is of the form

β + ω where β ∈ Λ ∪ {0}, we simply let Lγ = {β + n + 2 : n ∈ ω}. If γ is of the

form β + ω2 for some β ∈ Λ ∪ {0}, let

Lγ = {β + ω · n + (n + 2) : n ∈ ω}.

All limit ordinals between β and γ are of the form β + ω · n; so the only horizontal

lines between β and γ which meet V γ
0 in an infinite set are those which are either in

Lγ or in Lβ+n and at or above the line ω1×{β+ω ·n+n+2} The part of V γ
0 between

the line ω1×{β +ω ·n+n+2} and β consists of the triangle ∆β+ω·n+n+2
β+ω·n+1 except for

its apex point 〈β + ω ·n + n + 2, β + ω ·n + n + 2〉. Thus, in particular, it meets the

crucial line ω1×{β+ω ·n+1} in the interval [β+ω ·n+1, β+ω ·n+n]×{β+ω ·n+1}.

The actual induction will cover the derived set Λ(2) of Λ′ (that is, Λ(2) is the set

of all countable ordinals that are limits of ordinals in Λ′); we have already taken

care of the ordinals in γ ∈ (Λ \Λ(2)). Let δ be in Λ(2) and suppose (4) holds for all

γ ∈ Λ′ such that γ ≤ δ. Let 〈γn : n ∈ ω〉 be a strictly increasing sequence of limit

ordinals whose supremum is δ. If γn were always close enough to γn+1 for V
γn+1

γn to

meet all horizontal lines of the form ω1 ×{λ + 1} (γn ≤ λ ≤ γn + 1, λ ∈ Λ∪ {0}) in

a set of size n or greater, then we could simply let Lδ = {γn + n : n ∈ ω, and (4)

would hold with δ in place of γ. Our goal is to insert, if necessary, finitely many

ordinals between γn and γn+1 for each n to get the elements of Lδ close enough

together in the sense just mentioned.

For each n ∈ ω, let β0
n = γn and let β1

n be the least ordinal β < γn such that,

for all limit α ∈ [β, γn), we have 〈α + n, α + 1〉 ∈ V γn

0 . If β1
n is finite (equivalently,

β1
n = 0) or if β1

n < γn−1 (in case n > 0) then we let An = {γn + n}. Otherwise, β1
n

is a limit ordinal, and it is strictly less than β0
n = γn by the induction hypothesis.
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If k > 0 and βk
n has been defined and is either finite in case n = 0, or βk

n ≤ γn−1+j

for some finite j in case n > 0, then we let

An = {βk−1
n + n, . . . , β0

n + n}.

Otherwise, let βk+1
n be the least ordinal β < βk

n such that, for all limit α ∈ [β, βk
n),

〈α + n, α + 1〉 ∈ V
βk

n

0 . Because of the induction hypothesis on δ, the descending

sequence

β0
n > β1

n > · · · > βi
n . . .

eventually terminates for each n ∈ ω, and hence the finite An becomes well defined.

In particular, every ordinal in An will be strictly less than every ordinal in An+1.

Thus if we let

Lδ =

∞
⋃

n=0

An,

then Lδ will be of order type ω with supremum δ. In the notation of 1.1, each αn

with n > 0 is some βi
j + j; and if λ is a limit ordinal and αn ≤ λ < αn+1, then

V αn+1

αn
∩ (ω1 × {λ + 1}) ⊃ [λ + 1, λ + j] × λ + 1;

moreover, n → ∞ implies that j → ∞ as well. This completes the induction.

3.4. Example. We follow the definition of the Lδ in the inductive construction

of Example 3.3, except that where we chose β1
n and βk+1

n we use the alternative

characterization of k(λ, γ) as the first integer k for which V γ
0 ∩ (ω1 × {λ + k}) is

infinite. The key to the transition is that V γ
0 meets exactly the same horizontal

lines in finite sets in a thin ∆ as it does in a thick ∆. In thin ∆, the intersection is

the single point of the diagonal ∆ on the horizontal line. Because of this, the effect

of Condition (4) this time is to insure that the following subsets of ∆ are closed

discrete:

Cn = {〈γ + n + 1, γ + n〉 : γ ∈ Λ ∪ {0}}.

It follows from the discussion following Theorem 2.8 that any set D that meets the

same horizontal lines as Cn in a single point or even finitely many points is closed

discrete.

3.5. Example [♦] Recall that ♦ is the axiom that there is a family {Sα : α < ω1}

of subsets of ω1 such that (i) Sα ⊂ α for all α < ω1 and (ii) for each subset X
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of ω1 the set of all α such that X ∩ α = Sα is stationary. We will use this axiom

to construct a special case of Example 3.4 in which every closed discrete subset of

s∆ is the union of a countable set and finitely many sets of the form Cn. More

generally, every closed discrete subset will be the union of a countable set and a

subset of some X0∪· · ·∪Xn where Xk = (ω1×Ωk)∩∆ where Ωk = {γ +k : γ ∈ Λ}.

From this it will be easy to deduce that this example is strongly cwH and hence T5.

The strategy is in the contrapositive direction: given any subset X of ∆ that

has uncountable intersection with infinitely many distinct Xn, we will insure that

X will have a limit point. This we do with a careful choice of the ladders, taking

care that each one meets infinitely many Ωk whenever it is possible for it to do so.

Explicitly: if Sα meets infinitely many Ωk, then we pick Lα = {αn : n ∈ ω} so

that whenever Sα meets Ωk in a cofinal subset of α, then Lα meets Ωk also. To see

that this works, suppose D is a subspace of ∆ that meets infinitely many Xk in an

uncountable set and also meets each horizontal line in a finite set. Every discrete

subspace of ∆ must satisfy the latter property, but we will show that the former

property rules out D being closed.

A routine transfinite induction gives a subspace T = {tξ : ξ ∈ ω1} of D such

that (1) T meets infinitely many Xk in an uncountable set and (2) if ξ < η then

both coordinates of tξ are less than either coordinate of tη. In other words, the

transfinite sequence is the graph of a strictly increasing function from the set of first

coordinates of members of T to the second coordinates. The key to the induction

is that if η < ω1 and {tξ : ξ < η} have been chosen, all but countably many points

of D ∩ Xk have second coordinates greater than both coordinates of any earlier tξ;

and, of course, π1(x) ≥ π2(x) for all x ∈ ∆.

Let K be the set of all indices k such that T ∩Xk is uncountable. The following

subset of ω1 is a club:

C = {α : (π→

2 T ) ∩ (α × Ωk) is cofinal in α for all k ∈ K}.

As usual, π2 denotes the projection to the second coordinate. C is trivially closed,

while unboundedness is established by a standard leapfrog argument. Using the

“stationary” aspect of ♦, let α ∈ C be such that Sα = π→

2 (T ∩α×ω1). Then, given

any αn ∈ Lα, there is ξn < α such that tξn
= 〈βn, αn〉 for some β < α. Since V α

0

contains all of {tξn
: n ∈ ω} it follows that T is not closed discrete, and so neither

is D.
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4. Applying Martin’s Axiom

We will now show how MA(ω1) implies that Example 3.4 is T5, completing the

proof that Theorem A cannot dispense with ω1-compactness. Our proof extends

to any version of ∆ in which the subdiagonal s∆ is a countable union of closed

subspaces. In example 3.4, it is the sets of the form Cn that are the most convenient

choice for the countably many closed (discrete) subspaces in which s∆ is divided.

Most of proof will probably seem almost mechanical to people familiar with the

uses of Martin’s Axiom in [Ru] or [K, Chapter 2]. This includes the posets we set

up and the proof that they are ccc. We introduce two related classes of ccc posets.

The first kind will be used in showing that, in Example 3.4, s∆ contains a closed

discrete subspace that meets all of the discrete subspaces Cn in an uncountable set.

This shows that some extra set-theoretic hypothesis was necessary in Example 3.5

to maintain tight control over the closed discrete subspaces.

Our posets will be subsets of a poset P which is not, itself, ccc. Elements of P

are ordered pairs p = 〈[p],Up〉 where [p] is a finite collection of points, meeting each

horizontal line at most once, off the diagonal, and Up is a finite collection of basic

open sets V α
ξ . The partial order is given by:

p ≤ q ⇐⇒ [q] ⊂ [p],Uq ⊂ Up, and if d ∈ [p] \ [q], then d /∈ U for all U ∈ Uq.

It is easy to check that this is a partial order on P . To see that P itself is not

ccc, note that the following is an uncountable antichain of P : {(〈α, 0〉, ∅) : α ∈ ω1}

4.1. Two kinds of ccc posets. Our ccc subsets of P will each involve (discrete)

subsets of ∆ \ ∆ that meet each horizontal line in at most one point. In the first

kind we let D be any such subset and define

QD = {q ∈ P : [q] ⊂ D}.

In the second kind, we let C be any such closed subset, and define

PC = {p ∈ P : (∪Up) ∩ C = ∅ and every point of [p] is strictly

to the left of some point of C}.



18 PETER J. NYIKOS

Without loss of generality, we need only consider those C which are uncountable

and consist only of nonisolated points. In both kinds of posets, the following sets

are obviously dense for each ξ ∈ ω1:

Dξ = {p ∈ P : 〈ξ, ξ〉 ∈ U for some U ∈ Up}

In the posets QD, the following sets are clearly dense for each ξ in ω1 and each

n ∈ ω for which Xn meets D in an uncountable set:

En
ξ = {p ∈ P : [p] ∩ Xn ∩ (ω1 × {α}) 6= ∅ for some α > ξ}.

In the posets PC , the following are dense for each c = 〈ξ, α〉 ∈ C:

Dc = {p ∈ P : 〈η, α〉 ∈ [p] for some η < ξ}.

This is because all the
⋃

Up miss C, and they are clopen, and points of C have limit

ordinals for their first coordinates. Thus there is ample room to the left of each

point of C to extend any [p].

If G is generic for the given ℵ1 dense sets in the respective posets, then Z =
⋃

{[p] : p ∈ G} is a closed discrete subspace of ∆, because at most finitely many

points of Z are in any of the U in
⋃

{Up : p ∈ G}, and these U ’s cover the diagonal

because of the density of each Dξ. But if a subset of ∆ meets each horizontal line

in a finite set, its only accumulation points can be on the diagonal. In Qs∆, this

closed discrete subspace Z meets every Cn in an uncountable set, as stated earlier.

In the posets PC , we can expand the set C to a discrete collection of clopen intervals

(η, ξ] × {α} where 〈ξ, α〉 ∈ C and 〈η, α〉 ∈ Z. The union of these is a clopen set

containing C and missing the diagonal.

4.2. Proof of ccc property. The proof that these posets are ccc follows familiar

lines. Let A be any uncountable subset of either poset. If there is a pair p1, p2 of

distinct elements of A such that [p1] = [p2], then p1 and p2 are compatible and we

are done. So assume all the [p] with p ∈ A are distinct. Let A0 be an uncountable

subset of A in which all the [p] are of the same (finite) cardinality n. Let A1 be

an uncountable subset of A0, in which the [p] form a ∆-system with root r. In A1,

the sets [p] \ [r] are all disjoint, and so only countably many of them can meet any
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portion of ∆ whose second coordinates are bounded; this is obvious in case of the

QD and follows for the PC from the fact that there are only countably many points

directly to the left of any point in C. Hence A1 has an uncountable subset A2 in

which, given any two members p1 and p2 of A2, all points of [p1] outside the root r

have smaller second coordinate than any of the points of [p2] outside the root r (or

vice versa). If we designate the former alternative by p1 ≺ p2, then A2 is strictly

well-ordered in order type ω1 by ≺. Hence
⋃

{[p] : p ∈ A2} meets each horizontal

line at most once, and the only thing impeding compatibility of the members of A2

is the interplay of the various [p]’s and Uq’s.

To take care of that, let k be the least integer such that infinitely many [p] ∈ A2

have the property that all points of [p]\[r] have second coordinates of the form γ+j,

γ ∈ Λ, j ≤ k. Let 〈pn : n ∈ ω〉 be a ≺-increasing sequence of such points and let

U =
⋃

{
⋃

Upn
: n ∈ ω}. Let q ∈ A2 be such that ([q]\ [r])∩U = ∅ — this is possible

because U is countable. Now
⋃

{[pn] \ [r] : n ∈ ω} is closed discrete, being a subset

of X0 ∪ · · · ∪Xk that meets each horizontal line at most once. Hence all but finitely

many [pn] \ [r] miss the compact set
⋃

Uq. Let m be such that [pm] ∩
⋃

Uq ⊂ [r];

then pm and q are compatible. �

Clearly, the foregoing proof of the ccc property extends to all cases where s∆ or

D is a countable union of closed (discrete) subspaces. More generally, we have:

4.3. Theorem. Let D be a subset of ∆ \∆ which meets each horizontal line in at

most one point. If each uncountable subset E of D has an uncountable subset F of

its own that is closed in ∆, then:

(1) QD is ccc and

(2) PC is ccc for all closed subspaces C of D and

(3) MA(ω1) implies that each closed subspace C of D can be separated from ∆

by disjoint open sets and

(4) MA(ω1) implies that D is a countable union of closed discrete subspaces.

Proof. We extend the cutting-down process of 4.2 as follows. Let A0
3 = A2 and

inductively let Ai
3 be an uncountable subset of Ai−1

3 such that the set of all ith

elements of [p] \ [r] is closed (discrete) as p ranges over Ai
3. If [r] has m elements,

let A4 be any subset of An−m
3 of order type ω with respect to ≺ and proceed as

above, with q ∈ An−m
3 , to show items (1) and (2). Then (3) follows from (2) as
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indicated earlier. As for (4), that follows from (1) and the well-known fact that

MA(ω1) implies every ccc poset of cardinality ℵ1 is σ-centered: each uncountable

centered subcollection of {p ∈ QD : p = 〈{d}, {V
π2(d)
0 }〉} clearly corresponds to a

closed discrete subspace of ∆ since the sets V
π2(d)
0 involved cover the diagonal. �

By employing the axiom TOP* we can also simplify the situation that occurs

when the hypothesis of 4.3. fails. The axiom TOP*, denoted “Axiom 0*” in [NP],

has to do with ideals of subsets of ω1:

4.4. Definition TOP* is the following axiom:

Let I be an ideal on ω1 with A1 generators. Then either there is an uncountable

subset A of ω1 such that every countable subset of A is in I, or ω1 is the union of

countably many sets Bn such that Bn ∩ I is finite for all I ∈ I.

4.5 Lemma. [TOP*] If S is a subset of ∆ missing the diagonal and containing at

most finitely many points of each horizontal line, then either:

(1) There is an uncountable subset A of S such that every countable subset of

A has compact closure, or

(2) S is the union of countably many closed discrete subsets of ∆.

The following is immediate from Theorem 4.3 and Lemma 4.5.

4.6. Corollary. [TOP* + MA(ω1)] If a version of ∆ is not normal, then the

sub-diagonal s∆ has an uncountable subset S such that every countable subset of S

has compact closure.

5. Other topological properties of ∆

In this section, we show that ∆ is always countably metacompact, and even

satisfies a number of stronger properties, sometimes under added conditions. In

particular, if it is normal, it is countably paracompact. The converse is also true:

this is immediate from Lemma 2.6 and an interesting general theorem.
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5.1. Theorem. Let X be a countably paracompact space. If C is a countably

compact closed subspace and D is a closed discrete subspace smaller than the first

uncountable measurable cardinal, then C and D can be put into disjoint open sets.

Proof. Let F be the collection of all subsets F of D such that the closure of every

open set containing F meets C. Suppose every member of F could be split into two

disjoint subsets in F . In that case, we could produce an infinite discrete subfamily

{Fn : n ∈ ω} of F . But if {Un : n ∈ ω} were a locally finite open expansion of

{Fn : n ∈ ω}, then we could use the countable compactness of C to arrive at a

contradiction, as follows. For each point x of C let Vx be an open nbhd of x which

misses all but finitely many of the sets Un, and let Wn be the union of all the Vx

that miss all Um such that m ≥ n. Then the cover {Wn : n ∈ ω} of C has a finite

subcover, whose union misses all but finitely many of the Un, contradicting the

membership of all Fn in F . Hence {Fn : n ∈ ω} does not have a locally finite open

expansion, contradicting the countable paracompactness of X.

So F has a member F whose subsets in F form a linked system. In fact, these

subsets form a filterbase B since if F1 ∩ F2 were not in F then the complement

of this intersection in Fi would be in F for i = 1, 2 contradicting the way F was

chosen. Claim. B has the countable intersection property. Once the claim is proved,

we are done as soon as we show B is a base for an ultrafilter. Were it not, we could

write F as a union of two sets, neither of which is in F ; but clearly, if both could

be put into open sets whose closure misses C then so can their union.

Proof of Claim If B did not have the countable intersection property, we could

produce a descending sequence {Bn : n ∈ ω} of subsets of F in F whose intersection

is not in F . But then the sets Bn \ Bn+1 would be a partition of F into countably

many sets, none of which is in F . Expanding these to a locally finite collection of

open sets whose closures miss C, and taking the union of these open sets, gives an

open nbhd of F whose closure misses C, again giving a contradiction. �
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Definition a poset P is totally proper if it is proper and forcing with P does not

add reals. The following gives a useful criterion for when a poset is totally proper.

Lemma A. [ER] A poset P is totally proper if, and only if, given a countable

elementary submodel M of Hθ for some large enough regular θ, every p ∈ M ∩ P

has a totally (M,P )-generic extension q. That is, for every dense open subset D of

P that is in M, there exists p ∈ M ∩ D satisfying q < p.

The following lemma suggests why so many totally proper posets use elements

with countably infinite working parts:

Lemma B. [E] If P is totally proper, then any generic subset G of P is countably

closed, i.e., given {pn : n ∈ ω} ⊂ G, there exists a q ∈ G that extends each pn.

I conjecture that some such poset as the following is totally proper and can be

iterated with countable supports to make any space of the form 3.4 normal.
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