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In 1900, David Hilbert gave a seminal lecture in which he spoke about a list of
unsolved problems in mathematics that he deemed to be of outstanding importance.
The first of these was Cantor’s continuum problem, which has to do with infinite
numbers with which Cantor revolutionised set theory. The smallest infinite number,
ℵ0, ‘aleph-nought,’ gives the number of positive whole numbers. A set is of this
cardinality if it is possible to list its members in an arrangement such that each one is
encountered after a finite number (however large) of steps. Cantor’s revolutionary
discovery was that the points on a line cannot be so listed, and so the number
of points on a line is a strictly higher infinite number (c, ‘the cardinality of the
continuum’) than ℵ0. Hilbert’s First Problem asks whether any infinite subset of
the real line is of one of these two cardinalities. The axiom that this is indeed the
case is known as the Continuum Hypothesis (CH).

This problem had unexpected connections with Hilbert’s Second Problem (and
even with the Tenth, see the article by M. Davis and the comments on the book
edited by F. Browder). The Second Problem asked for a proof of the consistency
of the foundations of mathematics. Some of the flavor of the urgency of that problem
is provided by the following passage from an article by Simpson in the same volume
of JSL as the article by P. Maddy:

‘We must remember that in Hilbert’s time, all mathematicians were excited about
the foundations of mathematics. Intense controversy centered around the problem
of the legitimacy of abstract objects. Weierstrass had greatly clarified the role of
the infinite in calculus. Cantor’s set theory promised to raise mathematics to new
heights of generality, clarity and rigor. But Frege’s attempt to base mathemat-
ics on a general theory of properties led to an embarrassing contradiction. Great
mathematicians such as Kronecker, Poincaré, and Brouwer challenged the valid-
ity of all infinitistic reasoning. Hilbert vowed to defend the Cantorian paradise.
The fires of controversy were fueled by revolutionary developments in mathemati-
cal physics. There was a stormy climate of debate and criticism. The contrast with
today’s climate of intellectual exhaustion and compartmentalization could not be
more striking.

‘ . . . Actually, Hilbert saw the issue as having supramathematical significance.
Mathematics is not only the most logical and rigorous of the sciences but also the
most spectacular example of the power of “unaided” human reason. If mathematics
fails, then so does the human spirit. I was deeply moved by the following passage [13,
pp.370–371]: “The definitive clarification of the nature of the infinite has become
necessary, not merely for the special interests of the individual sciences but for the
honor of human understanding itself.” ’
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Hilbert was already aware, at the time of his 1900 lecture, of some connection
between the provability of the consistency of a mathematical theory and the de-
cidability of statements by the axioms of the theory. But it was Kurt Gödel who
showed the true nature of this connection in the process of showing that Hilbert’s
Second Problem has a negative solution:

The First Incompleteness Theorem. Every recursively axiomatizable theory

rich enough to include the Peano Axioms contains statements whose truth cannot

be decided within the theory. In particular, Peano Arithmetic itself can be used to

formulate true statements about the natural numbers that are not provable within

Peano Arithmetic.

[Query: Is Fermat’s Last Theorem one of these statements? Wiles has shown
it follows from the usual ZFC axioms; but does it already follow from the Peano
axioms?]

The Second Incompleteness Theorem. Every recursively axiomatizable theory

rich enough to include the Peano Axioms is incapable of demonstrating its own

consistency.

Another fundamental discovery of Gödel was:

The Completeness Theorem. Every consistent set of axioms has a model.

Together with the first incompleteness theorem, this has been a source of a wealth
of mathematics as well as such paradoxical facts as the following: it is impossible
to unambiguously formalize the distinction between “finite” and “infinite”. The
“featherless biped” definition of an infinite set as one that can be put into one-to-
one correspondence with a proper subset of itself does not work; neither does the
more natural definition of a finite set as one that can be put into one-to-one corre-
spondence with {0, . . . , n} for some natural number n: the very concept of “natural
number” cannot be formalized in a way that makes it clear that our intuitive concept
of a natural number is intended.

God̈el [1940] also gave a partial solution to Hilbert’s First Problem by showing
that the Continuum Hypothesis (CH) is consistent if the usual Zermelo-Fraenkel
(ZF) axioms for set theory are consistent. He produced a model, known as the
Constructible Universe, of the ZF axioms in which both the Axiom of Choice (AC)
and the CH hold. Then Cohen showed in 1963 that the negations of these axioms
are also consistent with ZF; in particular, CH can fail while AC holds in a model of
ZF. Cohen’s technique for producing such models was generalized by Scott, Solovay,
and Shoenfeld and a huge variety of models of ZFC (ZF plus AC) has been produced
in the years since then, affecting many areas of mathematics. The books by Dales
and Woodin, Fremlin, Kunen, Kunen and Vaughan, Monk, and Rudin as
well as the articles by Eklof and Roitman, and the articles of Blass reviewed by
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Nyikos give some idea of how great a variety of topics these independence results
have been relevant to.

Topology has been affected perhaps more than any other field, and the following
gives a small sample. Recall the Heine-Borel theorem: Every open cover of a closed

bounded subset of the real line has a finite subcover. The conclusion provides also
the definition of A compact topological space. The conclusion of another famous
topological theorem, the Bolzano-Weierstrass theorem, is the basis for a weaker
concept:

Definition. A topological space is countably compact if every infinite subset has
an accumulation point.

A strengthening of countable compactness, not shared by all compact spaces, is
that of sequential compactness: every sequence has a convergent subsequence.

These three concepts agree for all metrizable spaces (those spaces whose topology
is given by a distance function to the non-negative reals that is symmetric, puts
distinct points at a positive distance from each other, and satisfies the triangle
inequality). Compact metrizable spaces have lots of other properties not shared by
compact topological spaces in general, so it is perhaps surprising that the question
of when a compact space is metrizable can be very simply settled:

Theorem. [Sneider, 1945] A compact space is metrizable if, and only if, it is Haus-

dorff and has a Gδ-diagonal; that is, the diagonal {(x, x) : x ∈ X} is a countable

intersection of open sets.

This theorem was extended to all regular countably compact spaces by J. Chaber
in 1975. One might naturally expect these two theorems to either stand or fall
together if “Gδ-diagonal” is weakened to “small diagonal”:

Definition. A space has a small diagonal if, whenever A is an uncountable subset
of X×X that is disjoint from the diagonal ∆, there is a neighborhood U of ∆ such
that U \A is uncountable.

But in fact, this is not the case. On the one hand, we know that CH implies
every compact Hausdorff space with a small diagonal is metrizable. We do not
know whether ZFC implies this as well; but, be that as it may, the corresponding
statement about regular countably compact spaces is independent not only of ZFC,
but also of CH. On the one hand, Gary Gruenhage has shown that in a model
of CH constructed by Todd Eisworth and Peter Nyikos, the statement is true–
every countably compact regular space with a small diagonal is metrizable; on the
other hand, Oleg Pavlov has constructed a counterexample in Gödel’s Constructible
Universe, the very model that originally established the consistency of CH!
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