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202 Section D: Fairly general properties

d-14 Countable Paracompactness, Countable
Metacompactness, and Related Concepts

A space is countably paracompact (respectively countably
metacompact) if every countable open cover has a locally fi-
nite (respectively, point-finite) open refinement. Despite the
superficial similarity in both their names and in some of their
respective equivalents, these classes of spaces are very dif-
ferent as far as current-day interests of topologists are con-
cerned. Countably paracompactness generally goes hand in
hand with normality – so much so that spaces that are nor-
mal but not countably paracompact are singled out by the
term “Dowker spaces” while spaces that are countably para-
compact but not normal are widely termed anti-Dowker
spaces. On the other hand, a quarter of a century ago, so few
regular spaces were known not to be countably metacom-
pact that Brian M. Scott [10] referred to the few then-known
examples as “almost Dowker spaces”. Since then, a consid-
erable variety of regular spaces have been found not to be
countably metacompact, including some manifolds [7], even
smooth ones such as tangent bundles obtained from smooth-
ings of the long line [9]. Nevertheless, while the term “al-
most Dowker” would be an overstatement, these spaces are
still encountered rather infrequently.

There are many concepts with definitions similar to that
of these two, such as that of countable subparacompactness,
and that of cb-spaces and weak cb-spaces, but these have at-
tracted relatively little attention and their properties are not
so well understood. Since subparacompactness is treated
at some length elsewhere in this encyclopedia, it may be
worth pointing out that the various alternative definitions of
that concept carry over to countable subparacompactness.
Thus it makes no difference whether one says “every count-
able open cover has a {σ -locally finite, σ -discrete, σ -clo-
sure-preserving, σ -cushioned} closed refinement”, and the
only novelty is that it is also equivalent to having a count-
able closed refinement. Proofs of these equivalences can
be found in [3], which is also the seminal paper on the
subject of countable metacompactness. It also shows that
what were called “countably θ -refinable spaces” are actually
the same as countably metacompact spaces, and hence that
every countably subparacompact space is countably meta-
compact. An awkward feature of countable subparacompact-
ness is that it is not implied by countable compactness: the
product space (ω1 + 1) × ω1 is not countably subparacom-
pact.

One can require, in the definitions of countable paracom-
pactness and countable metacompactness, that the refine-
ments be countable as well, and obtain an equivalent con-
dition in either case. The really useful equivalent conditions,
however, are the ones that begin with a countable descending

sequence of closed sets Fn whose intersection is empty, and
expand each Fn to an open set Un, requiring

⋂∞
n=0 Un = ∅ in

the case of countable metacompactness and
⋂∞

n=0 Un = ∅ in
the case of countable paracompactness. This makes it obvi-
ous that the two properties coincide for normal spaces. Thus
one can define a Dowker space either as a normal space
which is not countably paracompact, or as one that is not
countably metacompact. Of course, the property of Dowker
spaces that makes them so popular is that they are the normal
spaces whose product with [0,1] fails to be normal. Brian
Scott [10] found a similar product theorem for orthocom-
pactness: an orthocompact space has orthocompact product
with [0,1] iff it is countably metacompact. Countable meta-
compactness figures in another interesting equivalence due
to Norman Howes [4]: a regular linearly Lindelöf space is
Lindelöf iff it is countably metacompact. [Recall that a space
is called linearly Lindelöf if every ascending open cover has
a countable subcover.]

Countable paracompactness has many affinities with nor-
mality, including a curious set of parallels involving the ax-
ioms V = L and PMEA. If V = L, then every normal space
and also every countably paracompact space of character
� ℵ1 is collectionwise Hausdorff [2, 11]. If PMEA, then
every normal space of character < 2ℵ0 is collectionwise nor-
mal, while every countably paracompact space of charac-
ter < 2ℵ0 is collectionwise Hausdorff and expandable [6, 1].
Both of these axioms imply that a subspace of ω2

1 is normal
iff it is countably paracompact [5]. On the other hand, al-
though it is a theorem of ZFC that every normal subspace
of ω2

1 is countably paracompact, the reverse implication is
an open problem with interesting set-theoretic equivalents.
There are also V = L and PMEA theorems for countable
metacompactness: V = L implies closed discrete subsets
of locally countable T1 countably metacompact spaces are
Gδ [8], while PMEA implies closed discrete subsets of T1
countably metacompact spaces of character < 2ℵ0 are Gδ if
every one of their points is a Gδ [1].

Morita P-spaces are an important special class of count-
ably metacompact spaces. These spaces are often classed
as “generalized metric spaces” because the normal ones are
precisely those normal spaces whose product with every
metric space is normal. But they can also be looked at as
an interesting example in the theory of topological games.
They can be defined as those topological spaces in which
the second player has a winning strategy in what might be
called the countable metacompactness game. This is a topo-
logical game with infinitely many moves indexed by the nat-
ural numbers, in which two players take turns playing closed
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sets and open sets in a topological space, and each one has
knowledge of past plays but not of future ones. On the nth
turn, Player 1 plays a closed set Fn which is a subset of the
previously chosen sets Fk , and then Player 2 plays an open
set Gn containing Fn. At the end of the game, Player 1 wins
iff the set of all Fn have empty intersection but the set of
all Gn has nonempty intersection. If either condition fails to
obtain, then Player 2 wins.

Morita’s original definition was more technical but also
lends itself more readily to modification. Given any cardinal
number κ and any choice of open sets G(α1, . . . , αn) ⊂ X

for each finite sequence of αi ∈ κ , there are closed sets
F(α1, . . . , αn) ⊂ G(α1, . . . , αn) such that for each infinite
sequence 〈αn: n ∈ ω〉 of elements of κ , either

(a)
⋃∞

n=1 G(α1, . . . , αn) �= X, or

(b)
⋃∞

n=1 F(α1, . . . , αn) = X.

One variation is to fix κ =ω; this gives the class of Pℵ0 -spac-
es. If, in addition, one requires that

⋃∞
n=1 G(α1, . . . , αn) =

X for each infinite sequence 〈αn: n ∈ ω〉 of elements of ω,
then one defines the class of weak Pℵ0 -spaces. For X × Y

to be normal for all separable metrizable Y (respectively,
for all separable completely metrizable Y ), it is necessary
and sufficient that X be a normal (weak) Pℵ0 -space. There
are also characterizations along similar lines for all spaces
X whose product with a single given metrizable space Y is
normal (see [KV, Chapter 18]).
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