281

e-13 Generalized Metric Spaces III: Linearly Stratifiable Spaces and Analogous Classes of Spaces

This article is concerned with generalizations of concepts like stratifiability and metrizability to arbitrary infinite cardinalities, in a way that uses linear orders in key places. This has resulted in theories which are remarkably faithful generalizations of the theories of stratifiable, metrizable, etc. spaces. For metrizable spaces, the generalization is to the class of (Tychonoff) spaces admitting separated uniformities with totally ordered bases; this class is usually referred to as the class of ω_{μ} -metrizable spaces of arbitrary cardinality ω_{μ} , but the term "linearly uniformizable spaces" will be mostly used here, under the convention that "spaces" refers to *Hausdorff* spaces. The class of linearly stratifiable spaces is a simultaneous generalization of linearly uniformizable spaces and of stratifiable spaces, and most of the theory of stratifiable spaces carries over, including the basic covering and separation properties of *paracompactness* and monotone normality. There are generalizations, along the same lines, of σ -spaces and semistratifiable spaces, as well as classes in between the linearly uniformizable spaces and linearly stratifiable spaces, generalizing M_1 spaces and Nagata spaces. Other generalizations, such as the one of quasimetrizable spaces (quasi-metrics are defined like metrics but without symmetry of the distance function), are less well developed in the literature, and will only be touched on here.

The usual definition of linear stratifiability is based on the definition of stratifiable spaces that says they are monotonically perfectly normal, so to speak; this definition is the case $\omega_{\mu} = \omega$ of the definition of ω_{μ} -stratifiable spaces, where ω_{μ} is an infinite cardinal number. A space (X, τ) is said to be **stratifiable over** ω_{μ} if it is a T_1 space for which there is a map $S: \omega_{\mu} \times \tau \to \tau$, called an ω_{μ} -stratification which satisfies the following conditions.

- (1) $c\ell(S(\beta, U)) \subset U$ for all $\beta < \omega_{\mu}$ and all $U \in \tau$.
- (2) $[]{S(\beta, U): \beta < \omega_{\mu}} = U \text{ for all } U \in \tau.$
- (3) If $U \subset W$, then $S(\beta, U) \subset S(\beta, W)$ for all $\beta < \omega_{\mu}$.
- (4) If $\gamma < \beta < \omega_{\mu}$, then $S(\gamma, U) \subset S(\beta, U)$ for all $U \in \tau$.

X is called ω_{μ} -stratifiable if ω_{μ} is the least cardinal for which X is stratifiable over ω_{μ} . A space is **linearly stratifiable** if it is ω_{μ} -stratifiable for some infinite ω_{μ} , and *stratifiable* if it is ω -stratifiable. An ω -stratification is called a **stratification**. If condition (1) is omitted, we get the definition of an ω_{μ} -semistratification. The terms semistratifiable over ω_{μ} , ω_{μ} -semistratifiable, linearly semistratifiable, semistratifiable, and semistratification have the obvious definitions. The key theorem that a space is stratifiable iff it is semistratifiable and monotone normal generalizes easily to arbitrary ω_{μ} . Condition (4) is unnecessary in the case $\omega_{\mu} = \omega$ but it is needed to make the theories of stratifiable and semistratifiable spaces generalize to higher cardinals. Similar additions make it possible to generalize two characterizations of (semi-)stratifiable spaces and to make them coincide. One is a pair of Heath–Hodel style characterizations in [27] and [17] with their addition of condition (b), which is unnecessary in case $\omega_{\mu} = \omega$: A T_1 -space (X, τ) is stratifiable over ω_{μ} if, and only if, there exists a family $\{g_{\beta}: \beta < \omega_{\mu}\}$ of functions with domain X and range τ such the following hold:

- (a) $x \in g_{\beta}(x)$ for all $\beta < \omega_{\mu}$;
- (b) if $\beta < \gamma < \omega_{\mu}$, then $g_{\beta}(x) \supset g_{\gamma}(x)$ for all x;
- (c) if, for every β < ω_μ, x ∈ g_β(x_β), then the net ⟨x_β:
 β < ω_μ⟩ coverges to x; and
- (d) for every $F \subset X$, if $y \in c\ell(\bigcup\{g_{\beta}: x \in F\})$ for all $\beta < \omega_{\mu}$, then $y \in c\ell(F)$.

If condition (d) is omitted, we get a condition equivalent to being semistratifiable over ω_{μ} .

In [27] there is also a definition of a linearly cushioned pair-base that generalizes that of a σ -cushioned pair-base used in defining M_3 spaces; moreover, the proof that the M_3 concept coincides with stratifiability generalizes in [27] to this more general setting. A collection \mathcal{P} of pairs P = (P_1, P_2) of subsets of a space (X, τ) is said to be a **pair**base if the members of each pair are open and, for each point x of X and each neighbourhood U of x, there is a pair $(P_1, P_2) \in \mathcal{P}$ such that $x \in P_1$ and $P_2 \subset U$. A collection \mathcal{C} of subsets of a space X is **linearly closure-preserving** with respect to \leq if \leq is a linear order on C such that $\bigcup \{c \ell C \colon C \in \mathcal{C}'\} = c \ell(\bigcup \mathcal{C}') \text{ for any subcollection of } \mathcal{C}' \subset \mathcal{C}$ which has an upper bound w.r.t. \leq . A collection of pairs $P = (P_1, P_2)$ is **linearly cushioned** with respect to a linear order \leq if $c\ell(\bigcup\{P_1: P = (P_1, P_2) \in \mathcal{P}'\}) \subset \bigcup\{P_2: P =$ $(P_1, P_2) \in \mathcal{P}'$ for every subset \mathcal{P}' of \mathcal{P} which has an upper bound with respect to \leq . Hence in particular, C is linearly closure-preserving w.r.t. \leq if $\{(C, C): C \in C\}$ is linearly cushioned with respect to \leq . A regular space X is said to be M_1 over ω_{μ} (respectively M_2 over ω_{μ}) (respectively M_3 over ω_{μ}) if X has a linearly closure-preserving base (respectively a linearly closure-preserving quasi-base) (respectively a linearly cushioned pair-base) with a cofinal set of order type ω_{μ} . X is **linearly** M_i if it is M_i over ω_{μ} for some

infinite cardinal ω_{μ} . An ω_{μ} - M_i space is defined analogously to an ω_{μ} -stratifiable space.

Clearly, these concepts are numbered in order of increasing generality. More general yet is the concept of having a linearly closure-preserving network of cofinality ω_{μ} , consisting of closed sets. If $\omega_{\mu} = \omega$ this gives us the familiar class of σ -spaces. Harris [11], generalizing the Nagata-Siwiec theorem for $\omega_{\mu} = \omega$, showed that these spaces have a network that is the union of $\leq \omega_{\mu}$ discrete collections. The converse is true if the space is ω_{μ} -additive, meaning that the union of strictly fewer than ω_{μ} closed sets is closed: this implies that the union of fewer than ω_{μ} discrete collections is discrete, hence every union of ω_{μ} discrete collections is linearly closure-preserving with respect to a linear order of cofinality $cf(\omega_{\mu})$. The Heath–Hodel theorem that every stratifiable space is a σ -space [13] generalizes to the theorem that every ω_{μ} -stratifiable space has a network which is the union of $\leq \omega_{\mu}$ discrete collections, and a linearly closure-preserving network [27]. The theorem that σ -spaces are semistratifiable generalizes to the theorem that a space with a linearly closure-preserving network is linearly semistratifiable [11]. In fact, having a linearly closurepreserving network of cofinality ω_{μ} consisting of closed sets is equivalent to having a Heath–Hodel function g satisfying (a), (b), and (c) above along with the following condition (e): if $y \in g_{\beta}(x)$ then $g_{\beta}(y) \subset g_{\beta}(x)$. For (c) it is possible to substitute the stronger (c+): if, for every $\beta < \omega_{\mu}$, $x \in g_{\beta}(y_{\beta})$ and $y_{\beta} \in g_{\beta}(x_{\beta})$, then the net $\langle x_{\beta}: \beta < \omega_{\mu} \rangle$ converges to x [11]. Another generalization, that of elastic spaces, relaxes the linear order requirement to that of a preorder, but otherwise keeps the pair-base definition of linearly M_3 with the formal restriction that the pair-base is a function; that is, each subset of the space appears as the first element in at most one pair. M. Jeanne Harris showed that this restriction is a mere formality in [11] and [12]: every space with a linearly cushioned pair-base has one which is a function.

Linearly stratifiable spaces enjoy many of the nice properties of the subclass of stratifiable spaces; for example, they are *monotonically normal* and (hereditarily) *paracompact*. There is a subtle hole in the proof of the latter fact in [26] and [27], which is repaired by Harris's theorem. It is also possible to show, more simply, that every open cover in a linearly stratifiable space has an open refinement which is linearly cushioned in it [28]. This refinement condition is equivalent to paracompactness, and "linearly cushioned" can be weakened to "elastic" [26]. Linearly stratifiable spaces have most of the nice preservation properties possessed by stratifiable spaces. For example, the class is closed under the taking of subspaces and closed images, and finite unions of closed subspaces. This also applies to the class of linearly M_2 -spaces. The best known of the (much weaker) known preservation properties of M_1 spaces also carries over: if fis a closed irreducible continuous map from a space X that is M_1 over ω_{μ} , onto a space Y such that for every $y \in Y$, $f^{-1}(y)$ is ω_{μ} -compact, then Y is linearly M_1 [11]. Finite products of spaces that are ω_{μ} -stratifiable over the same ω_{μ}

are also ω_{μ} -stratifiable, as are box products of fewer than ω_{μ} of them. Both of these results are generalized by the fact that if ω_{μ} is regular, then the ω_{μ} -box product of ω_{μ} or fewer ω_{μ} -stratifiable spaces is ω_{μ} -stratifiable: the ω_{μ} -box product is defined like the box product except that one restricts fewer than ω_{μ} -many coordinates [3]. (The restriction on agreement in ω_{μ} is important: $\omega + 1$ and the one-point Lindelöfization of a discrete space of cardinality ω_1 constitute a pair of spaces, one stratifiable and the other ω_1 -stratifiable, whose product is not linearly stratifiable - it is not even hereditarily normal.) If a space X is dominated by a collection of closed subsets, each of which is stratifiable over ω_{μ} , then X is stratifiable over ω_{μ} . If X and Y are stratifiable over ω_{μ} and A is a closed subset of X and $f: A \to Y$ is continuous, then $X \cup_f Y$ (the adjunction space) is stratifiable over ω_{μ} [27].

The celebrated Gruenhage–Junnila theorem that all M_3 spaces are M_2 has been generalized within the class of ω_{μ} additive spaces (also known as $P_{\omega_{\mu}}$ -spaces); that is, spaces in which the intersection of strictly fewer than ω_{μ} open sets is open. The theorem is that every $P_{\omega_{\mu}}$ space which is ω_{μ} - M_3 is also ω_{μ} - M_2 . The problem of whether the $P_{\omega_{\mu}}$ condition can be dropped is still open. The notorious problem of whether all three classes are the same also generalizes to linearly M_i spaces; in fact, it is open for all infinite cardinalities ω_{μ} , even for $P_{\omega_{\mu}}$ -spaces. Moreover, where uncountable ω_{μ} are concerned, we even have a fourth class, the class of spaces M_0 over ω_{μ} , to add to this coincidence problem. Spaces that are M_0 over ω_μ are defined like spaces M_1 over ω_{μ} but with "open" replaced by "clopen". That is, a space is M_0 over ω_{μ} if it is a regular space with a linearly closurepreserving base \mathcal{B} of clopen sets, where the linear order on \mathcal{B} has cofinality ω_{μ} . As might be expected, **linearly** M_0 " and " ω_{μ} - M_0 " are defined analogously to the same concepts for higher subscripts.

A big advantage of linearly M_0 -spaces over the more general linearly M_1 -spaces is that they are easily seen to be hereditary; their perfect images are linearly M_1 [11], but not necessarily linearly M_0 , at least not when the domain is simply M_0 : the closed unit interval is a non- M_0 perfect image of the Cantor set, which is clearly M_0 , as is any strongly zero-dimensional metrizable space. The strongly zero-dimensional spaces can be characterized as those Tychonoff spaces in which disjoint zero sets can be put into disjoint clopen sets [6, 16.17], [E, 6.2.4] or those which have totally disconnected Stone-Čech compactifications [E, 6.2.12]. All ω_{μ} -M₀-spaces are strongly zerodimensional, even in the case $\omega_{\mu} = \omega$ [14]. Also, every Tychonoff space which is a *P*-space [that is, a P_{ω_1} -space] is strongly zero-dimensional; indeed, every zero set is clopen in such spaces since it is a G_{δ} -set. Remarkably enough, it is not known whether every strongly zero-dimensional ω_{μ} stratifiable space is ω_{μ} - M_0 , whatever the value of ω_{μ} ; nor whether every ω_{μ} -stratifiable space (or every space stratifiable over ω_{μ}) is strongly zero-dimensional when ω_{μ} is uncountable. Since stratifiability over ω_{μ} is preserved on

283

collapsing a closed set to a point, the latter problem is equivalent to whether all ω_{μ} -stratifiable spaces (or all spaces stratifiable over ω_{μ}) are **zero-dimensional**, i.e., have a base consisting sets that are both open and closed.

Various well-known equivalences of the M_2 - M_1 problem also carry over, some with the addition of ω_{μ} -additivity. Two generalizations by Harris [11] of a well-known theorem of Heath and Junnila [14] account for several of them, including the problems of whether every closed subspace, or every closed image of an M_1 space is M_1 . One generalization says that every linearly M_2 -space is the image of a linearly M_1 -space under a retraction. The other says that if ω_{μ} is regular, and if the $P_{\omega_{\mu}}$ -space X is stratifiable over ω_{μ} , then X is the image of a linearly M_1 space under a closed retraction with ω_{μ} -compact fibers. Some quite general classes of linearly stratifiable spaces are linearly M_1 . For instance, if ω_{μ} is a regular cardinal and X is an ω_{μ} -stratifiable $P_{\omega_{\mu}}$ -space in which every closed subset of X has a linearly closurepreserving neighbourhood base of open sets in which ω_{μ} is cofinal, then X is linearly M_1 [11]. The condition that X is ω_{μ} -stratifiable can be formally relaxed to the condition that X is paracompact and has a network which is the union of $\leq \omega_{\mu}$ discrete collections [11]. This generalizes an old result [2] for the case $\omega_{\mu} = \omega$, while the following generalizes one of Ito [16]: if X is a $P_{\omega_{\mu}}$ -space that is M_3 over ω_{μ} , and every point of X has a closure-preserving open base, then every closed subset of X has a closure-preserving base of open sets [11] (and hence X is linearly M_1).

An important class of linearly stratifiable spaces might be called **linearly Nagata**: these are the ω_{μ} -Nagata spaces as ω_{μ} varies over all infinite regular cardinals. The ω_{μ} -Nagata spaces can be simply characterized as the ω_{μ} -stratifiable spaces in which each point has a totally ordered neighbourhood base. Of necessity, this base will have cofinality ω_{μ} if the point is nonisolated. By the foregoing theorems, and the elementary fact that every ω_{μ} -Nagata space is a $P_{\omega_{\mu}}$ -space, it follows every linearly Nagata space is linearly M_1 . There are other characterizations of ω_{μ} -Nagata spaces, including one based on the Nagata general metrization theorem [10]: an ω_{μ} -Nagata space is a T_1 space with a system $\langle \mathfrak{U}, \mathfrak{S} \rangle$ where \mathfrak{U} and \mathfrak{S} are collections of functions U_{β} and S_{β} ($\beta < \omega_{\mu}$), each with domain X, and such that (1) for each $x \in X$, $\{U_{\beta}(x): \beta < \omega_{\mu}\}$ is a base for the neighbourhoods of x, and so is $\{S_{\beta}(x): \beta < \omega_{\mu}\}$; (2) for every $x, y \in X, S_{\beta}(x) \cap S_{\beta}(y) \neq \emptyset$ implies that $x \in U_{\beta}(y)$; and (3) If $\beta < \gamma < \omega_{\mu}$, then $S_{\beta}(x) \supset S_{\gamma}(x)$ for all x. As usual, (3) is superfluous if $\omega_{\mu} = \omega$, and we simply have the class of Nagata spaces then. Another characterization [27] dispenses with \mathfrak{U} , requires that each $S_{\beta}(x)$ be open, and substitutes for (2) the condition that if U is a neighbourhood of x, there exists $\beta < \omega_{\mu}$ such that $S_{\beta}(x) \cap S_{\beta}(y) \neq \emptyset$ implies that $y \in U$. Clearly, any subspace of an ω_{μ} -Nagata space is ω_{μ} -Nagata, and any ω_{μ} -box product of ω_{μ} -Nagata spaces over the same ω_{μ} is again ω_{μ} -Nagata. The closed continuous image X of an ω_{μ} -Nagata space is likewise an ω_{μ} -Nagata space provided that, for each point $x \in X$, there

exists a totally ordered neighbourhood base. If X is ω_{μ} -Nagata over an uncountable regular ω_{μ} , then X a $P_{\omega_{\mu}}$ -space and hence is strongly zero-dimensional. As is well known, a space X satisfies dim(X) = 0 iff X is normal and strongly zero-dimensional, and X is **ultraparacompact** iff it is paracompact and strongly zero-dimensional. Since linearly stratifiable spaces are paracompact and hence normal, the ω_{μ} -Nagata spaces have both of these other properties if ω_{μ} is uncountable. (And so too, of course, do all linearly M_0 spaces and all linearly stratifiable P-spaces.) This gives the theory of these kinds of linearly Nagata a different flavor from that of Nagata spaces (the countable case $\omega_{\mu} = \omega$).

An easy example of a space that is M_0 over a regular cardinal ω_{μ} and is ω - M_0 at the same time is obtained by isolating all but the last point of $\omega_{\mu} + 1$, taking the product of the resulting space with $\omega + 1$, and removing every nonisolated point except $\langle \omega, \omega_{\mu} \rangle$. The set of all open sets containing this point is a closure-preserving clopen base for the point, and the isolated points can be grouped either horizontally or vertically, with initial segments being clopen in either case. This is also an example a space that is M_0 over ω_{μ} but is not linearly Nagata. The converse problem, whether an ω_{μ} -Nagata space is necessarily ω_{μ} - M_0 if ω_{μ} is regular uncountable, is unsolved.

Linearly uniformizable spaces have a long history, due to the fact that they can be characterized by distance functions that satisfy the usual definition of a metric, except that the distances are not necessarily real numbers, but rather take on their values in an ordered Abelian group (often the additive group of an ordered field). Hausdorff [8, p. 285] introduced the use of such distance functions to general topology, and it was shown that a space is linearly uniformizable iff it admits such a generalized metric. Important examples of such generalized metrics are valuations, which play an important role in algebraic number theory [24]. Many well-known metrization theorems have generalizations that say when a space is linearly uniformizable: The Urysohn Metrization Theorem [23]; the Nagata–Smirnov Theorem [29]; Frink's Metrization Theorem, Bing's Metrization Theorem, Nagata's Generalized Metrization Theorem (the one on which the definition of a Nagata space is based) and several other [20]. The Morita-Hanai-Stone Theorem generalizes to the theorem that a closed map from a ω_{μ} -metrizable space to another space has ω_{μ} -metrizable image iff the boundary of each point-inverse is ω_{μ} -compact [20].

Linearly uniformizable spaces with bases of uncountable cofinality (in other words, ω_{μ} -metrizable, nonmetrizable spaces) are both linearly Nagata and linearly M_0 . In a uniform space, the intersection of every descending sequence of entourgages with no last element is an equivalence relation. Hence, any uniform space with a linearly ordered base of uncountable cofinality has a (linearly ordered) base of equivalence relations; these partition the space into clopen sets. Well-ordering the members of the partitions, with members of coarser partitions preceding the members of the finer partitions, gives a linearly closure-preserving base of clopen sets – the linearly M_0 property. Bases like

these are well suited for showing that ω_{μ} -box product of ω_{μ} -many ω_{μ} -metrizable spaces is ω_{μ} -metrizable and that a space is ω_{μ} -metrizable for uncountable regular ω_{μ} iff it embeds in a ω_{μ} -box product of ω_{μ} -many discrete spaces. Monotone normality and ultraparacompactness of linearly uniformizable nonmetrizable spaces follow easily from the fact that the base given by these partitions is a tree by reverse inclusion. For ultraparacompactness, the ⊃-minimal members of a tree base $\ensuremath{\mathcal{B}}$ which can be put in some member of the open cover \mathcal{U} constitute a partition into clopen sets refining \mathcal{U} . For a point x and an open set U containing x, one can let U_x be any member B whatsoever of \mathcal{B} that satisfies $x \in B \subset U$, and then the Borges definition of monotone normality follows from the fact that if U_x meets V_y , then either $U_x \subset V_y$ or $V_y \subset U_x$. Indeed, every tree base for a space is a base of rank 1, which means that any two members are either disjoint or related by \subset . Spaces with rank 1 bases are called non-Archimedean spaces, and actually coincide with spaces with tree bases [19]. The natural common generalization of non-Archimedean and metrizable spaces is that of proto-metrizable spaces. These are the spaces with rank 1 pair-bases [7]; \mathcal{P} is a **pair-base of rank** 1 if whenever $\langle P_1, P_2 \rangle$ and $\langle P'_1, P'_2$ are in \mathcal{P} and $P_1 \cap P'_1 \neq \emptyset$, then either $P_1 \subset P'_2$ or $P'_1 \subset \tilde{P_2}$. These spaces share many of the nice properties common to metrizable and non-Archimedean spaces, including paracompactness and monotone normality.

Non-Archimedean spaces are suborderable but not all orderable – the Michael line is a standard example [15, 21] of a non-orderable non-Archimedean space. There even exist examples of non-orderable ω_{μ} -metrizable spaces for all uncountable cofinality ω_{μ} . This is in contrast to the case of strongly zero-dimensional metrizable spaces (the cofinality = ω case), all of which are linearly orderable. In fact, a space is metrizable and strongly zero-dimensional iff it is metrizable, linearly orderable, and totally disconnected [9]. Another characterization is that these are the spaces that can be given a compatible non-Archimedean metric, one that satisfies the strong triangle inequality: given any three points x, y, z, one has $d(x,z) \leq d(x,z) \leq d(x,z)$ $\max\{d(x, y), d(x, z)\}$ [5]. If ω_{μ} is uncountable regular, then every ω_{μ} -metrizable space can be given a distance function satisfying this property, with values an ordered Abelian group.

There are a few aspects of the theory of metrizable spaces that do not carry over to linearly uniformizable spaces without modification. One is that, for a ω_{μ} -metric space to be ω_{μ} -compact (meaning: every open cover has a subcover of cardinality $< \omega_{\mu}$) it is not enough for it to be complete and totally bounded. For completeness one must substitute the stronger concept of supercompleteness [1]; the two concepts coincide for metric spaces. Sometimes one must use extra qualities of the cardinal ω to have a really satisfactory extension of some classical result. For example, the elementary fact that ω^2 with the product topology is compact only generalizes to **weakly compact cardinals** ω_{μ} in place of ω when the ω_{μ} -box product topology is used. Classical characterizations of the Cantor set (the only totally disconnected, compact, dense-in-itself metrizable space) and the irrationals (the only zero-dimensional, *nowhere locally compact, completely metrizable, separable* space) only generalize for weakly compact cardinals and *strongly inaccessible cardinals*, respectively [19], and one must substitute spherical completeness for ordinary completeness.

In principle, almost every "generalized metric" property can be effectively generalized with judicious uses of total orderings. Sometimes, as with metrizable and non-Archimedeanly metrizable spaces, two or more distinct classes coalesce for uncountable regular ω_{μ} . One such example is that of quasi-metrizable and **non-Archimedeanly quasi-metrizable** spaces [22]. The argument in [22] can be easily modified to show that the uncountable analogues of γ -spaces also coincide with those of quasi-metrizable spaces.

References

- [1] G. Artico, U. Marconi and J. Pelant, *On supercomplete* ω_{μ} -metric spaces, Bull. Acad. Pol. Sci. Ser. Math. **44** (3) (1996), 263–280.
- [2] C.J.R. Borges and D.J. Lutzer, *Characterizations and mappings of M_i-spaces*, Lecture Notes in Math., Vol. 375, R.F. Dickman and P. Fletcher, eds, Springer, Berlin, 34–40.
- [3] E.K. van Douwen, Another nonnormal box product, Gen. Topology Appl. 7 (1977), 71–76.
- [4] R. Engelking, *General Topology*, Heldermann, Berlin (1989).
- [5] J. deGroot, *Non-Archimedean metrics in topology*, Proc. Amer. Math. Soc. **7** (1956), 948–953.
- [6] L. Gillman and M. Jerison, *Rings of Continuous Func*tions, Van Nostrand, New York (1960).
- [7] G. Gruenhage and P. Zenor, *Proto-metrizable spaces*, Houston J. Math. **3** (1977), 47–53.
- [8] F. Hausdorff, *Gründzüge der Mengenlehre*, Leipzig (1914).
- [9] H. Herrlich, Ordungsfäigkeit total-discontinuierlicher Räume, Math. Ann. 159 (1965), 77–80.
- [10] R.E. Hodel, Some results in metrization theory, Topology Conference, A. Dold and B. Eckmann, eds, Lecture Notes in Math., Vol. 375, Springer, Berlin (1973), 120–136.
- [11] M. Jeanne Harris, *Linearly stratifiable spaces*, Ph.D. Dissertation, University of Pittsburgh (1991).
- [12] M. Jeanne Harris, On stratifiable and elastic spaces, Proc. Amer. Math. Soc. 122 (3) (1994), 925–929.
- [13] R.W. Heath and R.E. Hodel, *Characterizations of* σ -*spaces*, Fund. Math. **77** (1973), 271–275.
- [14] R.W. Heath and H.J.K. Junnila, *Stratifiable spaces as subspaces and continuous images of M*₁-spaces, Proc. Amer. Math. Soc. 83 (1981), 146–148.
- [15] M. Hušek and H.-C. Reichel, *Topological characterizations of linearly orderable spaces*, Topology Appl. 15 (1983), 173–188.

285

- e-13 Generalized metric spaces III: Linearly stratifiable spaces and analogous classes of spaces
- [16] M. Ito, M_3 -spaces whose every point has a closurepreserving outer base are M_1 , Topology Appl. 21 (1985) 65–69.
- [17] K.B. Lee, *Linearly semistratifiable spaces*, J. Korean Math. Soc. 1 (1974), 39–47.
- [18] J. Nagata, A contribution to the theory of metrization, J. Inst. Polytech. Osaka City Univ. Ser. A 8 (1957), 185–192.
- [19] P. Nyikos, On some non-Archimedean spaces of Alexandroff and Urysohn, Topology Appl. 91 (1999), 1–23.
- [20] P. Nyikos and H.-C. Reichel, On uniform spaces with linearly ordered bases II (ω_{μ} -metric spaces), Fund. Math. **93** (1976), 1–10.
- [21] S. Purisch, *The orderability of nonarchimedean spaces*, Topology Appl. **16** (1983), 273–277.
- [22] H.-C. Reichel, Basis properties of topologies compatible with (not necessarily symmetric) distancefunctions, Gen. Topology Appl. 8 (1978), 283–289.

- [23] R. Sikorski, Remarks on some topological space sof high power, Fund. Math. 37 (1950), 125–136.
- [24] O.F.G. Schilling, *The Theory of Valuations*, Amer. Math. Soc., Providence, RI (1950).
- [25] K. Tamano, *Generalized metric spaces II*, Topics of General Topology, K. Morita and J. Nagata, eds (1989), 368–409.
- [26] J.E. Vaughan, *Linearly ordered collections and paracompactness*, Proc. Amer. Math. Soc. 24 (1971), 186– 192.
- [27] J.E. Vaughan, *Linearly stratifiable spaces*, Pacific J. Math. 43 (1972), 253–266.
- [28] J.E. Vaughan, Zero-dimensional spaces from linear structures, Indag. Math. (NS) 12 (2002), 585–596.
- [29] Wang Shu-Tang, *Remarks on* ω_{μ} -additive spaces, Fund. Math. **55** (1964), 101–112.

P.J. Nyikos Columbia, SC, USA