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Abstract. Monotonically normal spaces have many strong prop-
erties, but poor preservation properties. For example, there are lo-
cally compact, monotonically normal spaces whose one-point com-
pactifications are not monotonically normal, and hence have no
monotonically normal compactifications. We give two classes of
such spaces, and give a pair of necessary conditions for spaces of
pointwise countable type to have, respectively, compactifications or
remainders that are monotonically normal. We show that a mono-
tonically normal, locally compact space has a monotonically nor-
mal compactification if it is either locally connected or countably
compact, and show that this latter condition cannot be weakened
to “σ-countably compact.”

1. Introduction

In [3] we began a study of when a monotonically normal space can
have a monotonically normal compactification. In particular, we gave
a necessary and sufficient criterion for a locally compact space to have
one [see below]. As Mary Ellen Rudin already noted in [12], this is
equivalent to the one-point compactification being monotonically nor-
mal, inasmuch as identifying the remainder in a compactification of a
locally compact space to a single point preserves monotone normality.

Theorem 1.1. [3] The one point compactification of a monotonically
normal, locally compact space X is monotonically normal if, and only
if, X is weakly orthocompact.

Recall that a family of open sets is called interior-preserving if, and
only if, every intersection of sets belonging to the family is open, and
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that a space is weakly orthocompact if every directed open cover of the
space has an interior-preserving open refinement.

Weak orthocompactness was introduced by B.M. Scott in [14]. Scott
showed in [14] that weak orthocompactness is preserved in various topo-
logical operations. We can use his results and Theorem 1.1 to establish
invariance properties for the class LM of locally compact spaces with a
monotonically normal compactification. This way we see, for instance,
that the class is invariant under perfect mappings (both ways). Triv-
ially, weak orthocompactness, and hence also the class LM, is invariant
under topological direct sums. As a consequence of the mentioned re-
sults, we obtain the following Locally Finite Sum Theorem: a locally
compact space X belongs to LM provided that X has locally finite
cover by closed subsets belonging to LM.

Since it is not always easy to ascertain whether a space is weakly
orthocompact, we also give a number of other conditions under which
a space has a monotonically normal compactification. This includes
spaces that are not locally compact, for which it is also interesting to
know when their remainders are monotonically normal.

We also continue the study, begun in [3], of spaces that we call
“utterly normal” and “UNO”. These are successive strengthenings of
monotone normality which may, for all we know, be equivalent to it;
but, as shown in [3], if UNO is equivalent to monotone normality, then
stratifiable spaces are M1, solving a problem that is now 55 years old!

Definition 1.2. A magnetic base system for a space X is a collection
{Bx : x ∈ X} where each Bx is a base for the neighborhoods of x, with
the following property. If Bx ∈ Bx and By ∈ By and Bx ∩ By 6= ∅
then either x ∈ By or y ∈ Bx. A magnetic base system is open [closed]
[clopen] if each member of each Bx is open [closed] [clopen].

A space is utterly normal [UNO] [utterly ultranormal] if it is a regular
space that has a(n) [open] [clopen] magnetic base system.

The following characterizations of monotone normality, due to Borges
[2], make it easy [3] to show that every utterly normal space is mono-
tonically normal.

Theorem 1.3. [2] The following are equivalent for a space X.
(1) There is an assignment of an open neighborhood h(x, U) =: Ux

of x to each pair (x, U) such that U is an open neighborhood of x, and
that if Ux ∩ Vy 6= ∅, then either x ∈ V or y ∈ U .

(2) There is an assignment as in (1) with the additional property that
if x ∈ U ⊂ V , then Ux ⊂ Vx.
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(3) X is monotonically normal.

The key to (1) =⇒ (2) is to let H(x, U) =
⋃
{Vx : x ∈ V ⊂ U}.

The key to (2) =⇒ (3) is to let G(F1, F2) =
⋃
{H(x,X \ F2) : x ∈ F1}.

Conversely, we let Ux = G({x}, X \ U) and use the fact that Ux ⊂
G({x}, {y}) for all y /∈ U .

In [2], statements (1) and (2) have an extra condition that H(x, U) ⊂
U , but this is automatic from these statements as they stand if the space
is T1; then, in fact, H(x, U) ⊂ U . This may have been first observed
only recently, in [16].

The usual definition of monotone normality, motivating the termi-
nology, is as follows:

Definition 1.4. A space X is monotonically normal provided that
there is an operator G( , ) assigning to each ordered pair 〈F0, F1〉 of
disjoint closed subsets an open set G(F0, F1) such that
(a) F0 ⊂ G(F0, F1)
(b) If F0 ⊂ F ′0 and F ′1 ⊂ F1 then G(F0, F1) ⊂ G(F ′0, F

′
1)

(c) G(F0, F1) ∩G(F1, F0) = ∅

In Section 2, we give a pair of necessary conditions for spaces of
pointwise countable type to have, respectively, monotonically normal
remainders and monotonically normal compactifications. In Section 3,
we give a general class of locally compact, UNO spaces which do not
have monotonically normal compactifications. In Section 4, we show
that a locally compact, monotonically normal space has a monotoni-
cally normal compactification if it is either countably compact or locally
connected. Examples from Section 3 show that “countably compact”
cannot be weakened to “every closed discrete subspace is countable.”

Henceforth in this paper, “space” will mean “Tychonoff space,” since
the center of interest has to do with compactifications, by which is
meant compact Hausdorff spaces in which a given space embeds as a
dense subspace.

2. Properties at infinity give necessary conditions

Recall that a Tychonoff space X is said to have property P at infinity
if its Stone-Čech remainder βX \X has property P. Also recall:
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Definition 2.1. A space is of pointwise countable type if every point
is contained in a compact set C with a countable outer base of neigh-
borhoods. A space is strongly paracompact if every open cover has a
star-finite open refinement, by which is meant an open refinement U
such that every U ∈ U meets at most finitely many other members of
U . A space X is [strongly] paracompact at infinity if βX\X is [strongly]
paracompact.

First countable spaces and locally compact spaces are of pointwise
countable type. In the case of locally compact spaces, this follows from
an application of Urysohn’s lemma to a compact neighborhood N of
a point and an open neighborhood with compact closure that contains
N . Taking N to {0}, we let C = f−1{0}.

Henriksen and Isbell showed in [5] that every first countable linearly
orderable space is paracompact at infinity. By applying a deep theorem
of M.E. Rudin [13] and by modifying the proof given in [5], we obtain
a strengthening of this result.

Theorem 2.2. Let X be a space of pointwise countable type. If X has a
monotonically normal compactification, then X is strongly paracompact
at infinity.

Proof. Assume that C is a monotonically normal compactification of
X. By the Basic Theorem in [13], there exists a compact linearly
orderable space L and a continuous onto mapping g : L → C. There
exists a closed subset K of L such that the mapping f = g �K from K
to C is irreducible and onto. Note that the subspace f−1(X) of K is
dense and of pointwise countable type. The compact subspace K of L
is linearly orderable. Let ≺ be a linear order on K such that K has
the order topology determined by ≺.

We show that C \ X is strongly paracompact. Then since strong
paracompactness is inversely preserved by perfect mappings, it follows
that X is strongly paracompact at infinity.

Let G be an open cover of C \ X, and let H be a family of open
subsets of C such that G = {H \ X : H ∈ H}. Set J =

⋃
H and

T = f−1(J). Denote by I the collection of all maximal ≺–intervals
contained in the open subset T of K. Then I is a disjoint open cover
of T . As a consequence, I is locally finite in T .

We show that, for every I ∈ I, there exists a σ-compact set I ′ ⊂ I
such that I \ f−1(X) ⊂ I ′. Let I ∈ I, and let a and b be the left and
right end–points of I, respectively. If the set M = {a, b} \ I is empty,
then I is compact and we can set I ′ = I. Assume that M 6= ∅. For
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each p ∈ M , we define a set Kp as follows. By maximality of I, we
have p ∈ K \ T ⊂ f−1(X). It follows, since f−1(X) is of pointwise
countable type, that there exists a compact subset Kp of f−1(X) such
that p ∈ Kp and Kp has a countable outer base in f−1(X). Note that
Kp is a Gδ-set in K. Now the set I ′ = I \

⋃
{Kz : z ∈ M} contains

the set I \ f−1(X). Moreover, I ′ is an Fσ-subset of the compact set
I = I ∪M and hence I ′ is σ-compact.

For each I ∈ I, the subset I∗ = f(I ′) of C is σ-compact. The
mapping f �T : T → J is perfect and it follows, since the family I is
locally finite in T , that the family I∗ = {I∗ : I ∈ I} is locally finite
in J . The subspace J∗ =

⋃
I∗ of J is strongly paracompact, since

the subspace has a locally finite cover by σ-compact sets. We have
J∗ ⊂ J =

⋃
H and it follows, since H is an open family, that H has a

star-finite open refinement in the subspace J∗.
Since I covers T and I \ f−1(X) ⊂ I ′ for each I ∈ I, we have

T \ f−1(X) ⊂
⋃
{I ′ : I ∈ I} and hence C \ X = J \ X ⊂ J∗. It

follows from the foregoing that the family G = {H \X : H ∈ H} has
a star-finite open refinement in the subspace C \X. �

Every suborderable space has a linearly orderable compactification,
and such a compactification is monotonically normal. Hence we see
that every suborderable space of pointwise countable type is strongly
paracompact at infinity.

With the help of an important theorem of Balogh and Rudin, we
can extend the result in 2.2 with “strongly” omitted, to monotonically
normal remainders.

Theorem 2.3. Let X be a space of pointwise countable type. Then
every monotonically normal closed subspace of a remainder of X is
paracompact. In particular, if X has a monotonically normal remain-
der, then X is paracompact at infinity.

Proof. Let K be a compactification of X and let F be a monotonically
normal closed subspace of the remainder K \ X. To prove that F is
paracompact it suffices, by a theorem of Balogh and Rudin [1], to show
that no closed subspace of F is homeomorphic with a stationary subset
of a regular uncountable cardinal.

Assume on the contrary that there exists a closed subset S of F
and a regular uncountable cardinal κ such that S is homeomorphic
with a stationary subset of the ordinal space κ. By compactness, there
exists a point z ∈ K such that each neighborhood of z contains κ-many
points of S. We have z 6∈ S, since every point of S has a neighborhood
containing less than κ-many points of S. It follows, since S is closed in
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K \X, that z ∈ X. Let C be a compact subset of X such that z ∈ C
and C has a countable outer base in X. Then C is a Gδ-set in K and
it follows, since C ∩ S = ∅, that there exists an open subset G of K
containing S such that |S \G| = κ. Let V be a neighborhood of z in K
such that V ⊂ G. Now C \G and V ∩ S are disjoint closed subsets of
S of cardinality κ, but this is a contradiction, since S is homeomorphic
with a stationary subset of κ. �

We know of no general classes of spaces that admit a monotonically
normal remainder besides the easy examples of locally compact spaces,
suborderable spaces, and separable metrizable spaces. In particular,
the following problem is open.

Problem 1. Does every metrizable space have a monotonically normal
remainder?

In connection with this problem, note that there are metrizable
spaces which do not have a monotonically normal compactification.
An example is any non-separable hedgehog [8]. However, these spaces
have separable metrizable remainders in a compactification constructed
in [8].

In an upcoming paper [7], one of us shows that if X is Nagata’s bow-
tie space, then the subspace Y = {(z, u) ∈ X : u is rational } is a first
countable, stratifiable space that fails to be paracompact at infinity
and hence has no monotonically normal remainder.

3. Classes of complementary counterexamples

In this section, we define a pair of general classes of locally compact,
utterly ultranormal spaces without monotonically normal compactifi-
cations.

We use the notation A(α) for the αth Cantor-Bendixson derivative
of A, so that A(1) is derived set of A. We write Λ for the set ω

(1)
1 of

countably infinite limit ordinals and Λ2 for Λ(1) = ω
(2)
1 . We use νn ↗ α

as shorthand for “〈νn : n ∈ ω〉 is strictly increasing with supremum α.”

Example 3.1. We let T designate the set of topologies τ on ω1 in
which, to each point α there are associated B(α) ⊂ [0, α] and B(α, ξ) =
B(α) ∩ (ξ, α] for each ξ < α, such that:

(1) {B(α, ξ) : ξ < α} is a base for the neighborhoods of α [we allow
ξ = −1 in case α = 0].
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(2) If α ∈ Λ then α = sup(B(α) \ Λ) = sup([0, α] \ [B(α) ∪ Λ]).

(3) If α ∈ Λ and α < β, then there exists ξ < α such that B(α, ξ) =
B(β) ∩ (ξ, α].

(4) If γn + kn ↗ α where α ∈ Λ and kn ∈ ω \ {0}, and γn ∈ Λ ∪ {0},
and γn + kn ∈ B(α) for all n, then kn →∞.

Note that (4) is automatic for α ∈ Λ \ Λ2 but otherwise there is
tension between (4) and (3) which, together with (2), accounts for
the lack of a monotonically normal compactification when τ ∈ T . Of
course, in the presence of (3), we need only verify (2) for α ∈ Λ \ Λ2;
moreover, (2) and (3) have the corollary that (ω1, τ) has a dense set of
isolated points, which are the same as they are in the usual topology
(i.e., 0 and successor ordinals).

Before going on to some other basic properties shared by all τ ∈ T, we
define a class T∗ of “complementary” spaces sharing many properties
with those of T.

Example 3.2. We let T∗ designate the set of topologies τ on ω1 in
which, to each point α there are associated B∗(α) ⊂ [0, α] and B∗(α, ξ) =
B∗(α) ∩ (ξ, α] for each ξ < α, satisfying (1), (2), and (3) of Example
3.1 with B∗ in place of B everywhere, and:

(4∗) If γn + kn ↗ α where α ∈ Λ and γn ∈ Λ ∪ {0} and kn ∈ ω, and
there exists N ∈ ω such that kn ≤ N for all n ∈ ω, then 〈γn + kn〉 is
eventually in each B∗(α, ξ) (ξ < α).

Note that the conclusion of Example 3.2 is equivalent to τ -convergence
of 〈γn + kn〉 to α. The comments following Example 3.1 also apply to
each τ ∈ T∗. It is also easy to see that we obtain a space in T∗ if we
define B∗(α) = [0, α] \ B(α) for a space in T; and that if we define
B(α) = [0, α] \ B∗(α) for a space in T∗, then we get a space in T. De-
spite the difference between (4) and (4∗), the two kinds of spaces have
much in common.

Lemma 3.3. If τ ∈ T ∪ T∗, then τ is finer than the usual topology
on ω1, each B(α, ξ) [resp. each B∗(α, ξ)] is τ -open, (ω1, τ) is first
countable, and the relative topology on Λ is its usual topology.

Proof. The first three properties are clear from (1) and from the fact
that B(α) ⊂ [0, α], and it is clear from (3) that B(β, ξ)∩Λ = [0, β]∩Λ
for all β ∈ ω1. This also applies to B∗ in place of B everywhere. �

Lemma 3.4. If τ ∈ T ∪ T∗, then (ω1, τ) is locally compact and has a
base of clopen sets of the form B(α, ξ) [resp. B∗(α, ξ)].
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Proof. Obviously, B(0) = {0} and B(ξ + 1, ξ) are compact for all suc-
cessor ordinals ξ + 1. If β ∈ Λ then, since B(β) is countable, it is
enough to show that B(β) is countably compact. These comments also
hold for B∗ in place of B.

Let A be an infinite subset of B(β). Then A contains a strictly
ascending sequence σ of ordinals. Let sup(ran(σ)) = α. If α = β then
σ → α by (1), while if α < β, then (1) and (3) have the same effect,
implying that α is a limit point of A in B(β). The proof for B∗ in place
of B is the same. �

In the following lemma, A ⊆∗ B means A \B is finite, while A =∗ B
means A ⊆∗ B and B ⊆∗ A both hold.

Lemma 3.5. If B(α) and B∗(α) are as in Examples 3.1 and 3.2, then
B(α) =∗ B(β)∩ [0, α] (and therefore B∗(α) =∗ B∗(β)∩ [0, α]) whenever
α < β, α, β ∈ Λ.

Proof. There is a quick topological proof using the compactness of these
sets, but it is instructive to see that (3) in 3.1 is equivalent to the first
conclusion [and then its counterpart for 3.2 is just a matter of notation].

It is trivial to see that B∗(α) =∗ B∗(β) ∩ [0, α] implies that there is
ξ < α as in (3): one need only get past the finitely many points in the
symmetric difference S = B∗(α)∆(B∗(β)∩ [0, α]) and use the fact that
α ∈ Λ.

Inversely, we show that the assumption that S is infinite leads to
a contradiction with (3). Let α be the least (limit) ordinal for which
there exists β > α such that S is infinite. Choose ξ < α such that
B(α)∩ (ξ, a] = B(β)∩ (ξ, a]. Clearly S ⊂ [0, ξ], so ξ is infinite, and if λ
is the greatest limit ordinal ≤ ξ, then all but finitely many points of S
are in [0, λ]. But this contradicts minimality of α: if S ∩ B(α) ∩ B(λ)
is infinite, then B(λ) \ B(β) is infinite; while if it is finite, then either
B(λ) \ B(α) is infinite, violating B∗(λ) =∗ B∗(α) ∩ [0, λ], or B(β) ∩
[0, λ] \B(λ) is infinite. �

The proof of the following theorem is made easy by the fact that the
topology on Λ is its usual topology, and by the corollary that [0, α]∩Λ
is compact for all α.

Theorem 3.6. Let τ ∈ T ∪ T∗. Then (ω1, τ) is utterly ultranormal,
but its one-point compactification is not monotonically normal.

Proof. Let Bξ = {{ξ}} if ξ /∈ Λ and let Bγ = {B(γ, ξ) : ξ < γ} if γ ∈ Λ.
The system {Bα : α ∈ ω1} is magnetic. To show this, it is enough
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verify that if α and β are both limit ordinals such that α < β, then
α ∈ B(β, η) whenever B(α, ξ) ∩ B(β, η) 6= ∅. And this follows easily
from (3) and the fact that B(β, η) ∩Λ = (η, β] ∩Λ; similarly for R∗ in
place of B. Since each B(α, ξ) and B∗(α, ξ) is clopen, (ω1, τ) is utterly
ultranormal.

Now let X denote the one-point compactification of (ω1, τ) where
τ ∈ T∪T∗, and let∞ denote the extra point in X. Suppose there were
a Borges operator (·)x on X; then its restriction to (ω1, τ) would also
be a Borges operator. For each λ ∈ Λ2 let λ′ = λ+ ω2 be next ordinal
in Λ2.

If τ ∈ T, let γ(λ) + n(λ), where γ(λ) ∈ Λ, be the least element of
B(λ′, λ)λ′ . By (3), n(λ) > 0 for all λ.

By a simple cardinality argument, there exists n ∈ ω for which there
is a strictly ascending sequence 〈λk〉 in Λ2 such that n(k) = n for all
k. Then by (4), λk + n converges to ∞ in X. Let γ = supkλk and
let V = X \ ([0, γ] ∩ Λ). Now V∞ contains all but finitely many of the
λk + n. But ∞ /∈ B(λ′k, λk) and λ′k /∈ V , a contradiction to (·)x being
a Borges operator.

If τ ∈ T∗, let V (λ) = X \ (Λ∩ [0, λ′]) = ([0, λ′] \Λ)∪ (λ′, ω1)∪ {∞}.
Let γ(λ) + n(λ), where γ(λ) ∈ Λ, be the least element of V (λ)∞.
Clearly, n(λ) 6= 0 for all λ ∈ Λ2. Then there exists n ∈ ω and a
strictly ascending sequence 〈λk〉 in Λ2 such that n(k) = n for all k.
Let γ = supkλk. Then λk + n converges to γ. But ∞ /∈ [0, γ]γ and
γ /∈ V (γ), a contradiction to (·)x being a Borges operator. �

Corollary 3.7. No topology in T ∪ T∗ is weakly orthocompact.

Proof. This is an immediate consequence of Theorem 3.6, Theorem
1.1, and the easy fact that a space with a clopen partition into weakly
orthocompact spaces is itself weakly orthocompact. �

It is remarkable how little of (ω1, τ) was needed in the proof of The-
orem 3.6 to show that X is not monotonically normal. In particular,
W =

⋃
{B(λ′, λ) : λ ∈ Λ2} is nonstationary: it is disjoint from the club

set Λ3 = Λ
(1)
2 = Λ(2). However, this does not mean that the one-point

compactification of W is not monotonically normal: it was necessary
in the proof of 3.6 to find a neighborhood of ∞ which omits infinitely
many of the λk.

We also had no need of the Axiom of Choice (AC) in the proof.
The only place where this requires explanation is the observation that
Nn = {λ ∈ Λ2 : n(λ) = n} is infinite for some n. Now ZF is enough
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to show that ω × ω is infinite, and if each Nn were finite (or even
countable), we could define a surjective function f : ω × ω → Λ2 \ Λ3

by letting f(n, k) be the k + 1st element of Nn unless |Nn| is finite,
with kn elements, in which case we let f(n, k) be the knth element for
all k ≥ kn. But it is a theorem of ZF that the image of a countable set
is countable, and that Λ2 \Λ3 is uncountable. So we can take the least
n such that Nn is infinite, and define 〈λk〉∞n=1 by recursion, by letting
λk be the kth member of Nn.

However, AC cannot be avoided altogether if T is to be nonempty.
In fact, T 6= ∅ is equivalent to a well-known and much used concept in
set-theoretic topology: the existence of a ladder system on ω1.

Definition 3.8. Given a limit ordinal α, a ladder at α is a strictly
ascending sequence of ordinals less than α whose supremum is α. Given
an ordinal θ, a ladder system on θ is a family

{Lα : α ∈ θ, α is a limit ordinal of countable cofinality}

where each Lα is a ladder at α.

Lemma 3.9. If T 6= ∅, then there is a ladder system on ω1

Proof. The existence of any collection {B(α) : α ∈ Λ} of subsets of ω1

satisfying (2) and (4) of Example 3.1 is already enough to imply that
there is a ladder system on ω1. In fact, it is easy to see that if α ∈ Λ
and we let

αn = min{ξ : ∀γ + k ≥ ξ (g ∈ Λ ∪ {0}) =⇒ k ≥ n}

and we let Lα = {αn : n ∈ ω} then {Lα : α ∈ Λ} is a ladder system on
ω1. �

To show the converse of 3.9 we now construct a specific example of
τ ∈ T, given a ladder system {Lα : α ∈ Λ}.

Example 3.10. We build {B(ν) : ν ∈ ω1} by recursion. Let B(0) =
{0} and, if ν = ξ + 1, let B(ν) = B(ξ) ∪ {ν}. If α ∈ Λ ∪ {0} and
ν = α + ω let B(ν) = {ν} ∪B(α) ∪ {α + 2n : n ∈ ω}.

It remains to define B(α) when α ∈ Λ2. Given αn ∈ Lα, let S(α, 0) =
B(α0) and, for n > 0, let

S(α, n) = B(αn, αn−1) ∩ (Λ ∪ {γ + k : γ ∈ Λ ∪ {0} and k ≥ n}

and let B(α) = {α} ∪
⋃∞
n=0 S(α, n).
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Theorem 3.11. The following are equivalent:

(i) T 6= ∅
(ii) There is a collection {B(α) : α ∈ Λ} of subsets of ω1 satisfying

(2) and (4) of Example 3.1

(iii) There is a ladder system on ω1.

Proof. It is obvious that (i) implies (ii), and it was shown in the proof
of Lemma 3.9 that (ii) implies (iii). To show that (iii) implies (i), it
is enough to show that Example 3.10 witnesses (1) through (4) in the
definition of τ ∈ T if we define B(α, ξ) to equal B(α) ∩ (ξ, α].

Since αn ↗ α, (4) in Definition 3.1 is obviously satisfied, and (3)
follows by induction, using limit ordinals below α. Indeed, if γ ∈
B(αn, αn−1) ∩ Λ then B(αn, ξ) ∩ [0, γ] = B(γ, ξ) for some ξ < γ, and
by (4) applied to γ there exists η ≥ ξ such that η < γ and all successor
ordinals between η and γ are in S(α, n).

Condition (2) is satisfied because, as remarked after the description
of Example 3.1, we need only show it for Λ \ Λ2, and it is obvious for
those ordinals.

Finally, to show (1), we need to see that B = {B(0)} ∪ {B(α, ξ) :
ξ < α ∈ ω1} is a base for a topology on ω1. Obviously,

⋃
B = ω1. If

ν ∈ B(α, ξ) ∩ B(β, η) and ν /∈ Λ then {ν} ∈ B, while if ν ∈ Λ then
since ν ≤ min{α, β}, then (3) applied to ν and α and β gives µ < ν
such that B(ν, µ) = B(α) ∩ (µ, ν] = B(β) ∩ (µ, ν]. �

Now we come to two contrasting theorems about T and T∗:

Theorem 3.12. Let τ ∈ T. Then Λ is a Gδ in (ω1, τ). In fact,
Dn = {λ + n : λ ∈ Λ ∪ {0}} is a closed discrete subspace for each
n ∈ ω \ {0}.

Proof. That Dn is closed is an easy consequence of (1) and (4) in 3.1,
and discreteness is immediate from Lemma 3.3. So

⋃∞
n=1Dn is an Fσ,

and its complement is Λ. �

Theorem 3.13. Let τ ∈ T∗. Then (ω1, τ) is is σ-countably compact.
In particular, it is ω1-compact, i.e., every closed discrete subspace is
countable.

Proof. Let Dn be as in the preceding proof. It is clear from (4∗) that
Dn ∪ Λ is countably compact for each n ∈ ω \ {0}, and closed, and ω1

is obviously the union of these countably many subspaces. Countable
extent (i.e., ω1-compactness) is an easy consequence. �
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The following notes will not be used after this section.

Historical notes.

Note 1. The axiom of there being a ladder system on ω1 was first
used by G.H. Hardy in 1903 to construct an uncountable well-orderable
subset of R [4]. Hardy thought that he had avoided all use of AC, but
it was soon noted that, while the existence of individual ladders at
α ∈ ω1 follows from ZF, there are so many possible ladders at each α
that some form of AC is required to produce an entire ladder system
on ω1.

A rigorous proof of this had to await Cohen’s 1963 proof that AC
is ZF-independent and subsequent work showing that the existence of
an uncountable well-orderable subset of R is also ZF-independent. A
good reference for this last fact is [6], where many other weakenings of
AC are compared and catalogued. The existence of a ladder system on
ω1 is not one of them, however. One of us (Nyikos) has been collecting
statements equivalent to this axiom and has an online file [9] showing
their equivalence and their relation to some other weakenings of AC.

Note 2. Example 3.10 needs only minor modifications to produce a
space homeomorphic to Mary Ellen Rudin’s example [12] of a monoton-
ically normal, locally compact space without a monotonically normal
compactification. The following example gives these modifications.

Example 3.14. On ω1, follow the construction in Example 3.10, with
the difference that B(ν) = B(α)∪ (α, ν] when ν = α+ ω, α ∈ Λ∪ {0}.
This does not exactly give a member of T but we still have the following
modifications of (2) in 3.1, enough for obtaining the main features of
(ω1, τ):

(2′) If α ∈ Λ then α = sup(B(α)\Λ) and if α is a limit of limit ordinals,
then α = sup([0, α] \ [B(α) ∪ Λ]).

Our copy of Rudin’s space has ω1 with the resulting topology as
a subspace. To produce X, we add points converging to each limit
ordinal α from above, beginning with α + 1, so that

X = ω1 ∪ {α +
1

2n
: α ∈ Λ, n ∈ ω}

with the obvious order:

α < α +
1

2n+1
< α +

1

2n
≤ α + 1 for all α, n.

The sets of the following form give a base for X:

B(α; ξ, k) = B(α, ξ)∪{β+
1

2n
: β ∈ Λ, β < α, n ∈ ω}∪{α+

1

2n
: n ≥ k}
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Rudin’s space has underlying set ω1 × (ω + 1) and the topology
induced by the bijection ω1× (ω+ 1)→ X that takes 〈ξ, ω〉 to the ξth
limit ordinal, and takes 〈α, n〉 to α + 1

2n+1 and takes 〈ν, n〉 to α + n
when ν = α + ω, α ∈ Λ.

4. Positive results on countably compact spaces and
locally connected spaces

We begin with an auxiliary result. Recall that a family L of sets is
well-monotone provided that inclusion is a well-order on L.

Lemma 4.1. Let X be monotonically normal and locally compact.
Then X has an open cover U∪

⋃
s∈S Vs, where U is a point-finite family

of sets with compact closure, every Vs is well-monotone and consists
of sets with paracompact closure, and the family {

⋃
Vs : s ∈ S} is

discrete.

Proof. We use the well-known fact that every monotonically normal
space X is hereditarily collectionwise normal, and has the following
powerful properties if it is locally compact:

The Balogh-Rudin Covering Property [1]: If U is an open cover of
X, then X = V ∪

⋃
W , where W is a discrete family of copies of

stationary subsets of ordinals of uncountable cofinality, and V is the
union of countably many collections Vn of disjoint open sets, each of
which (partially) refines U .

The Balogh-Rudin Paracompactness Criterion (locally compact case)
[1]: X is paracompact if, and only if, it contains no closed copy of a
regular uncountable cardinal.

By the Balogh-Rudin Covering Property, X has a σ-disjoint open
family G such that G is compact for each G ∈ G and a discrete closed
family {Fs : s ∈ S} such that

⋃
s∈S Fs = X \

⋃
G and each Fs is homeo-

morphic with an ordinal. By a result of Rudin [11], the (monotonically
normal) subspace

⋃
G of X is countably paracompact. It follows that

G has a point-finite open refinement U .

By collectionwise normality, the family {Fs : s ∈ S} has a discrete
open expansion {Ws : s ∈ S}. Let s ∈ S. There exists an ordinal
λ such that we can write Fs = {xα : α < λ} so that the mapping
α 7→ xα is a homeomorphism λ → Fs. Let the sets G(F0, F1) verify
monotone normality of X as in Definition 1.4, and for each α < λ,
let Vα = G

(
{xβ : β ≤ α}, {xβ : α < β < λ} ∪ (X \ Ws)

)
. Then

Vs = {Vα : α < λ} is a well-monotone open family and, for every α < λ,
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we have {xβ : β ≤ α} ⊂ Vα and Vα∩
(
{xβ : α < β < λ}∪(X\Ws)

)
= ∅.

Note that Fs ⊂
⋃
Vs. We show that every set in Vs has paracompact

closure.

Assume on the contrary that there exists γ < λ such that Vγ is not
paracompact. The Balogh-Rudin Paracompactness Criterion, stated
more generally for Čech complete spaces in Corollary 2.3 of [1], implies
that there exists a closed set H ⊂ Vγ which is homeomorphic with a
regular uncountable cardinal. We have H∩Fs ⊂ Vγ∩Fs = {xα : α ≤ γ}
and the set {xα : α ≤ γ} is compact. It follows that H \ Fs contains a
set homeomorphic with a regular uncountable cardinal. This, however,
is impossible, since H \ Fs ⊂ Ws \ F ⊂

⋃
G =

⋃
V and a regular

uncountable cardinal cannot have a point-finite cover by open sets with
compact closures.

Since
⋃
Vs ⊂ Ws for each s, the family {

⋃
Vs : s ∈ S} is discrete. �

Theorem 3.13 shows that countable compactness cannot be weakened
to σ-countable compactness in our next theorem:

Theorem 4.2. Every locally compact, countably compact, monotoni-
cally normal space X has a monotonically normal one-point compacti-
fication and is therefore UNO.

Proof. We use Lemma 4.1, and we denote byH the cover U∪
⋃
s∈S Vs in

the lemma. Note that every well-monotone family is interior-preserving.
As a consequence, the cover H is interior-preserving. Since X is count-
ably compact, every set in H has compact closure. Hence X has an
interior-preserving cover by relatively compact sets and this implies
that X is weakly orthocompact. By Theorem 1.1, X + 1 is monotoni-
cally normal. �

Now we recall a theorem that might still be unknown had not the
second author been inspired by a theorem in which Alan Dow played
an essential role: the theorem that PFA(S)[S] implies every heredi-
tarily normal manifold of dimension > 1 is metrizable. In addition,
Alan helped Frank Tall repair a hole in [15] where it was claimed that
normal locally compact spaces are ω1-collectionwise Hausdorff under
PFA(S)[S]; he did this by replacing PFA(S)[S] with MM(S)[S] and mod-
ifying the proof. This is crucial in part (2) of the following theorem.

Only conditions (2) and (3) in the following theorem appear in the
Main Theorem of [10], but (1) appears there also as a separate theorem.
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Theorem 4.3. Let X be a locally compact, locally connected space. If
either

(1) X is monotonically normal or

(2) MM(S)[S] holds and X is hereditarily normal or

(3) PFA or PFA(S)[S] holds and X is normal and hereditarily strongly
collectionwise Hausdorff,

then every component of X is the disjoint union of an open Lindelöf
space L and at most countably many closed countably compact spaces
Sn. Moreover, the boundary of L is discrete.

Theorem 4.4. Let X be a locally compact, locally connected, and
monotonically normal space. Then the one-point compactification of
X is monotonically normal, and therefore X is UNO.

Proof. Let C be a connected component of X. Write C = L ∪
⋃
{Sn :

n ∈ α} as in Theorem 4.3, where α ∈ ω ∪ {ω}. We show that the
family S = {Sn : n ∈ α} is discrete. Let p ∈ C. Then p has a
connected compact neighborhood K which meets at most one point
of the boundary of L. Let k ∈ α be such that K ∩ ∂L ⊂ Sk. Now
K is the union of the mutually disjoint closed sets K ∩ (L ∪ Sk) and
K∩Sn, n ∈ α\{k}, and it follows from Sierpinski’s theorem on continua
that only one of those closed sets is non-empty. As a consequence, the
neighborhood K of p meets at most one of the sets Sn, n ∈ α.

By Theorem 4.2, every Sn has a monotonically normal compactifi-
cation. The subspace L is the union of the Lindelöf space L and the
countable set ∂L, and hence L is Lindelöf. As a consequence, also L
has a monotonically normal compactification. It follows that C has a
locally finite closed cover by sets with monotonically normal compact-
ifications. By the Locally Finite Sum Theorem for this property, also
C has a monotonically normal compactification.

Finally, the space X has a monotonically normal compactification,
since a locally connected space is the topological direct sum of its con-
nected components. �

We close with a corollary of Theorem 4.3 which does not extend to
the spaces in T, and with a problem that this corollary suggests.

Corollary 4.5. Every monotonically normal, locally compact, locally
connected space is the topological direct sum of ω1-compact subspaces.

Proof. It suffices to show that each component of the space is ω1-
compact.
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The sets Sn in 4.3 are countably compact, so every closed discrete
subspace of their union is countable. Also, every closed discrete sub-
space of a Lindelöf space is easily shown to be countable. �

Example 3.1 shows that “locally connected” cannot be eliminated
from this corollary, even if we replace it with “locally countable.” Let
X = (ω1, τ) ∈ T. A partition of X into clopen sets has to have exactly
one member of the partition [call it G] contain a co-countable subset
of Λ. Obviously, G contains uncountably many successor ordinals. So
there exists a positive integer k such that {γ+k : γ ∈ Λ and γ+k ∈ G}
is uncountable. But this is a closed discrete subspace of X.

Problem 2. If a locally compact space has a monotonically normal
compactification, is it the topological direct sum of ω1-compact sub-
spaces?

References

[1] Z. Balogh and M.E. Rudin, “Monotone normality,” Topology Appl. 47 (1992)
115–127.

[2] C.R. Borges, “Four generalizations of stratifiable spaces,” General topology
and its relations to modern analysis and algebra, III: Proceedings of the Third
Prague Topological Symposium, 1971 J. Novák, ed., (Academia, Prague and
Academic Press, New York, 1972) 73–76.

[3] P. Cairns, H.J.K. Junnila and P. Nyikos, “An application of Mary Ellen Rudin’s
solution to Nikiel’s Conjecture,” Top. Appl. 195 (2015) 26–33.

[4] G.H. Hardy, “A theorem concerning the infinite cardinal numbers,” Quart. J.
Pure and Appl. Math. 35 (1903) 87–94.

[5] M. Henriksen and J.R. Isbell, “Some properties of compactifications,” Duke
Math. J. 25 (1958) 83–106.

[6] P. Howard and J.E. Rubin, Consequences of the Axiom of Choice, Mathemat-
ical Surveys and Monographs v. 59, American Mathematical Society, 1998.

[7] H. Junnila, “On paracompact remainders,” preprint.
[8] H. Junnila, Z. Yun, and K. Tomoyasu, “Hereditarily normal extensions,”

Topology Appl. 136 (2004) 1–6.
[9] P. Nyikos, “Updates on a 1903 theorem of G. H. Hardy,” people.math.

sc.edu/nyikos/Hardy.pdf
[10] P. Nyikos, “The structure theory of T5 and related locally compact, locally

connected spaces under the PFA and PFA(S)[S],” submitted to Fund. Math.
Preprint available at “http://www.math.sc.edu/ ˜nyikos/preprints.html”

[11] M.E. Rudin, Dowker spaces, in: K. Kunen and J.E. Vaughan, eds., Handbook
of Set–Theoretic Topology (North–Holland, Amsterdam, 1984) 761-780.

[12] M.E. Rudin, “Monotone normality and compactness,” Topology Appl. 74
(1996) 199–205.

[13] M.E. Rudin, “Nikiel’s conjecture,” Topology Appl. 116 (2001) 305–331.
[14] B.M. Scott, “Toward a product theory for orthocompactness. Studies in topol-

ogy (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to
Math. Sect Polish Acad. Sci.), pp. 517537. Academic Press, New York, 1975.



COMPACTIFICATIONS, ETC. OF MONOTONICALLY NORMAL SPACES 17

[15] F.D. Tall, ”PFA(S)[S]: More mutually consistent topological consequences of
PFA and V = L. Canad. J. Math. 64 (2012) 1182–1200.

[16] H. Zhang and W. Shi, “Monotone normality and neighborhood assignments,
Topology Appl. 159 (2012), 603–607.

(H.J.K. Junnila) Department of Mathematics and Statistics, Univer-
sity of Helsinki, Helsinki, Finland

E-mail address: heikki.junnila@helsinki.fi

(Peter Nyikos) Department of Mathematics, University of South Car-
olina, Columbia, SC 29208

E-mail address: nyikos@math.sc.edu




