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Abstract. In 1951, Dowker proved that a space X is countably paracompact
and normal if and only if X×I is normal. A normal space X is called a Dowker

space if X × I is not normal. The main thrust of this article is to extend this
work with regards α-normality and β-normality. Characterizations are given
for when the product of a space X and (ω + 1) is α-normal or β-normal. A
new definition, α-countably paracompact, illustrates what can be said if the

product of X with a compact metric space is β-normal. Several examples
demonstrate that the product of a Dowker space and a compact metric space
may or may not be α-normal or β-normal. A collectionwise Hausdorff Moore
space constructed by M. Wage is shown to be α-normal but not β-nornal.

1. Introduction

A topological space X is called β-normal (α-normal) if for each pair of closed
disjoint subsets A, B ⊂ X there are open sets U , V ⊂ X such that A ∩ U = A,
B ∩ V = B and U∩V = ∅ (U∩V = ∅, respectively). This notion was introduced by
Arhangel’skii and Ludwig in 1999 [1] and others have worked on the topic ([2], [6],
[7], [9], [10], [11]) . In 1951, Dowker proved that a space X is countably paracompact
and normal if and only if X × I is normal [4]. A normal space X is called a Dowker
space if X × I is not normal, where I is the unit interval with the usual topology.
The main thrust of this article is to extend this work with regards α-normality and
β-normality.

Section 2 is devoted to extending Dowker’s characterization of countably para-
compact normal spaces to α-normal and β-normal spaces. The two main results
of the section, Theorem 2.3 and Theorem 2.9, characterize when X × (ω + 1) is
α-normal and when this product is β-normal. Corollaries 2.10 and 2.11 show what
happens if in the forward supposition of Dowker’s theorem, normality is replaced
with α-normality and β-normality (respectively). A new definition, α-countably
paracompact, is introduced in this section and Corollary 2.7 shows that if X×(ω+1)
is β-normal, then X is β-normal and α-countably paracompact. The converse is an
open question.

In Section 3, examples of Dowker spaces whose product with the unit interval
are α-normal and β-normal (respectively) are given. Curiously, this section also
exhibits Dowker spaces whose product with the unit interval are not α-normal and
β-normal (respectively).

In Section 4 a collectionwise Hausdorff Moore space constructed by M. Wage is
shown to be α-normal but not β-nornal. The article concludes with a list of open
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questions in Section 5. Throughout the paper, unless otherwise stated, a “space”
is a T1, regular, topological space. The ordinals ω, ω1 are used to denote the first
two infinite cardinals. Readers may refer to Engelking [5] for undefined terms.

2. Extending Dowker’s result to α-normality and β-normality

To start, we restate Dowker’s characterization of countably paracompact normal
spaces as a fact for later reference purposes.

Fact 2.1. A topological space X is countably paracompact and normal if and only
if X × I is normal.

In light of Dowker’s characterization, it is natural to ask what would happen if
one weakened the supposition that X × I is normal to α-normal. We begin with a
characterization of α-normal spaces. The proof is left to the reader.

Lemma 2.2. A topological space X is α-normal if and only if for every pair H
and K of disjoint closed subsets of X there exists an open set U of X such that
H ∩ U = H and U ∩ K is nowhere dense in K.

It should be noted, that in the standard proof of Fact 2.1, the reverse direction
only uses the existence of a non-trivial convergent sequence in the space I [5]. So
we can actually say X × (ω +1) is normal if and only if X is normal and countably
paracompact. We now have the following.

Theorem 2.3. Let X be a T1 space. The product X × (ω + 1) is α-normal if and
only if

(1) X is α-normal, and

(2) if {Fn : n ∈ ω} is a family of closed sets and F =
⋂

n∈ω

clX(

∞⋃

k=n

Fk), and E is

a closed subset of X disjoint from F , then there is a family {Wn : n ∈ ω} of

open sets such that Wn∩Fn is dense in Fn and
⋂

n∈ω

clX(
∞⋃

k=n

Wk) is nowhere

dense in E.

Proof. Let {Fn : n ∈ ω} be a family of closed sets and F =
⋂

n∈ω

clX(

∞⋃

k=n

Fk), and

suppose E is a closed subset of X disjoint from F . Then A = (
⋃
{Fn × {n} : n ∈

ω})∪ (F ×{ω}) and B = E ×{ω} are disjoint closed subsets of X × (ω + 1). Since
X × (ω + 1) is α-normal, there is an open subset W of X × (ω + 1) such that
W ∩ A = A and W is nowhere dense in B.

For each n ∈ ω, define Wn = {x ∈ X : (x, n) ∈ W}. Clearly, Wn ∩ Fn is dense

in Fn. Since W is nowhere dense in B,
⋂

n∈ω

clX(

∞⋃

k=n

Wk) is nowhere dense in E.

Conversely, let A and B be disjoint closed subsets of X × (ω + 1). Consider the
sets

• An = {x ∈ X : (x, n) ∈ A},
• Aω = {x ∈ X : (x, ω) ∈ A},
• Bn = {x ∈ X : (x, n) ∈ B}, and
• Bω = {x ∈ X : (x, ω) ∈ B}.
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Since X is α-normal and Aω and Bω are disjoint closed subsets of X, there are
disjoint open subsets UA and UB of X such that clX(UA ∩Aω) = Aω and clX(UB ∩
Bω) = Bω.

By (2) and the α-normality of X, there are open subsets Un and Vn of X such
that

(a) Un ∩ An is dense in An for each n ∈ ω,

(b)
⋂

n∈ω

clX(

∞⋃

k=n

Uk) is nowhere dense in Bω,

(c) Vn is dense in Bn for each n ∈ ω,

(d)
⋂

n∈ω

clX(
∞⋃

k=n

Vk) is nowhere dense in Aω, and

(e) Un ∩ Vn = ∅ for each n ∈ ω.

Let H = Aω \
⋂

n∈ω clX(
⋃

∞

k=n Vk) and K = Bω \
⋂

n∈ω clX(
⋃

∞

k=n Uk). For each
d ∈ H ∩ UA, there is an open subset Od and nd ∈ ω such that

• Od ⊂ UA, and
• Od ∩

⋃
∞

k=nd
Vk = ∅.

Similarly, for each d ∈ K ∩ UB , there is an open subset Od and nd ∈ ω such that

• Od ⊂ UB , and
• Od ∩

⋃
∞

k=nd
Uk = ∅.

Let
U =

⋃
{Un × {n} : n ∈ ω} ∪

⋃
{Od × [nd, ω] : d ∈ H ∩ UA}, and

V =
⋃

{Vn × {n} : n ∈ ω} ∪
⋃

{Od × [nd, ω] : d ∈ K ∩ UB}.

Note that U and V are disjoint subsets of X × (ω + 1), U is dense in A, and V is
dense in B. Hence X × (ω + 1) is α-normal.

¤

The β-normal case is similar to the α-normal case, albeit more complicated. For
convenience, we break up the theorem into two parts.

Lemma 2.4. Let X be a T1 space. If X × (ω + 1) is β-normal, then:

(1) X is β-normal and

(2) if {Fn : n ∈ ω} is a family of closed sets and F =
⋂

n∈ω

clX(
∞⋃

k=n

Fk), and E is

a closed subset of X disjoint from F , then there is a family {Wn : n ∈ ω} of

open sets such that Wn ∩Fn is dense in Fn and
⋂

n∈ω

clX(

∞⋃

k=n

Wk) is disjoint

from E.

Proof. Clearly X is β-normal. Let {Fn : n ∈ ω} be a family of closed sets with

F =
⋂

n∈ω

clX(

∞⋃

k=n

Fk), and E is a closed subset of X disjoint from F . Note that

A =
⋃

n∈ω(Fn×{n})∪(F ×{ω}) and B = E×{ω} are disjoint closed sets in X×Y .
Since X×Y is β-normal, there are open U, V ⊂ X×Y such that A∩U is dense in A,
B∩V is dense in B, and U∩V = ∅. The sets Wn = {x ∈ X : (x, n) ∈ U} are open in
X and Wn ∩ Fn is dense in Fn for each n ∈ ω. Suppose C =

⋂
n∈ω(clX(

⋃
∞

k=n Wk)
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is not disjoint from E. Let z ∈ C ∩ E. Then every neighborhood of z meets
infinitely many Wn and since Wn × {n} ⊂ U , so (z, ω) ∈ U . This is impossible
since U ∩ B = ∅. ¤

At this point, it should be noted that Dowker had a useful characterization of
countably paracompact.

Fact 2.5. A topological space X is countably paracompact if and only if for every
decreasing sequence 〈Fn : n ∈ ω〉 of closed subsets of X satisfying

⋂
n∈ω Fn = ∅

there exists a sequence 〈Wn : n ∈ ω〉 of open subsets of X such that Fn ⊂ Wn for
n ∈ ω and

⋂
n∈ω Wn = ∅.

This characterization prompted one of the authors to define the concept of α-
countably metacompact and α-countably paracompact spaces.

Definition 2.6. A topological space is said to be α-countably paracompact (resp.,
α-countably metacompact) if for every decreasing sequence 〈Fn : n ∈ ω〉 of closed
subsets of X satisfying

⋂
n∈ω Fn = ∅ there exists a sequence 〈Wn : n ∈ ω〉 of open

subsets of X such that Wn ∩ Fn is dense in Fn for n ∈ ω and
⋂

n∈ω Wn = ∅ (resp.,⋂
n∈ω Wn = ∅).

With this new definition and Lemma 2.4, we have the following corollary that
exhibits what can be said of a space X if X × (ω +1) is β-normal. In this direction,
we can extend the result to the product of X and a compact metric space as all
that is needed is a distinct convergent sequence and its limit point. The proofs are
left to the reader.

Corollary 2.7. If X × (ω + 1) is β-normal, then X is β-normal and α-countably
paracompact.

Corollary 2.8. If Y is an infinite compact metric space, and X × Y is β-normal,
then X is β-normal and α-countably paracompact.

With Lemma 2.4 in hand, we are now ready for the main β-normal result of this
section.

Theorem 2.9. Let X be a T1 space. The product X × (ω + 1) is β-normal if and
only if the following three conditions are met:

(1) X is β-normal,
(2) condition (2) of Lemma 2.4 is satisfied, and
(3) for every decreasing sequence 〈Fn : n ∈ ω〉 of closed subsets of X satisfying⋂

n∈ω Fn = ∅, there is a family {Vn : n ∈ ω} of open sets such that Fn ⊂ Vn

and

∞⋂

n=0

clX(Vn) is nowhere dense in the relative topology of F0.

Proof. Let C be a closed subset of X × (ω + 1) and U an open set of X × (ω + 1)
containing C. It suffices to find an open set G such that G ∩ C is dense in C and
G ⊂ U . Consider the following sets:

• Cn = {x ∈ X : (x, n) ∈ C}
• Cω = {x ∈ X : (x, ω) ∈ C}
• Un = {x ∈ X : (x, n) ∈ U}
• Uω = {x ∈ X : (x, ω) ∈ U}
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Note that each Cn and Cω are closed subsets of X, and each Un and Uω are open

subsets of X. Also, F =
⋂

n∈ω

clX(
∞⋃

k=n

Ck) is a closed subset of Cω. By condition (2)

of Lemma 2.4 and β-normality of X, we can find open sets Wn such that

(a)

∞⋂

n=0

clX(

∞⋃

k=n

Wk) is a subset of Uω,

(b) Wn ∩ Cn is dense in Cn, and
(c) clX(Wn) ⊂ Un.

Let G0 =

∞⋃

n=0

(Wn × {n}). Note that G0 ∩ (X × {ω}) is a subset of X × (ω + 1),

while E = X \ Uω is a subset of X. Hence G0 ⊂ U .
By the β-normality 1 of X, we can find an open set V ⊂ X such that V ∩ Cω is

dense in Cω and clX(V ) ⊂ Uω. Let Ek = X \Uk and let Fn = clX(
⋃

∞

k=n Ek)∩Cω.
Then 〈Fn : n ∈ ω〉 is a decreasing sequence of closed subsets of X such that⋂

∞

i=1 Fi = ∅ and by condition (3) of Theorem 2.9 we can find open sets Vn ⊃ Fn

such that
⋂

n∈ω Vn meets F0 in a nowhere dense set.

Now Cω\Vn is a closed set disjoint from clX(
⋃

∞

k=n Ek). So Wn = (V \Vn)×[n, ω]
is an open set whose closure is disjoint from Ek for all k and so, by definition
of V and Ek, the closure of Wn is a subset of U . Let G1 =

⋃
∞

n=0 Wn. Then

G1 ∩ Cω = Cω \
⋂

∞

n=0 Vn is dense in Cω, and the closure of G1 is easily seen to be
a subset of U . Thus G = G0 ∪ G1 is the desired open set.

Conversely, let Y = X × (ω + 1) and suppose Y is It remains to verify condition
(3) of Theorem 2.9.

Consider a decreasing sequence 〈Fn : n ∈ ω〉 of closed subsets of X satisfying⋂
∞

i=1 Fi = ∅. Let C = F0 × {ω} and E =
⋃

n∈ω Fn × {n}. Then C and E are
disjoint closed subsets of Y . By β-normality of Y , there is an open subset W of Y
whose intersection with C is dense in C, and whose closure is a subset of Y \ E.
Let Vn = {x ∈ X : (x, n) /∈ W}. Clearly, Vn is an open subset of X, and Fn ⊂ Vn.
If

⋂
n∈ω Vn 6= ∅, let z be in the intersection. Every neighborhood of (z, ω) meets all

but finitely many of the sets Vn ×{n}. Each of these sets is a subset of the closure
of Y \ W and so it misses W . Therefore, (z, ω) /∈ W , and so

⋂
n∈ω Vn meets F0 in

a nowhere dense subset of F0. ¤

We now consider what happens if the supposition in Fact 2.1 is changed from
X normal to X α-normal or β-normal. Notice that countably paracompact spaces
satisfy condition (2) of Theorem 2.3 and conditions (2) and (3) of Theorem 2.9.
Hence, we have the following corollaries.

Corollary 2.10. Let X be α-normal and countably paracompact. Then X×(ω+1)
is α-normal.

Corollary 2.11. Let X be β-normal and countably paracompact. Then X×(ω+1)
is β-normal.

1Here we use the equivalent definition of β-normality: A space X is β-normal if for each closed
A ⊆ X and for every open U ⊆ X that contains A, there exists and open V ⊆ X such that
V ∩ A = A ⊆ V ⊆ U .
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3. Motivating Examples

After Dowker characterized countably paracompact normal spaces (Fact 2.1), he
asked whether every normal space is countably paracompact or not. That is, does
there exist a normal space X such that X × I is not normal (i.e., a Dowker space).
For several decades, the Dowker problem has fueled a great deal of research. In
1971, M.E. Rudin constructed a Dowker space [13]. In light of α-normality and
β-normality, it is natural to ask whether the product of a Dowker space and the
unit interval can be α-normal or β-normal.

Example 3.1. The product of a normal space and a compact metric space can be
α-normal without being normal.

Proof. Consider a hereditarily separable Dowker space X and a compact metric
space Y . Hereditarily separable Dowker spaces have been constructed under a
variety of axioms independent of ZFC (see [12], [14], [15], and [16]). Since these
spaces are hereditarily separable and Y is second countable, X × Y is hereditarily
separable. A hereditarily separable regular space is α-normal [1]. ¤

We will see that the properties of the Dowker space dictate the outcome of the
product. In Example 3.1, the product of a hereditarily separable Dowker space with
a compact metric space resulted in an α-normal product space. If this condition is
dropped, as the next example demonstrates, the product may fail to be α-normal.

Example 3.2. (ZFC) The product of a normal space and a compact metric space
need not be α-normal.

Proof. Recall that a topological space X is called a P-space if the intersection of
countably many open sets is open. If X is a Dowker P -space and is extremally
disconnected, that is if the closure of an open set is open, then X fails condition (2)
of Theorem 2.3. Dow and van Mill [3] have constructed such a space in ZFC. ¤

Remark 3.3. Note that in extremally disconnected spaces, α-countably paracom-
pactness is equivalent to countable paracompactness. Thus, the normal space in
Example 3.2 is not α-countably paracompact.

Although β-normality seems a much stronger condition than α-normality, it is
not enough to determine the Dowker situation as the next example illustrate.

Example 3.4. (V=L) A normal space whose product with a compact metric space
is β-normal but not normal.

Proof. P. Nyikos [12] constructed a scattered hereditarily strongly collectionwise
(scwH) Hausdorff Dowker space X under the axiom V=L. Recently, it was shown
that X × (ω + 1) is scattered and hereditarily scwH, and therefore X × (ω + 1) is
(hereditarily) β-normal by Nyikos and Porter’s Theorem 2.8 [11]. ¤

4. Moore space results

In light of Theorem 2.9, one may consider how close α-normal and β-normal
are in the presence of condition (2) of Theorem 2.3 and conditions (2) and (3) of
Theorem 2.9. The next example gives some insight on this.

Example 4.1. A first countable Tychonov space that is α-normal, collectionwise
Hausdorff, and α-countably paracompact but not β-normal.
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Proof. In [17], Wage produced an example of a collectionwise Hausdorff first count-
able Tychonoff space that is not normal. We state the following lemma used by
Wage.

Lemma 4.2. There exist subsets of the real line A and B such that B ⊂ A and
every countable subset of B is contained in a Gδ that does not meet A − B, yet
every Gδ containing B does meet A − B.

To create Wage’s example, topologize A by letting the points of B have the usual
neighborhoods and each point of A − B be isolated. Let X = A × (ω + 1) − B ×
{ω}. Wage showed this space to be first countable, Tychonoff, non-normal, pseudo-
normal, and collectionwise Hausdorff. A similar argument to the one Wage used to
show that X is collectionwise Hausdorff will be used to show that X is α-normal.

Since the points of (A − B) × ω are isolated and B × ω is hereditary separable,
it suffices to show that every countable subset of B ×ω is contained in an open set
whose closure misses (A − B) × {ω}. Let C ⊂ B × ω be countable. Since every
countable subset of B is contained in a Gδ that misses A−B, there exist open sets
Un ⊂ A with Un+1 ⊂ Un such that {x ∈ B : (∃n ∈ ω)(x, n) ∈ C} ⊂

⋂
{Un : n ∈ ω}

and
⋂
{Un : n ∈ ω} ∩ (A − B) = ∅. Note that C ⊂

⋃
{Un × {n} : n ∈ ω}, and the

closure of
⋃
{Un × {n} : n ∈ ω} misses (A − B) × {ω}. That is, X is α-normal.

To show that X is α-countably paracompact, let {Fn : n ∈ ω} be a sequence of
decreasing closed sets such that

⋂
Fn = ∅. For each n ∈ ω let

(i) Gn = Fn ∩ (B × ω),
(ii) Hn = Fn ∩ (A − B) × {ω}, and
(iii) In = Fn ∩ (A − B) × ω

Note that In is open in X. For each (x, ω) ∈ Hn, let U(x,ω) = {(x, k) : k ≥ n}. Note

that
⋃
{U(x,ω) : (x, ω) ∈ Hn} ∩ (A − B) × {ω} = Hn. Since A × ω is paracompact

open subset of X and {Gn : n ∈ ω} is a nested sequence of closed sets, we can find
open sets Vn such that Gn ⊂ Vn and

⋂
Vn ∩ (A × ω) = ∅. Since Gn is closed, we

can find an open set On such that Gn ∩ On = Gn and On ∩ (A − B) × {ω} = ∅ by
the above arguments. Let Un = Vn ∩ On, and let

Wn = In ∪ (
⋃

{U(x,ω) : (x, ω) ∈ Hn}) ∪ Un.

Note that
⋂

Wn = ∅, and X is α-countably paracompact.
To show that X is not β-normal, we show that the closed sets B×ω and (A−B)×

{ω} cannot be β-separated. Suppose U and V are open sets such that (B×ω)∩U is
dense in B×ω and (A−B)×{ω}∩V is dense in (A−B)×{ω}. Since (A−B)×{ω}
is discrete, for every x ∈ A−B there is an nx ∈ ω such that {(x, n) : n ≥ nx} ⊂ V .
We claim there exists x′ ∈ B and a sequence {xk} in A − B and an m ∈ ω such
that xk → x′ and nxk

= m. Since U ⊃ B × ω, U must contain {(x′, n) : n ∈ ω}.
This shows that U ∩ V 6= ∅.

To prove the claim, let Em = {x ∈ A−B : nx = m}. If the claim were not true,
then for every x ∈ B there is a neighborhood Ox of x such that Ox ∩ Em = ∅. Let
Om =

⋃
x∈X Ox. Note that Om∩Em = ∅, and

⋂
m∈ω Om is a Gδ set which contains

B but misses A − B, a contradiction. This completes the proof. ¤

Wage used this space to construct a collectionwise Hausdorff non-normal Moore
space. This gives the following interesting result.
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Example 4.3. There exists a collectionwise Hausdorff, non-β-normal, α-normal
Moore space, X ′.

Proof. Let X ′ be the set of all non-isolated points of X. The space

Y = X ′ × {ω} ∪ (X − X ′) × ω

as a subspace of X × (ω + 1) is a Moore space which is α-normal but not β-normal
by the previous arguments. ¤

5. Questions

The authors close the paper by listing some open questions that the authors were
unable to answer.

Question 5.1. Is there a Dowker space whose product with a compact metric
space is β-normal in ZFC?

Question 5.2. Is there a Dowker space whose product with a compact metric
space is α-normal, but not β-normal?

Question 5.3. If X is β-normal and α-countably paracompact, is X × (ω + 1)
β-normal? α-normal?

Question 5.4. If X is α-normal and α-countably paracompact, is X × (ω + 1)
α-normal?

Question 5.5. If X × (ω + 1) is α-normal, is X α-countably metacompact? α-
countably paracompact?

Question 5.6. Are β-normal α-countably metacompact spaces α-countably para-
compact?

Question 5.7. Is there a β-normal non-normal Moore space?

It follows from condition (3) of Theorem 2.9 that the product of a Dowker P -
space with ω + 1 is not β-normal. Recall that Rudin’s Dowker [13] space is a
P -space.

Question 5.8. Is Rudin’s Dowker space α-countably paracompact?

Question 5.9. Is the product of Rudin’s Dowker space with ω + 1 α-normal?
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