A SCREENABLE, σ-RELATIVELY DISCRETE DOWKER SPACE

PETER NYIKOS

Abstract.
A Dowker space (that is, a normal space that is not countably metacompact) is constructed which is also screenable and the countable union of discrete subspaces. The construction and proofs are easy modifications of the ones for Balogh’s screenable Dowker space [B1]. Balogh’s example is presented alongside the modification in a new exposition with several new results common to the two spaces, including the fact that each has a discrete collection of $2^{\aleph_0} = \aleph$ clopen sets. A conjecture of Balogh’s concerning a submetrizable space is discussed.

Introduction

Before his death of a heart attack at age 48, Zoltán (“Zoli”) Balogh produced a remarkable assortment of Dowker spaces in ZFC, including four published examples, [B0] [B1] [B2] [B3]. All but the first were constructed using a technique that Balogh pioneered and mastered and used to produce a number of other spaces in ZFC, including a paracompact Q-set space and a space that solved two of the three Morita Conjectures. See [BG] for an exposition on all of these spaces and many other noteworthy accomplishments of Balogh.

This paper describes a modification in his screenable Dowker space [B1], that makes it the union of countably many discrete (but far from closed) subspaces. In this way it combines one of the properties of his Dowker space in [B0] with the properties of his screenable Dowker space, which will be designated $\langle X, \tau_B \rangle$ while ours is designated $\langle X, \tau_\sigma \rangle$.

Incidentally, the paragraph in [BD] where Balogh’s natural Dowker space [B3] is introduced may create the false impression that it is a re-working of Balogh’s first Dowker space [B0]. Actually, the natural Dowker space is a bare-bones Dowker

1991 Mathematics Subject Classification. (Updated to 2000.) Primary: 54D20, 54G20, 54G99; Secondary: 03E75, 54D15, 54E99, 54G12.

Key words and phrases. Dowker, σ-relatively discrete, screenable, normal, ultranormal, control pair, complete neighborhood, elementary submodel, M, N-reflection, ξ-homogeneous, coherent δ-sequence, submetrizable.
space, not designed to have any other properties besides Dowkerness and “small-ness” in the sense of being of cardinality c. The space in [B0], on the other hand, was designed to have not only these properties but also to be hereditarily normal and the countable union of discrete subspaces.

Remarkably enough, Balogh’s proof that $\langle X, \tau_B \rangle$ is a screenable Dowker space goes through for $\langle X, \tau_\sigma \rangle$ with only a few changes. However, it seemed worthwhile to revise the proof and add more information about the two spaces, in a unified treatment of both. It is hoped that this will stimulate research that uses this fascinating but very demanding Balogh technique – so demanding, in fact, that heretofore no one but Balogh has used it successfully!

Balogh’s technique can be conveniently divided into three parts, which will be referred to as “stages” in what follows. The first stage is very straightforward and simple. An underlying set X is defined; and each cofinite subset of X and each member W_n of an ascending sequence of sets W_n covering X is declared to be open. This sequence is destined to be an open cover without a point-finite refinement. [Recall that a space is countably metacompact if every countable open cover has a point-finite refinement, and that a Dowker space is a normal space that is not countably metacompact.]

The second stage consists of building a subbase for the topology in $2^{\vert X \vert}$ steps, to build in certain “desirable” properties, including normality. On the surface, this is also straightforward. In the case of normality, what is obtained in Zoli’s examples (as well as in our space $\langle X, \tau_\sigma \rangle$) is ultranormality: the property that every binary open cover can be refined to a partition. This is done by listing all proper binary covers in a sequence of length $2^{\vert X \vert}$, each repeated $2^{\vert X \vert}$ times, and the first time (if any) that both sets in the cover are open, one adds a binary partition of X to the subbase, each member of which is contained in one of the members of the cover. A similar technique is used to obtain screenability in [B1], and in this paper.

What makes this and other Balogh constructions intricate is the need to make the choices of these subbasic sets in a sufficiently “generic” way so that certain “unwanted” features not built into the space do not appear by accident, as it were. [In the case of the Dowker examples, the “undesirable” characteristic is, necessarily, countable metacompactness.] In each of Balogh’s examples, this kind of “genericity” is produced by defining control tuples (pairs in the case of his screenable Dowker space, triples in most other places) which are listed in a sequence of length $\vert X \vert$. [In the case of the Dowker examples, $\vert X \vert = c$.]

The third stage takes up by far the greatest part of Balogh’s papers where he uses the technique. It consists of a very clever proof of the negative feature (in the Dowker papers, lack of countable metacompactness). It is a three-part process, involving two new ideas (complete neighborhoods and reflections of sequences, ex-
plained in Sections 3 and 4), and the heavy use of countable elementary submodels and control-tuples.

We will follow the numbering of Balogh’s paper [B1] for the definitions, lemmas, propositions, theorems, etc. that go through without change (modulo two minor corrections) for the two spaces. These were given a 2-digit numbering. Examples of certain covers and their refinements, whose purpose is to give readers a better feel for the two spaces, are numbered in single digits, and they are not needed for the main results. Problems, presented in Section 6, are also numbered in single digits. Other new definitions, etc. will be given a 3-digit numbering. In most cases they merely single out concepts Balogh introduced in the running text of [B1], but there are some exceptions, notably at the end of Section 3. We will use the notation τ_σ for our σ-relatively discrete topology and τ_B for Balogh’s original topology.

Section 1. The first and second stages

The underlying set for X is $c \times \omega$. We adopt the following notation: $L_n = c \times \{n\}$ and $W_n = c \times n \ (= \bigcup_{i=0}^{n-1} L_i)$. In particular, $W_0 = \emptyset$. In the base for the topology, we include $B_x = \{x\} \cup W_{n-1}$ for each $x \in W_n$. This makes each W_n open in X and each L_n discrete in its relative topology.

In Balogh’s space $\langle X, \tau_B \rangle$ being modified here, B_x was defined as $X \setminus \{x\}$ and declared to be open, thereby ensuring that X is a T_1 space. The starting point for his base was:

$$\mathcal{B}_0 = \{B_x : x \in X\} \cup \{W_n : n \in \omega\}.$$

For our construction of τ_σ, we might as well keep this notation, with the understanding that B_x is being defined very differently.

The rest of Balogh’s article now goes through for τ_σ, except for the following changes:

(A) a change in the meaning of $V_{t,K}(x)$ and $V_{t,K,\xi}(x)$ [see Notation 3.0.1], and

(B) in the proof of 5.1, having $y[n]$ stand for $\{\gamma_n\} \times k_n$ instead of $\{\gamma_n\} \times (k_n + 1)$, with a resulting modification in the last few sentences of Case 1 and Case 2 in [B1]; see the last sentence in the proof of Claim 5 in Section 5.

Even with change (B), our proof of 5.1 works just as well for Balogh’s $\langle X, \tau_B \rangle$ as it does for our modification $\langle X, \tau_\sigma \rangle$.

There are also two corrections to be made in Balogh’s paper [B1]:

1. In the definition of $t(\beta, n)$ in [B1], there should be at least one $\xi \geq \beta$ included.

2. In the proof of Lemma 3.2 in [B1], “smallest” should read “greatest”.
Notation 1.0. Let \(\langle S_\xi \rangle_{\xi < \omega} \) be a listing of two kinds of families of subsets of \(X \), with each family listed \(2^\omega \) times. The families are called, respectively, **Type 1 pairs** and **Type 2 sequences**. Type 1 pairs are binary covers of \(X \); and each Type 2 sequence is indexed by \(c \), its union is \(W_n \) for some \(n > 0 \), and it is said to be **of height** \(n \).

The base \(\mathfrak{B} \) for \(X \) is built in a \(2^\omega \)-step induction commencing with \(\mathfrak{B}_0 \). If \(\nu \) is a limit ordinal, then \(\mathfrak{B}_\nu = \bigcup \{ \mathfrak{B}_\xi : \xi < \nu \} \), and the final subbase [actually a base, see Example 2 below] is \(\mathfrak{B} = \mathfrak{B}_\omega \).

When \(\mathfrak{B}_\xi \) is defined, \(\mathcal{S}_\xi \) is analyzed to determine whether to make \(\mathfrak{B}_{\xi+1} \) equal \(\mathfrak{B}_\xi \), or whether to add new open sets to \(\mathfrak{B}_\xi \) to produce \(\mathfrak{B}_{\xi+1} \). We make \(\mathfrak{B}_{\xi+1} \) equal \(\mathfrak{B}_\xi \) whenever some member of \(\mathcal{S}_\xi \) fails to be open in the topology generated by \(\mathfrak{B}_\xi \), and also when all members of \(\mathcal{S}_\xi \) were already open in some earlier \(\mathcal{S}_n \). Otherwise, we will define a clopen partition of \(X \) [resp. an open partition of \(W_n \)] refining \(\mathcal{S}_\xi \) and will add it to the existing subbase \(\mathfrak{B}_\xi \) to produce \(\mathfrak{B}_{\xi+1} \). The notation for these partitions is \(\langle B^0_\xi, B^1_\xi \rangle \) [resp. \(\langle E^0_\xi : \rho < c \rangle \)]: They are precise refinements; this means \(B^i_\xi \subset S^{\gamma}_\xi \) [resp. \(E^\rho_\xi \subset S^\gamma_\xi \)] for all \(i, \rho \). As shown in Section 2, partitions that come from Type 1 families ensure normality of \(X \) while those that come from Type 2 families ensure **screenability**, viz., the property that every open cover has an open refinement that is the countable union of disjoint collections.

A very naïve way of defining the partitions is to adopt a “first come, first served” policy. This would defeat our purpose by making \(X \) a discrete space: if \(\mathcal{S}_\xi = \langle X \setminus \{ x \}, X \rangle \), then putting each point \(\langle \beta, n \rangle \) into the first \(B^1_\xi \) that contains it would give \(B^1_\xi = \{ x \} \), making \(x \) an isolated point.

Balogh’s technique makes subtle use of control pairs to shuffle the points \(\langle \beta, n \rangle \) around by moving some member of \(\mathcal{S}_\xi \) to the front of the line, so to speak, in a way that depends on \(\beta \in c \).

For each \(A \subset X \) and every \(\mathcal{S}_\xi \), let \(\mathcal{S}_\xi \upharpoonright A \) be the sequence \(\langle S^\gamma_\xi \cap A \rangle_{\gamma \in \Gamma} \) where \(\Gamma = \{ 0, 1 \} \) if \(\mathcal{S}_\xi \) is a Type 1 pair and \(\Gamma = c \) if \(\mathcal{S}_\xi \) is a Type 2 sequence.

Definition 1.1. A pair \(\langle A, d \rangle \) is called a control pair if the following conditions are met:

(C-1) \(A \) is a countably infinite subset of \(X \);

(C-2) \(d \) is a countable function with

\[\text{dom}(d) \subset \{ S \upharpoonright A : S \text{ is a Type 1 or Type 2 sequence} \} \], and \(\text{range}(d) \subset c \).

If \(x = \langle \beta, k \rangle \in X \), we write \(x(\xi) = \gamma \) (or \(\langle \beta, k \rangle(\xi) = \gamma \)) to mean \(x \in B^1_\xi \) [or \(x \in E^\gamma_\xi \), as the case may be]. We write \(d_\beta(\omega, \omega) \) for \(d_\beta(\omega, \omega) \).

Let \(\langle A_\beta, d_\beta \rangle \) list all control pairs, mentioning each one \(c \) times.

The definition of \(\mathfrak{B} \) will be complete once we tell how \(\langle B^0_\xi, B^1_\xi \rangle \) is defined for \(\xi \) falling into what Balogh called Case 1 and how \(\langle E^\rho_\xi : \rho < \omega \rangle \) is defined for \(\xi \).
in Balogh’s Case 2. We use the term \(\xi \text{-open} \) to denote “open in the topology generated by \(\mathcal{B}_\xi \).” It is immaterial which of \(\{\tau_B, \tau_\sigma\} \) is referred to in the following description, as long as we are consistent for all \(\xi \in 2^\omega \).

Case 1. Assume that \(\mathcal{S}_\xi = \langle S^0_\xi, S^1_\xi \rangle \) is a Type 1 pair, \(S^0_\xi \) and \(S^1_\xi \) are both \(\xi \)-open, and there is no \(\eta < \xi \) such that \(\mathcal{S}_\eta = \mathcal{S}_\xi \) and \(S^0_\xi \) and \(S^1_\xi \) are both \(\eta \)-open.

Subcase 1a. Suppose that \(\mathcal{S}_\xi \upharpoonright A_\beta \in \text{dom}(d_\beta) \) and \(d_\beta(\mathcal{S}_\xi \upharpoonright A_\beta) \in \{0, 1\} \).

In this subcase, we move \(S^i_\xi \) to the front of the line, so to speak, where \(i = d_\beta(\mathcal{S}_\xi \upharpoonright A_\beta) \). To be precise: if \(x = \langle \beta, k \rangle \) then \(x(\xi) = i \) (and thus \(\langle \beta, k \rangle \in B^i_\xi \)) if \(x \in S^i_\xi \), otherwise we let \(x(\xi) = 1 - i \).

Subcase 1b. If Subcase 1a does not hold, it is “first come, first served”: \(\langle \beta, k \rangle \in B^0_\xi \) unless \(\langle \beta, k \rangle \notin S^1_\xi \), in which case \(\langle \beta, k \rangle \in B^1_\xi \).

**Case 2. Assume that \(\mathcal{S}_\xi = \langle S^\rho_\xi : \rho < \varsigma \rangle \) is a Type 2 sequence, of some height \(n \), \(S^\rho_\xi \) is \(\xi \)-open for every \(\rho < \varsigma \), and there is no \(\eta < \xi \) such that \(\mathcal{S}_\eta = \mathcal{S}_\xi \) and \(S^\rho_\eta \) is \(\eta \)-open for all \(\rho < \varsigma \).

In this case, we only define \(x(\xi) \) for \(x \in W_n \); in other words, only when \(x = \langle \beta, k \rangle, k < n, \beta < \varsigma \). We put \(x \in E^x(\xi) \), in the following way.

Subcase 2a. Suppose \(\mathcal{S}_\xi \upharpoonright A_\beta \in \text{dom}(d_\beta) \). Then, with \(d(\mathcal{S}_\xi \upharpoonright A_\beta) = \rho \), we move \(S^\rho_\xi \) to the front of the line by letting \(\langle \beta, k \rangle(\xi) = \rho \) (whence \(\langle \beta, k \rangle \in E^\rho_\xi \)) if \(\langle \beta, k \rangle \in S^\rho_\xi \); otherwise we take the minimum \(\sigma \) such that \(\langle \beta, k \rangle \in S^\sigma_\xi \) and let \(\langle \beta, k \rangle(\xi) = \sigma \), whence \(\langle \beta, k \rangle \in E^\sigma_\xi \).

Subcase 2b. If Subcase 2a does not hold, we let \(\langle \beta, k \rangle(\xi) = \min\{\sigma : \langle \beta, k \rangle \in S^\sigma_\xi \} \) for every \(k < n \).

Having finished the construction of \(\langle \mathcal{B}_\xi : \xi < 2^\omega \rangle \) and thus of the respective topologies on \(X \), let us set:

\[
H_1 = \{\xi < 2^\omega : \text{Case 1 holds for } \xi\},
\]
\[
H_2 = \{\xi < 2^\omega : \text{Case 2 holds for } \xi\},
\]

and let \(H = H_1 \cup H_2 \).

It follows from the minimality of \(\xi \) in Cases 1 and 2 that:

Observation 1.3.

(a) If \(\xi \in H_1 \) then, for \(\langle \beta, k \rangle \in B^i_\xi \) to hold, it is sufficient that \(\langle \beta, k \rangle \in S^i_\xi \) and \(d_\beta(\mathcal{S}_\xi \upharpoonright A_\beta) = i \).

(b) If \(\xi \in H_2 \) then, for \(\langle \beta, k \rangle \in E^\rho_\xi \) to hold, it is sufficient that \(\langle \beta, k \rangle \in S^\rho_\xi \) and \(d_\beta(\mathcal{S}_\xi \upharpoonright A_\beta) = \rho \).

Observation 1.3 and the following observation together give an alternative criterion for which member of the refining partition contains \(\langle \beta, k \rangle \).
Observation 1.3.1.

(a) If $\xi \in H_1$ and $S_\xi \upharpoonright A_\beta \notin \text{dom}(d_\beta)$ or $d_\beta(S_\xi \upharpoonright A_\beta) \neq 1$ then $\langle \beta, k \rangle \in B^0_\xi$ iff $\langle \beta, k \rangle \in S^0_\xi$.

(b) If $\xi \in H_2$ and $S_\xi \upharpoonright A_\beta \notin \text{dom}(d_\beta)$ then $\langle \beta, k \rangle \in E^0_\rho \xi$ iff $\langle \beta, k \rangle \in S^\rho_\xi$ and $\langle \beta, k \rangle \notin S^\sigma_\xi$ for all $\sigma < \rho$.

In particular, if S_ξ is Type 2 of height n, and $k \geq n$, then $\langle \beta, k \rangle(\xi)$ is undefined and $\langle \beta, k \rangle \notin \bigcup \{E^\rho_\xi : \rho < c\}$.

The following examples are presented here to give the reader a better feel for the respective spaces. They will not be needed in subsequent sections.

Example 1. There is nothing in the definitions to prevent $\langle X, X \rangle$ from being, say, S^0_0. Then we are in Case 1, so

$$B^1_0 = \bigcup \{\{\beta\} \times \omega \mid d_\beta(A_\beta, A_\beta) \text{ exists and } = 1\}$$

while $B^0_0 = X \setminus B^1_0$.

Example 2. The final subbase B is actually a base of clopen sets, as can be seen from the following kind of cover. For $x = \langle \beta, k \rangle$ let U be any open neighborhood of x.

Let $S = \langle U, X \setminus \{x\} \rangle$. Then $S = S_\xi$ for some $\xi < 2^c$ for which Case 1 holds [see the opening paragraph of Section 2, below], and $x \in B^0_\xi \subset U$.

Example 3. Here is an example of a closed discrete subspace of $\langle X, \tau_\sigma \rangle$ of cardinality c, consisting of isolated points. Let $S_\xi = \langle W_1, X \rangle$. Then B^0_ξ is a closed discrete subspace of L_0, and

$$B^0_\xi = \{\langle \alpha, 0 \rangle : d_\alpha(A_\alpha \cap L_0, A_\alpha) \text{ either does not exist, or exists and } = 0\}.$$

and

$$B^1_\xi = \{\langle \beta, k \rangle : \text{ either } k \neq 0, ord_\alpha(A_\alpha \cap L_0) \text{ exists and } = 1\}.$$

Of course, $B^1_\xi = X \setminus B^0_\xi$.

If we use $W_n(n > 1)$ in Example 3 in place of W_1, then $B^0_\xi \cap L_{n-1}$ is a closed discrete subspace of L_{n-1}. We will see from the proof of Theorem 2.2.5 that there are subspaces of cardinality c that are also τ_B-closed discrete.

Example 4. In $\langle X, \tau_\sigma \rangle$, let $S_0 = \{\{\langle \beta, 1 \rangle\} \cup L_0 \mid \beta \in c\}$. Then $E^0_\rho \{\rho \in c\}$ partitions W_2 into c-many open sets, each of which meets L_1 in a single point. Although they are relatively clopen in W_2, each one has every point of $X \setminus W_2$ in its closure. This is because the neighborhoods of these points are unchanged from the topology.
generated by \mathfrak{B}_0, and so they meet L_0 in a cofinite subset, while each E_0^ρ has cardinality c.

The disjoint open sets E_0^ρ in this last example can be shrunk individually to X-clopen nbhds of the respective $\langle \beta, 1 \rangle$ by the process in Example 2. For instance, we can let $S_{\beta+1} = \langle E_0^\beta, X \rangle$ for all $\beta < c$.

Section 2. Proofs of some elementary properties

Normality and screenability are built into the space, in a way that makes the proofs short. The building-in takes advantage of the fact that the cofinality of 2^c is greater than $|X| = c$, so that every collection of c or fewer open sets is already an open collection at some initial stage $\xi < 2^c$.

Proposition 2.1. X is normal.

Proof. Let F_0 and F_1 be disjoint closed sets; then $\langle X \setminus F_1, X \setminus F_0 \rangle$ is an open cover of X and hence is S_ξ for cofinally many ξ. The first such ξ is in H_1, so $F_i \subset B_i^\xi$ for this ξ; the disjoint open sets B_i^ξ thus witness normality for the pair F_0, F_1. □

Proposition 2.2. X is screenable; that is, every open cover can be refined to an open cover that is the union of countably many disjoint collections.

Proof. If \mathcal{U} is an open cover of X, and $n \in \omega$, let $U \upharpoonright W_n = \{U \cap W_n : U \in \mathcal{U}\}$. We can refine each $U \upharpoonright W_n$ to an open (in W_n, hence in X) partition \mathcal{V}_n of W_n by a similar argument as for normality, using the appropriate $S_\xi \in H_2$. Then $\bigcup_{n=1}^\infty \mathcal{V}_n$ is the desired open refinement of \mathcal{U}. □

Normality and screenability together imply the following concept.

Definition 2.2.1. Given a subset D of a set X, an expansion of D is a family $\{U_d : d \in D\}$ of subsets of X such that $U_d \cap D = d$ for all $d \in D$. A space X is [strongly] collectionwise Hausdorff (abbreviated [strongly] cwH) if every closed discrete subspace has an expansion to a disjoint [resp. discrete] collection of open sets.

A well-known, simple fact is that every normal, cwH space is strongly cwH: if $\{U_d : d \in D\}$ witnesses cwH for D, let V be an open set containing D whose closure is in $\bigcup\{U_d : d \in D\}$; then $\{U_d \cap V : d \in D\}$ is a discrete open expansion of D.

Corollary 2.2.2. X is strongly cwH.

Proof. This follows from the foregoing observation and the general fact that every normal, screenable space is collectionwise normal with respect to discrete collections of non-Dowker closed sets. [T, Lemma 1.6] □
Proposition 2.2.3. The topologies τ_B and τ_σ do not depend on the order in which the S_ξ are listed.

Proof. The following proof works for either topology. Let $\mathcal{G} = \langle S_\xi : \xi < 2^\omega \rangle$ be one listing, $\mathcal{F} = \langle T_\xi : \xi < 2^\omega \rangle$ another. S_0 consists of 0-open sets and so when it first comes up in \mathcal{F} as T_{ξ_0}, it gets refined to a partition of X or of some W_n into open sets. The partition does not depend on ξ_0 but only on $S_0 = T_{\xi_0}$.

Proceed by induction, defining H with respect to \mathcal{G} and, for each $\alpha \in H$, defining ξ_α to be the first ordinal η for which $T_\eta = S_\alpha$ and for which every member of T_η is open. We are guaranteed such an η by the induction hypothesis that we have been successful up to α: even if the members of T_ξ are never open for any $\xi < \sup\{\xi_\beta : \beta < \alpha\}$, there will occur another η above this supremum for which $T_\eta = S_\alpha$ and by then all members of T_η will be open. So, although the ξ_α need not be listed in ascending order, defining τ_B using T gives a finer topology than the one that uses \mathcal{G}. Reversing the roles now shows that the two topologies are the same. □

Corollary 2.2.4. τ_σ is finer than τ_B. □

We will see in the next section that τ_σ is strictly finer than τ_B. There we will develop machinery that enables us to show easily that X is not discrete (!) in either topology. At the present stage, the easy results go in the opposite direction:

Theorem 2.2.5. Every subspace of X of cardinality $< c$ is closed discrete in τ_B, hence in τ_σ.

Proof. Clearly, it is enough to show “closed,” but with a little extra effort we can verify a much stronger fact. Note that the following subspace of X contains c columns, viz., sets of the form $\{\gamma\} \times c$.

For each $\beta \in c$, let

$$X_\beta = \{\langle \gamma, n \rangle : d_\gamma = d_\beta, A_\gamma = A_\beta, n \in \omega\}.$$

Claim. Every union of fewer than c sets of the form X_β is a closed discrete subspace of X.

Proof of Claim. Let $\kappa < c$ and let $Y = \bigcup_{\eta < \kappa} X_\beta_\eta$. Let $x = \langle \delta, n \rangle \in X$. We will show that x is not in the closure of $Y \setminus \{x\}$.

Pick $\theta \notin \bigcup\{\text{ran}(d_\beta_\eta) : \eta < \kappa\} \cup \text{ran}(d_\delta)$ so that $\theta \geq 2$ and let S be defined by:

$$S^\theta = W_{n+1}, \text{ and } S^\alpha = W_{n+1} \setminus \{x, \langle \alpha, 0 \rangle\} \text{ if } \alpha \neq \theta.$$

Then each S^α is already open in the topology whose subbase is \mathcal{B}_θ, so the first time S is listed, say as S_ξ, we have $\xi \in H_2$. Now if $y \in Y, y \neq x$, then the first S^α in
which \(y \) is found has \(\rho < 2 \), so the only way \(y \) could get into \(E_{\xi}^{\rho} \) is for \(y = \langle \nu, m \rangle \) for some \(\nu \) such that \(d_\nu(S_{\xi} \mid A_\nu) = \theta \). But \(\theta \) was chosen in such a way as to exclude this possibility.

On the other hand, \(\theta \) is the least \(\rho \) such that \(\langle \delta, n \rangle = x \in S_{\xi}^{\rho} \) and since \(\theta \notin \text{ran}(d_\delta) \), it follows that \(E_{\xi}^{\rho} \) is a clopen neighborhood of \(x \) missing \(Y \setminus \{x\} \). \(\square \)

Corollary 2.2.6. The cellularity of \(X \) is \(c \); in fact, \(X \) has a discrete collection of \(c \)-many open sets.

Proof. Let \(D \) be a closed discrete subspace of \(X \) of cardinality \(c \); for instance, \(D = X_\beta \) as in the proof of 2.2.5. Using the fact that \(X \) is strongly cwH, expand \(D \) to a discrete collection of open sets. \(\square \)

Section 3. The third stage, part 1: complete neighborhoods

In order to show the failure of countable metacompactness, it seems necessary to go much deeper into the topology of \(X \) than we have done so far. Balogh did this through the ingenious concept of complete neighborhoods, which afford a glimpse into the \(S_{\xi} \)'s that are far along in the inductive process and depend on a rich assortment of earlier \(S_{\eta} \) to make their members open.

Notation 3.0.1. Let \(x \in X \). Recall that \(\xi \in H_1 \) codes a unique clopen neighborhood of \(x \), either \(B_{\xi}^0 \) or \(B_{\xi}^1 \), and each \(\xi \in H_2 \) codes a unique open neighborhood of \(x \). This neighborhood is \(E_{\xi}^{\rho} \) for a unique \(\rho = x(\xi) \). If \(S_{\xi} \) is of height \(m \), and \(x \in L_n \) where \(n \geq m \), then \(\rho = \infty \) and \(E_{\xi}^{\rho} = X \). In any case, we denote the coded neighborhood by \(T_{\xi}(x) \).

Notation 3.0.2. For each \(x = \langle \beta, k \rangle \in X, t \in [H]^{<\omega} \), and \(K \in [W_{k+1}]^{<\omega} \) such that \(x \notin K \), let

\[
V_{t,K}(x) = \bigcap_{\xi \in t} T_{\xi}(x) \cap (U_k \setminus K) = V_{t \cap \xi,K}(x).
\]

where \(U_k = W_{k+1} \) if the topology is \(\tau_B \) and and \(U_k = \{x\} \cup W_k \) if the topology is \(\tau_\sigma \).

For each \(\xi < 2^c \), let

\[
V_{t,K,\xi}(x) = \bigcap_{\eta \in t \cap \xi} T_{\eta}(x) \cap (U_k \setminus K).
\]

It is easy to see that the sets \(V_{t,K}(x) \) form a base for the neighborhoods of \(x \) in the respective topologies. We can restrict ourselves to those \(t \) whose \(H_2 \) elements do not code any Type 2 \(S_{\xi} \) of height \(\leq n \) when \(x \in L_n \).
Definition 3.1. A neighborhood $V_{t,K}$ of $x \in X$ is said to be complete if for every $\xi \in t$,
$$V_{t,K,\xi}(x) \subset S_{\xi}^{x(\xi)}.$$
Otherwise $V_{t,K}$ is said to be incomplete.

In other words, $V_{t,K}(x)$ is complete iff $V_{t,K,\xi}(x)$ is contained in the unique $S_{\xi}^{x(\xi)}$ for which $x \in B_{\xi}^\gamma$ [resp. $x \in E_{\xi}^\gamma$]. Completeness takes no account of other $S_{\xi}^{x(\xi)}$ which may or may not contain x.

The beauty of complete neighborhoods is that we can safely ignore all η not in t in identifying which points these neighborhoods contain. These η may indeed determine whether $S_{\xi}^{x(\xi)}$ is open; but they are not needed to make $S_{\xi}^{x(\xi)}$ a neighborhood of x. The earlier ordinals in t are enough to do that when the neighborhood is complete. Hence it is significant that every neighborhood of x contains a complete neighborhood:

Lemma 3.2. If $V_{t,K}(x)$ is a neighborhood of $x = \langle \beta, k \rangle$, then there are $t^* \supset t$ and $K^* \supset K$ such that $V_{t^*,K^*}(x)$ is a complete neighborhood of x.

Proof. For every incomplete neighborhood $V_{t',K'}(x)$ with $t' \supset t$ and $K' \supset K$, let $\xi_{t',K'}$ be the greatest $\xi \in t'$ such that $V_{t',K',\xi}(x) \notin S_{\xi}^{x(\xi)}$. Our lemma now follows from the following claim by the fact that the ordinal 2^ξ is well-founded.

Claim. If $t' \supset t$, $K' \supset K$ and $V_{t',K'}(x)$ is an incomplete neighborhood of x, then there are $t'' \supset t'$, $K'' \supset K'$ such that $V_{t'',K''}(x)$ is either a complete neighborhood of x, or an incomplete neighborhood with $\xi_{t'',K''} < \xi_{t',K'}$.

To prove the claim, let $\eta = \xi_{t',K'}$. Since $S_{\eta}^{x(\eta)}$ is η-open, there are $\tilde{t} \in [H \cap \eta] < \omega$ and $K \in [X]^\omega$ such that $V_{\tilde{t},K}(x)$ is a neighborhood of x with $V_{\tilde{t},K}(x) \subset S_{\eta}^{x(\eta)}$. Then $t'' = t' \cup \tilde{t}$ and $K'' = K \cup \overline{K}$ are as required. \qed

Remark. The above is taken verbatim from [B1], except that Balogh had “smallest” in place of “greatest,” rendering the definition of t'' and K'' incorrect except in the simplest case where $\xi_{t',K'}$ is the only ordinal ξ for which $V_{t',K',\xi}(x)$ is incomplete.

Our next three results illustrate the power of complete neighborhoods.

Lemma 3.2.1. If $x \in L_n$, then every τ_B-neighborhood [resp. τ_σ-neighborhood] of x meets L_k in a set of cardinality \mathfrak{c} for all $k \leq n$ [resp. $k < n$].

Proof. Let $V_{t,K}(x)$ be a basic nbhd of x, with $t = \{\xi_1, \ldots, \xi_n\}$ listed in ascending order. For each pair ξ_i, ξ_j find γ such that $S_{\xi_i}^{\gamma} \neq S_{\xi_j}^{\gamma}$ and let $x_{ij} \subset S_{\xi_i}^{\gamma} \Delta S_{\xi_j}^{\gamma}$ [as usual, Δ denotes symmetric difference]. Let A be a denumerable set containing all the x_{ij} and let α be any one of the \mathfrak{c} ordinals such that $\langle \alpha, k \rangle \notin K$ for $k \leq n$ and such
that $A_\alpha = A$ and $d_\alpha(S_{\xi_i} \upharpoonright A)$ exists and equals $x(\xi_i)$ for $i = 1, \ldots n$. Completeness of $V_{t,K}$ then implies that $\langle \alpha, k \rangle \in V_{t,K}$ for all such α and for all $k \leq n$ \textit{[resp.} $k < n$]. This follows from an easy induction beginning with

$$V_{t,K,\xi_i}(x) = V_{\emptyset,K}(x) = U_n \setminus K$$

and use of Observation 1.3 at each step. □

Corollary 3.2.2. τ_σ is strictly finer than τ_B.

Proof. By Corollary 2.2.2, τ_σ is finer than τ_B. On the other hand, Lemma 3.2.1 shows that no point of L_0 is isolated in τ_B, while every point of L_0 is isolated in τ_σ.

□

Theorem 3.2.3. No point of X is a G_δ in τ_B, and no point of $X \setminus L_0$ is a G_δ in τ_σ.

Proof. Let $\{V_{n,K}(x) : n \in \omega\}$ be a family of basic nbhds of $x = \langle \beta, n \rangle$. Let A be a denumerable set with the following property: for each pair $\{\xi, \eta\} \in T = \bigcup_{n=0}^\infty t_n(x)$ there exists γ such that A meets $S_{\xi_i}^\gamma \Delta S_{\xi_j}^\gamma$.

Now let $A = A_\alpha$ for some α such that $K_n \cap (\{\alpha\} \times \omega) = \emptyset$ for all n and such that $d_\alpha(S_\xi \upharpoonright A_\alpha) = x(\xi)$ for all $\xi \in T$. There is no problem doing this even if ξ appears in a number of different $t_n(x)$, because we get $x(\xi)$ each time with any given ξ. Argue by induction for each $t_n(x)$ separately, as in the proof of 3.2.1, to show that $\{\alpha\} \times \omega \in \bigcap_{n=0}^\infty G_n$. □

4. The third stage, Part 2: reflecting sequences $\langle \beta_n, k_n \rangle$

When I first went through Balogh’s preprint for [B1], I hoped that some such maneuvering as in the proofs of 3.2.1 and 3.2.3 would suffice to show the failure of countable metacompactness. The proof of this failure in [B1] uses the following characterization of countable metacompactness, whose necessity follows very easily from the usual characterization of every countable open cover having a point finite refinement: any \subset-descending family $\langle F_n \rangle_{n=0}^\infty$ of closed sets with empty intersection can be followed down by open sets: \exists open $G_n \supset F_n$ such that $\bigcap_{n=0}^\infty G_n = \emptyset$.

Balogh’s procedure (which will be used here as well) was to let $F_n = X \setminus W_n$ and to find $cof(c)$-many whole columns in $\bigcap_{n=0}^\infty G_n$ whenever the sets $G_n \supset F_n$ are open for all n. I told him at the 1996 Prague Topological Symposium that this seemed “like using a cannonball to shoot a fly” at first, but that I could not simplify his proof by settling for just one point in the intersection. That still holds, both for τ_B and τ_σ.

The proof begins by letting ξ_k denote the unique element of H_1 such that $S_{\xi_k} = \langle W_k, G_k \rangle$. Then for each $x = \langle \beta, k \rangle \in X$, we choose a complete basic nbhd $V(\beta, k) = V(x) = V_{t(x), K(x)}(x)$ such that

(4-0) $\{\xi_j : j \leq k\} \subset t(x) = t(\beta, k)$.

This ensures that $V(x) \subset B_{\xi_k}^1 \subset G_k$. Let $t_i(x) = t(x) \cap H_i$ for $i = 1, 2$. Let $V_\xi(x) = V_{t(x), K(x)}(x)$ for every $\xi \in 2^\omega$.

For every $C \in [X]^\omega$, let $\langle \zeta_j(C) \rangle_{j \in \omega}$ be a list, with repetitions permitted, of $t_1(C) = \bigcup_{x \in C} t_1(x)$. Since replacing $V(x)$ by a smaller nbhd of x preserves $V(x) \subset B_{\xi_k}^1 \subset G_k$, we can ensure that conditions (4-1), (4-2), and (4-3+) below hold for every $\beta \in \mathfrak{c}$. We follow Balogh's numbering [in which (4-3) is simply the requirement that $V(x)$ be complete] as closely as practical:

(4-1) if $\beta > sup(\pi(A_\beta))$ then $\{\zeta_j(A_\beta) : j < k\} \subset t_1(\beta, k)$ for every $k \in \omega$.

(4-2) $j < k < \omega$ implies $t_1(\beta, j) \subset t_1(\beta, k)$.

(4-3+) $V(x) = V(\beta, k)$ is complete, and there exists $\theta \geq \beta$ in $t_1(x) = t_1(\beta, k)$.

Next, let M and N be countable elementary submodels of $H(2^{2^\omega}) = \{S : S$ is a set whose transitive closure has cardinality $\leq 2^{2^\omega}\}$ with $M \in N$, such that

$\mathfrak{c}, \langle S_\xi : \xi \leq 2^\omega \rangle, H_1, t : X \to [H]^{<\omega}, K : X \to [X]^{<\omega}, \langle x(\xi) : \xi \in H_1, x \in X \rangle$ are all elements of M.

Let $A = N \cap X(= (N \cap \mathfrak{c}) \times \omega))$, let $R^* = t_1(A)(\subset A \subset N)$ and $R = R^* \cap M$. Note that by (4-1),

(4-4+) $\beta > sup(N \cap \mathfrak{c})$ and $A_\beta = A$ imply $R^* \subset \bigcup_{k \in \omega} t_1(\beta, k)$.

Lemma 4.0.1. $\{\xi_k : k \in \omega\} \subset R(\subset M)$.

Proof. Let $\alpha \in M \cap \mathfrak{c}$. Then $t_1(\alpha, k) \in M$ for all k, and so by (4-0), $\{\xi_k : k \in \omega\} \subset t_1(A) \cap M = R$. □

Definition 4.1. Let $\beta_n > sup(N \cap \mathfrak{c})$ $(n \in \omega)$ be a sequence of ordinals $< \mathfrak{c}$. We say that a sequence $\langle x_n \rangle_{n \in \omega}$, with $x_n = \langle \alpha_n, k_n \rangle$ for all n is an increasing M, N-reflection of $\langle \beta_n \rangle_{n \in \omega}$ if $\{x_n : n \in \omega\} \subset N$ and the following conditions hold:

(4-5) For every $n \in \omega$, $t_1(\beta_n, k_n) \cap M = t_1(x_n) \cap M$, and $x_n(\xi) = \langle \beta_n, k_n \rangle(\xi)$ for all $\xi \in t_1(\beta_n, k_n) \cap M$;

(4-6) The sets $t_1(x_n) \setminus M$ are pairwise disjoint.

(4-7) $k_0 < \cdots < k_n < \cdots$, and, for every $n \in \omega$ and $\xi \in \bigcup_{j<n} t_2(x_j)$, $k_n >$ height of S_ξ.

Elementarity of \(N \), together with (4-3+) and (4-6), implies
(4-6+) The sets \(t_1(x_n) \setminus M \) are pairwise disjoint and nonempty.

Also, (4-1), (4-5) and the first part of (4-7) imply:

(4-8) if \(A_{\beta_n} = A \) for every \(n \in \omega \), then for every \(\theta \in R \), we have \(\theta \in t_1(x_n) \) for all but finitely many \(n \in \omega \).

Indeed, \(\theta = \zeta_j(A) \) for some \(j \in \omega \), and if \(n > j \), then it follows from (4-1) that \(\theta \in t_1(\beta_n, k_n) \). So, from \(\theta \in R \subset M \), it follows that \(\theta \in t_1(\beta_n, k_n) \cap M = t_1(x_n) \cap M \).

Remark. The use of the word “reflection” is a bit misleading because (4-6) makes the sets \(t_1(x_n) \setminus M \) pairwise disjoint while the sets \(t_1(\beta_n, k_n) \setminus M \) could even be an ascending sequence. This happens in the case where \(\beta_n = \beta_0 \) and \(A_{\beta_n} = A \) for all \(n \), as in the successor case of the proof of Lemma 5.1, by (4-1).

Lemma 4.2. For every sequence of ordinals \(\beta_n \) such that \(\sup(N \cap \mathfrak{c}) < \beta_n < \mathfrak{c} \) for all \(n \in \omega \), there is an increasing \(M, N \)-reflection \(\langle x_n \rangle_{n \in \omega} \) of \(\langle \beta_n \rangle \)

Proof. Let \(k_0 = 0 \). Since \(t_1(\beta_0, 0) \cap M \) is finite, it is an element of \(M \). Elementarity of \(N \) implies that there exists \(x_0 \in N \) satisfying (4-5) and (4-6+), the latter because of a \(\theta \geq \beta_0 \) as in (4-3+), while (4-7) and (4-8) are vacuously satisfied.

If \(k_{n-1} \) and \(x_{n-1} \) have been defined, let \(k_n > k_{n-1} \) be such that \(k_n > \text{height of } S_\xi \) for all \(\xi \in \bigcup_{j<n} t_2(x_j) \). Define a finite function \(r_n \) by \(\text{dom}(r_n) = t_1(\beta_n, k_n) \cap M \) and for every \(\xi \in \text{dom}(r_n) \), \(r_n(\xi) = \langle \beta_n, k_n \rangle(\xi) \). Note that \(r_n \in M \).

Consider the property

\[
\varphi(\alpha, n) \quad t_1(\alpha, k_n) \supset \text{dom}(r_n) \text{ and } \langle \alpha, k_n \rangle(\xi) = r_n(\xi) \text{ for every } \xi \in \text{dom}(r_n)
\]

Since \(\varphi(\alpha, n) \) can be described by a formula with parameters in \(M \), and since \(\varphi(\beta_n, n) \) holds, it follows that \(\Phi \in M \) where \(\Phi = \{ \alpha \in \mathfrak{c} : \varphi(\alpha, n) \} \) and that \(\Phi \) is uncountable. Again by elementarity of \(M \), there is a \(D \in M \) such that \(D \) be a subset of \(\Phi \) which is maximal with respect to the property that the collection \(\{ t_1(\alpha, k_n) \setminus \text{dom}(r_n) : \alpha \in D \} \) is pairwise disjoint. Then \(D \) is uncountable; were it not so, we would have \(D \subset M \), but then \(D \cup \{ \beta \} \) would contradict maximality of \(D \). So there exists \(\alpha_n \in D \) such that

\[
(*) \quad t_1(\alpha_n, k_n) \setminus \text{dom}(r_n) \text{ is disjoint from } M \cup \bigcup_{j<n} t_1(x_j)
\]

Since \(M \in N \) we can find such an \(\alpha_n \) in \(N \). Let \(x_n = \langle \alpha_n, k_n \rangle \). As in the case \(n = 0 \), \(t_1(\beta_n, k_n) \setminus \text{dom}(r_n) \neq \emptyset \). Now \(x_n = \langle \alpha_n, k_n \rangle \) satisfies (4-5) because of \(\varphi(\alpha_n, k_n) \) and \(\varphi(\beta_n, k_n) \) and the fact that \(\text{dom}(r_n) = t_1(\beta_n, k_n) \cap M \). It satisfies
(4-6+) because of (∗) and the preceding paragraph, while (4-7) was built into the definition of k_n. □

Aside. Balogh used (4-6) instead of (4-6+) in the preceding proof [B1]. This led to a minor hole in his proof: under his hypotheses, $t_1(\beta_n, k_n)$ could be a subset of M for small n; and for those n, we would have $\{t_1(\alpha, k_n) \setminus \text{dom}(r_n) : \alpha \in D\} = \{\emptyset\}$, and $D \cup \{\beta\} = D$, which no longer contradicts maximality of D.

The following fact will play a key role in the next section.

Proposition 4.3. If $\xi, \eta \in N \cap H$ and $S_\xi \upharpoonright A = S_\eta \upharpoonright A$, then $\xi = \eta$.

Proof. Since $\langle S_\xi : \xi < 2^c \rangle \in N$, and $\xi, \eta \in N$, it follows that $S_\xi \upharpoonright A = S_\eta \upharpoonright A$ implies $N \models S_\xi = S_\eta$, which in turn implies $S_\xi = S_\eta$. Then $\xi = \eta$ by Proposition 1.2. □

5. The third stage, Part 3: homogeneity, coherent δ-sequences, and the proof that X is not countably metacompact.

We are almost ready to embark on the intricate proof that open sets G_k described at the beginning of Section 4 have nonempty intersection in both τ_B and τ_σ. Here is a concept that will play a key role in it.

Definition 5.0.1. Let $\beta, \gamma \in c$ and $\xi \in H_1$. We write $\beta \approx_\xi \gamma$ iff $\langle \beta, k \rangle(\xi) = \langle \gamma, k \rangle(\xi)$ for every $k \in \omega$. We say γ is ξ-homogeneous to mean that $\gamma \times \omega \subset B^1_\xi$ for either $i = 0$ or $i = 1$. Otherwise we say γ is ξ-splitting and say that n is above the ξ-split of γ to mean that $\{\gamma\} \times n$ meets both B^0_ξ and B^1_ξ. We say γ is R-homogeneous if it is ξ-homogeneous for every $\xi \in R = t_1(A) \cap M$.

This concept leads to the main result via the following lemma:

Lemma 5.1. There is a $\gamma > \text{sup}(N \cap c)$ which is R-homogeneous.

This lemma applies to both τ_B and τ_σ. Once it is proven, we have:

Corollary 5.2+. $\langle X, \tau_B \rangle$ is not countably metacompact, and neither is $\langle X, \tau_\sigma \rangle$.

Proof. With $G_k(k > 0)$ the descending sequence of open sets fixed at the beginning of Section 4, we need only show that their intersection is empty. With ξ_k as defined there, it is enough to show that $\bigcap_{k \in \omega} B^1_{\xi_k} \neq \emptyset$, since $B^1_{\xi_k} \subset G_k$.

Let γ be as in 5.1. Then, by 4.0.1, γ is ξ_k-homogeneous for all k. Since $B^0_{\xi_k} \subset W_k$, the whole column $\{\gamma\} \times \omega$ is in $B^1_{\xi_k}$ for all k. □
A natural question arises in the wake of the foregoing proof: why does 5.1 speak of R-homogeneity when it is enough to have ξ_k-homogeneity for infinitely many k? After all, we can make $\langle G_k : k > 0 \rangle$ be a \subset-descending sequence by taking finite intersections.

One answer is that we cannot get at the sets B_i^ξ directly: the open sets G_k are too “generic” for that. All we have to work with are the sets $V(x)$, and their definition potentially involves all of H. With careful maneuvering, including copious use of elementarity of N and especially of M, we can get by with just R, but that seems to be the best we can do. Part of our strategy will be to use M, N-reflections $\langle x_k : k \in \omega \rangle$ to cover the column $\{ \gamma \} \times \omega$ piecemeal with sets of the form $V(x_k)$. Of course, each $V(x_k)$ only covers a finite subset of the column.

What makes the proof of 5.1 so lengthy is that we cannot seem to get at γ directly, either. Instead, we will be approximating it inductively with γ_ν’s which are $R \cap \Theta_\nu$-homogeneous for increasingly large ordinals Θ_ν, until we arrive at the desired $\gamma = \gamma_\upsilon$. Our process takes only countably many steps, taking advantage of countability of R.

To facilitate the process, we introduce the following concepts.

Notation 5.1.1. For every $\gamma \in c$ that is R-homogeneous, let $\Theta(\gamma) = \infty$ with the convention that ∞ is greater than any ordinal. Otherwise, let $\Theta(\gamma)$ denote the least $\theta \in R$ such that γ is not θ-homogeneous.

Definition 5.1.2. Let δ be a countable ordinal. A sequence $\{ \gamma_\nu : \nu < \delta \}$ is a coherent δ-sequence if the following conditions are satisfied for all $\nu < \delta$:

1. if $\mu < \nu$, then $\sup(N \cap \epsilon) < \gamma_\mu < \gamma_\nu$;
2. $\mu < \nu \implies \Theta(\gamma_\mu) < \Theta(\gamma_\nu)$
3. $A_{\gamma_\nu} = A$ and
4. if $\mu < \nu$, and $\xi \in R \cap \Theta(\gamma_\mu)$ then $\gamma_\mu \approx_\xi \gamma_\nu$.

Note that (5-1) implies $\Theta(\gamma_\nu) < \gamma_0$ for all ν unless $\Theta(\gamma_\nu) = \infty$, and that (5-4) implies that if $\{ \eta, \xi \} \subset H_1$, and $\{ \eta, \xi \} \subset R \cap \Theta(\gamma_\mu)$, then $\{ \gamma_\mu, \gamma_\nu \} \times \omega \subset B_\xi^i$ and $\{ \gamma_\mu, \gamma_\nu \} \times \omega \subset B_\eta^j$ for some $i, j \in \{0, 1\}$, but we need not have $i = j$.

Sublemma 5.1.3. Let δ be a countable ordinal. If $\sigma = \{ \gamma_\nu : \nu < \delta \}$ is a coherent δ-sequence, then either δ has a greatest element ν and $\Theta(\gamma_\nu) = \infty$, or σ can be extended to a coherent $\delta + 1$-sequence.

Once this is proven, Lemma 5.1 follows quickly: let γ_0 satisfy (5-1) and (5-3). We are done if it so happens that $\Theta(\gamma_0) = \infty$; otherwise, we build coherent sequences by induction, each extending the earlier ones, and taking unions at limit
ordinals; and, since R is countable, we eventually arrive at v as described, and γ_v is R-homogeneous.

Proof of 5.1.3. We adopt the notation Θ_ν for $\Theta(\gamma_\nu)$. If $\delta = 0$ then $\sigma = \emptyset$, and we can let γ_0 be any ordinal $\eta > \sup(N \cap c)$ for which $A_\eta = A$. This ensures that $\sigma' = \langle \gamma_0 \rangle$ satisfies (5-3) and the relevant part of (5-1), viz., $\sup(N \cap c) < \gamma_\nu = \gamma_0$, while the rest of 5.1.2 is vacuously satisfied.

The rest of the proof of the Sublemma breaks up into the case where δ is a successor and where it is a limit ordinal.

Case 1. $\delta = \mu + 1$ for some μ.

We will define γ_δ so that (with $\delta = \nu$) we have (5-1) through (5-4) for this ν and μ. Then this, together with coherence of σ, takes care of all other pairs.

Apply Lemma 4.2 to the case where $\beta_n = \gamma_\mu$ for all n to obtain x_n for all n. Let $t^*(x_n) = t(x_n) \cap \Theta_\mu$. Fix $i \in \{0, 1\}$ such that $x_n(\Theta_\mu) = i$ for infinitely many $n \in \omega$. Note that if $\Theta_\mu = \xi_k$ for some k then we have no choice but to let $i = 1$ — recall that $S_{\xi_k} = \langle \omega \rangle$ if otherwise we might have a choice or even be forced to let $i = 0$.

Define the function d (to go into the control pair $\langle A, d \rangle$) as follows.

1. $\text{dom}(d) = \{ S_\xi \upharpoonright A : \xi \in \bigcup_{n \in \omega} t^*(x_n) \cup \{ \Theta_\mu \} \}$
2. $d(S_\xi \upharpoonright A) = i$ if $\xi = \Theta_\mu$, otherwise let $d(S_\xi \upharpoonright A) = x_n(\xi)$ for the unique n satisfying $\xi \in t^*(x_n) \setminus \bigcup_{j < n} t^*(x_j)$.

Now d is well-defined because if $\eta \neq \xi$, then $S_\eta \upharpoonright A \neq S_\xi \upharpoonright A$ by Proposition 4.3. There is also no “vertical conflict”: the following claim shows that we could have let $d(S_\xi \upharpoonright A) = x_m(\xi)$ for any m for which $\xi \in t(x_m)$ when $\xi \neq \Theta_\mu$.

Claim 1. If $\xi \in t^*(A)$, then $x_m(\xi) = x_n(\xi)$ for all m, n for which $\xi \in t(x_m)$ and $\xi \in t(x_n)$.

† Proof. By (4-7), $t(x_n) \cap t(x_m) \cap H_2 = \emptyset$ if $n \neq m$, so we may assume $\xi \in H_1$. Also, if $\xi \in N \setminus M$, then (4-6) implies ξ cannot be in $t(x_\ell)$ for more than one ℓ. Thus we may assume $\xi \in R = t_1(A) \cap M$. Now γ_μ is ξ-homogeneous because $\xi < \Theta_\mu$. Hence $\langle \gamma_\mu, k_m \rangle(\xi) = \langle \gamma_\mu, k_n \rangle(\xi)$. Next, recall that $\beta_\ell = \gamma_\mu$ for all ℓ. Therefore, (4-5) implies $x_m(\xi) = \langle \gamma_\mu, k_n \rangle(\xi)$ and also $\langle \gamma_\mu, k_n \rangle(\xi) = x_n(\xi)$.

Next we pick $\gamma_\delta > \gamma_\mu$ to satisfy $\langle A_{\gamma_\delta}, d_{\gamma_\delta} \rangle = \langle A, d \rangle$. Clearly (5-1) and (5-3) hold for δ in place of ν.

For our next claim, recall that $T_\xi(x_n)$ stands for either $B^x_\xi(\xi)$ or $E^x_\xi(\xi)$ depending on whether $\xi \in H_1$ or $\xi \in H_2$. Recall also that

$$V_{\Theta_\mu}(x_n) = V_{t(x_n), \Theta_\mu}(x_n) = \bigcap_{\xi \in t^*(x_n)} T_\xi(x_n) \cap U_{k_n} \setminus K(x_n).$$
Claim 2. Let \(y[n] = \{ \gamma_\delta \} \times k_n \). Then \(y[n] \subset V_{\Theta_\mu}(x_n) \).

\[\vdash \text{Proof. We have } \gamma_\delta \not\in N \text{ whereas } K(x_n) \in N, \text{ so } y[n] \subset W_n \setminus K(x_n) \subset U_{k_n} \setminus K(x_n) = V_{0,K(x_n)}(x_n). \]

We will show by induction on \(\xi \in t^*(x_n) \) that

\[(I_\xi) \quad y[n] \subset T_\xi(x_n). \]

and this will finish the proof of Claim 2.

So suppose \((I_n)\) for all \(\eta < \xi \). [This is vacuously true when \(\xi = \text{min}(t^*(x_n)) \).]

Then completeness of \(V_{\Theta_\mu}(x_n) \) gives \(y[n] \subset S_{\xi}^x(x) \). So it is enough to show that \(d(S_\xi \upharpoonright A) = x_n(\xi) \). If \(\xi \not\in \bigcup_{j < n} t^*(x_j) \) this follows from the definition of \(d \); the alternative is that \(\xi \in t^*(x_j) \setminus \bigcup_{i < j} t^*(x_i) \) for some \(j < n \). Then \(d(S_\xi \upharpoonright A) = x_j(\xi) = x_n(\xi) \) by Claim 1. \(\vdash \)

The next two claims establish (5-2) for Case 1.

Claim 3. \(\gamma_\delta \) is \(\xi \)-homogeneous for all \(\xi \in R \cap \Theta_\mu \).

\[\vdash \text{Proof. By (4-8), } \xi \in t^*_1(x_n) \text{ for all sufficiently large } n \text{. Then } y[n] \subset T_\xi(x_n) \text{ for these } n \text{ by } (I_\xi), \text{ but } T_\xi(x_n) = B_{\xi}^x(x) \text{ because } \xi \in H_1. \text{ So Claim 1 implies there exists } i \text{ such that } y[n] \subset B_{\xi}^1 \text{ for all sufficiently large } n, \text{ but the } y[n] \text{ form a chain whose union is } \{ \gamma_\delta \} \times \omega \subset B_{\xi}^1. \quad \vdash \]

In the foregoing proof, it would have been enough to have \(y[n] \subset T_\xi(x_n) \) for infinitely many \(n \). This is like what is used in the proof of our next claim.

Claim 4. \(\gamma_\delta \) is \(\Theta_\mu \)-homogeneous.

\[\vdash \text{Proof. Suppose not. Pick } n \in \omega \text{ such that } \Theta_\mu \in t_1(x_n) \text{ and } x_n(\Theta_\mu) = i \text{ and } k_n \text{ is above the split of } \Theta_\mu \text{ at } \gamma_\delta. \text{ By Claim 2, } y[n] \subset V_{\Theta_\mu}(x_n), \text{ and completeness of } V_{t(x_n),K(x_n)}(x_n) \text{ implies } V_{\Theta_\mu} \subset S_{\Theta_\mu}^{x_n}(\Theta_\mu) = S_{\Theta_\mu}^1, \text{ giving us } y[n] \subset S_{\Theta_\mu}^1. \text{ And so, by Observation 1.3(a) } y[n] \subset B_{\Theta_\mu}^0; \text{ but this contradicts the claim that } k_n \text{ is above the split of } \Theta_\mu \text{ at } \gamma_\delta. \quad \vdash \]

The proof in Case 1 will be done once we show (5-4) for this specific \(\mu \) and \(\nu = \delta \):

Claim 5. \(\gamma_\mu \approx_\xi \gamma_\delta \) for all \(\xi \in R \cap \Theta_\mu \).

\[\vdash \text{Proof. Since } \xi \not\in \Theta_\mu \not\in \Theta_\delta, \text{ both } \gamma_\mu \text{ and } \gamma_\delta \text{ are } \xi \text{-homogeneous, we need only find } k \text{ and } k' \text{ such that } \langle \gamma_\mu, k \rangle(\xi) = \langle \gamma_\delta, k' \rangle(\xi). \]

Note that (4-5) implies \(\xi \in t_1(x_n) \) for sufficiently large \(n \), for which \(x_n(\xi) = \langle \gamma_\mu, k_n \rangle(\xi). \) On the other hand, \(\xi \in t^*(x_n) \), and so by \((I_\xi), \{ \gamma_\delta \} \times k_n(= y[n]) \subset T_\xi(x_n), \text{ and in particular, } \langle \gamma_\delta, k_n - 1 \rangle(\xi) = x_n(\xi). \quad \vdash \)
The proof in our remaining case is very similar to that in Case 1.

Case 2. δ is a limit ordinal.

Pick $\delta_n \not\subseteq \delta$ and let $\beta_n = \gamma_{\delta_n}$ for all $n \in \omega$. Let $\{\langle x_n \rangle\}$ be an increasing M, N-reflection of $\langle \beta_n : n \in \omega \rangle$, with $x_n = \langle \alpha_n, k_n \rangle$. This time, let $t^*(x_n) = t(x_n) \cap \Theta_{\delta_n}$. Let $J = \bigcup_{n \in \omega} t^*(x_n)$, and let d be defined by:

1. $dom(d) = \{S_\xi \upharpoonright A : \xi \in J\}$.
2. For all $\xi \in J$, $d(S_\xi \upharpoonright A) = x_n(\xi)$ for the least n such that $\xi \in t^*(x_n)$.

Then d is well-defined, for the same reason as in Case 1. Similarly:

Claim 1’. If $\xi \in t^*(A)$, then $x_m(\xi) = x_n(\xi)$ for all m, n for which $\xi \in t(m)$ and $\xi \in t(x_n)$.

\vdash Reasoning as in Claim 1, we may assume $\xi \in t_1(A) \cap M$. Hence by (4-5), $x_\ell(\xi) = \langle \gamma_{\delta_\ell}, k_\ell \rangle(\xi)$ for all ℓ. Wolog $m < n$, so $\xi < \delta_m < \delta_n$ and $\gamma_{\delta_m} \approx \xi \gamma_{\delta_n}$. So $(x_m(\xi) = \langle \gamma_{\delta_m}, k_m \rangle(\xi) = \langle \gamma_{\delta_n}, k_m \rangle(\xi)$. Since $\xi < \Theta_{\delta_m} < \Theta_{\delta_n}$, γ_{δ_n} is ξ-homogeneous, so $\langle \gamma_{\delta_n}, k_m \rangle(\xi) = \langle \gamma_{\delta_n}, k_n \rangle(\xi)$. \dagger

Next, let $\beta > sup_n \gamma_{\delta_n}$ be such that $\langle A_\beta, d_\beta \rangle = \langle A, d \rangle$. We let $\gamma_\delta = \beta$. As before, (5-1) and (5-3) are satisfied for δ in place of ν.

Claim 2’. $y[n] \subset V_{\Theta_{\delta_n}}(x_n)$.

\vdash **Proof.** As in Claim 2, with $V_{\Theta_{\delta_n}}$ in place of $V_{\Theta_{\mu}}$. \dagger

The following claim establishes (5-2) in this limit case:

Claim 3’. γ_δ is ξ-homogeneous for all $\xi \in R \cap sup\{\Theta_{\delta_n} : n \in \omega\}$.

\vdash **Proof.** Suppose this fails for ξ. Pick n such that $\xi < \Theta_{\delta_n}$, and such that $\xi \in t(x_n)$ (whence $\xi \in t_1^*(x_n)$) and k_n is above the split of ξ at γ_δ. But Claim 2 implies that $y[n] \subset T_\xi(x_n) = B^{x_n}(\xi)$, contradicting the claim that k_n is above the split of ξ at γ_δ. \dagger

One can also give a proof similar to that of Claim 3. It remains only to show (5-4).

Claim 5’. For all $n \in \omega$ and $\xi \in t_1(A) \cap \Theta_{\delta_n}$, $\gamma_{\delta_n} \approx \xi \gamma_{\delta}$.

\vdash **Proof.** As in the proof of Claim 5, with δ_n in place of μ (including its use in subscripts). \dagger

And now (5-4) follows for δ in place of ν, because if $\mu < \delta$, there exists δ_n such that $\mu < \delta_n$. And so $\langle \gamma_\mu : \mu < \delta \rangle$ is coherent. \square

6. Open problems
In [B1], Balogh remarked that $\langle X, \tau_B \rangle$ could be used to get a ZFC example of a normal screenable space that is not collectionwise normal, using a technique of Mary Ellen Rudin [R2]:

Theorem 6.1. If there is a normal, screenable space that is not paracompact, there is a normal, screenable space that is not collectionwise normal.

This technique could also be applied to $\langle X, \tau_\sigma \rangle$ to obtain a normal, screenable, non-collectionwise normal space that is the countable union of discrete subspaces.

Tantalizingly, Balogh made no mention of the question of whether $\langle X, \tau_B \rangle$ is itself collectionwise normal, and this question is open as far as I know. The same applies to $\langle X, \tau_\sigma \rangle$. And so, the following problem is still unsolved.

Problem 1. Is there a ZFC example of a collectionwise normal, screenable, nonparacompact space?

Mary Ellen Rudin’s screenable Dowker space using $\diamondsuit^{++} \ [R1]$ is a consistent example of such a space.

The following was asked in [Ny, Classic Problem VII D]:

Problem 2. Is there a ZFC example of a submetrizable Dowker space?

Recall that a submetrizable space is a space with a finer metrizable topology. A consistent example for Problem 2 using CH appears in [JKR]. As remarked in [Ny], Balogh left a set of handwritten notes [B4] in which he outlined what he believed to be a ZFC example. Unfortunately, his attempted proof does not work.

Balogh used the square of the Cantor set C as the underlying set and refined the topology. He had a huge “reservoir” as L_0, consisting of co-countably many horizontal lines (in the usual sense of $C^2 \subset \mathbb{R}^2$). The remaining countably many lines became the L_n. He let W_n be the union of L_0 with lines 1 through $n-1$, and declared these W_n to be open.

Right away the trouble comes in: there is a basic product neighborhood of the nth line that cuts out the $n-1$ lines below it. The basic neighborhood still hits the reservoir L_0, but Balogh envisioned using the W_n as the open cover without a point finite refinement, and that is defeated by the usual proof that every normal space is “countably collectionwise normal,” applied to the L_n’s.

Each L_n, $n > 0$, is a closed set, because its complement consists of the complement of W_{n+1} together with the lines above it, and each line above it has a nbhd missing L_n as mentioned above. Also, $\{L_n : n \in \omega\}$ is a discrete collection of closed sets. So we can put the L_n, $n > 0$, into disjoint open sets by putting disjoint open sets U_1 and V_1 around L_1 and $\bigcup_{n \geq 1} L_n$; then, given V_k, putting L_{k+1} and $\bigcup_{n > k+1} L_n$ into disjoint subsets U_{k+1} and V_{k+1} of V_k. Finally, let $G_n = U_n \cap W_{n+1}$ for all n. These G_n, together with L_0, are a point-finite open
refinement of \(\{W_n : n \in \omega\} \). In fact, no point is in more than two members of the refinement.

Adapting Balogh's construction to our screenable Dowker spaces yields paracompact spaces, and the following problem remains open:

Problem 3. *Is there a screenable, submetrizable Dowker space?*

Rudin's ♦++ example in [R1], and \(\langle X, \tau_B \rangle \), and \(\langle X, \tau_\sigma \rangle \) are essentially the only known screenable Dowker spaces, and none is submetrizable; for \(\langle X, \tau_B \rangle \) and \(\langle X, \tau_\sigma \rangle \) this follows from Theorem 3.2.3. Thus we lack even consistent examples for Problem 3. On the other hand, we also do not know of any axioms that would negate the existence of screenable, submetrizable Dowker spaces.

We also lack consistency results for the following problem, which seeks to combine the salient features of the spaces in [B0] and [B1].

Problem 4. *Is there a screenable, hereditarily normal Dowker space? one that is \(\sigma \)-relatively discrete?*

So far, I have been unable to determine whether either \(\langle X, \tau_B \rangle \) or \(\langle X, \tau_\sigma \rangle \) is hereditarily normal. There is also a pair of natural candidates obtainable by including pairs of subsets \(\langle S^0_\xi, S^1_\xi \rangle \) whose union is not \(X \) in the Type I pairs, and then defining \(\langle \alpha, n \rangle(\xi) \) only if \(\langle \alpha, n \rangle \in S^0_\xi \cup S^1_\xi \). This gives hereditary normality via the elementary theorem that a space is normal if every open subspace is normal: given an open set \(U \) in \(X \), and disjoint relatively closed subsets \(F_0, F_1 \) of \(U \), let \(S^i = U \setminus F_i \); then \(S^0 \cup S^1 = U \) and if \(\xi \) is the first ordinal for which both \(S^i \) are open, the natural choice for \(B^i_\xi \) gives a pair of disjoint open subsets of \(X \) containing \(F_{1-i} \) respectively.

However, the question of whether \(X \) with this modification of either \(\tau_B \) or \(\tau_\sigma \) is a Dowker space not an easy one. If we include these new pairs in \(H_1 \), then (4-1) needs to be modified since (as we saw in the proof of 2.2.5) there are open sets which miss \(\epsilon \)-many columns, and every column is missed by some open set. On the other hand, non-covering pairs do need to be taken into account if we want Claims 1, 2, 1' and 2' in the proof of 5.1.1 to continue to hold. Also, the proof of Claim 4 relied on there being infinitely many \(n \) for which \(x_n(\Theta_\mu) \) is defined. But if \(\Theta_\mu \) indexes a non-covering pair, we cannot very well define \(x_n(\Theta_\mu) \) if \(x_n \) is not covered by the pair. It remains to be seen whether difficulties like these — and the foregoing is only a small sample — can be successfully overcome.

References

