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1. Introduction

The study of Čech-Stone remainders has long been a major theme in set-
theoretic topology. A whole book [13] was published that primarily dealt with
the remainder ω∗ = βω − ω of the countable discrete space ω, and discussion of
this remainder takes up a sizable chunk of a book that was published back in 1960
[8]. It is remarkable that one of the most basic questions about it is still unsolved:

Problem 1. Is it consistent that ω∗ is homeomorphic to ω∗1? 1001 ?

Here ω∗1 refers to the Čech-Stone remainder of a discrete space of cardinality
ω1. What makes this problem all the more remarkable is that if we put any other
pair of distinct infinite cardinals for {ω, ω1}, even if one of this pair is one of the
members of the new pair, the answer is negative. Moreover, this has been known
since the late 1970’s. Since most of the research that established this and other
nontrivial facts detailed later was done by Polish and Czech mathematicians [2]
[6] [7], I decided to break with the usual American custom and use the expression
“Čech-Stone” in place of “Stone-Čech.”

An interesting alternative formulation of Problem 1 in ZFC is:

Problem 1′. Is it consistent that the Boolean algebras P(ω)/fin and P(ω1)/[ω1]
<ω

are isomorphic?

In the absence of the Axiom of Choice (AC) the two problems are not equivalent:
what passes for the Čech-Stone remainders could be empty, while the quotient
algebras are both uncountable. It would be interesting if the Boolean Algebra
version had a positive answer in ZF while the answer to both versions is negative
in ZFC. While our primary interest is what happens in ZFC, I will be making
remarks about what to watch out for if AC is not assumed. The theory would
have a varying flavor depending on what weakenings of AC are assumed. Three
natural weakenings are: (1) the Boolean Prime Ideal Theorem, which assures that
every discrete space has a Čech-Stone compactification; (2) the existence of right
inverses to the two quotient maps; and (3) the axiom of dependent choices (DC),
which implies the Countable AC (= AC for countable collections of sets).
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Three other weakenings of AC dovetail well with Problem 1. Let WAC(κ, λ)
stand for the axiom that there is a choice function for collections of ≤ κ sets, each
of cardinality ≤ λ). Then WAC(2ω1 , ω1) implies (2) above; WAC(2ω, ω) implies
that the quotient map from P(ω) to P(ω)/fin has a right inverse; and we will see
some proofs which go through if {κ, λ} ⊂ {ω, ω1}. An interesting but farfetched
scenario is that of Problem 1 having a Yes answer in the absence of (2), yet for
the quotient map from P(ω) to P(ω)/fin to have a right inverse.

The following natural variation on Problem 1 is also unsolved:

Problem 2. Is it consistent for U(κ) and U(λ) to be homeomorphic for different? 1002
κ, λ?

Here U(κ) stands for the set of uniform ultrafilters on κ—those of which every
member is of cardinality κ. It is very easy to show that there is no homeomorphism
if cf(κ) 6= cf(λ) (see Theorem ??) but even the case κ = ω, λ = ℵω has resisted
all attempts at a solution. The Boolean algebra version of Problem 2 is left as an
exercise for the reader; facts from Section 2 make this exercise trivial.

The conventional wisdom is that Problems 1 and 2 have negative answers, so
I could easily have worded Problem 1, “Is it a theorem of ZFC that ω∗ is not
homeomorphic to ω∗1?” and used a similar wording for Problem 2. However, I
am recommending that we treat the claim that ω∗ and ω∗1 ARE homeomorphic
as an axiom, the way Rothberger boldly treated p > ω1 even though all the
evidence then available (including Godel’s proof of consistency of CH) suggested
it was false. Recall also how Bing, unaware of Rothberger’s research, published
an example of a nonmetrizable separable normal Moore space on the assumption
that there exists a Q-set, known to be contradicted by the natural-seeming axiom
2ω < 2ω1 ; and how Mary Ellen Rudin published the first example of a Dowker
space assuming the existence of a Souslin tree, also not known at the time to be
consistent. Accordingly I formulate:

AXIOM Ω: ω∗ is homeomorphic to ω∗1 .

Nowadays people are reluctant to assume axioms so boldly, except perhaps in
the case of large cardinal axioms, but there are certain advantages to this ap-
proach. It encourages researchers to publish consequences of the axiom in the
optimistic hope that some day the axiom may turn out to be consistent, so that
if the breakthrough does happen, we will have a whole body of different state-
ments known to be simultaneously consistent. On the other hand, if the axiom
should turn out to be false, the proof that this is so will probably be a proof by
contradiction, building upon consequences of the axiom that are already known.

Clearly, AXIOM Ω implies 2ω = 2ω1 : the weights of ω∗ and ω∗1 are 2ω and
2ω1 respectively. Two other easy consequences of AXIOM Ω are that there is a
complete ω1-tower (Theorem 2.2) and, in contrast, that there is a Q-set. The
contrast is heightened in both directions in Section 3, by theorems 3.1 and 3.3
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respectively. A great many natural questions about the implications of AXIOM Ω
remain unanswered; a short list is given in Section 5.

We assume AC except where explicitly stated otherwise. Lower-case Gothic
letters designate small uncountable cardinals [5], [12].

2. Some basics

We recall some basic facts about the Čech-Stone compactifications of discrete
spaces. The underlying set for βD, where D is a discrete space, is the set of
all ultrafilters on D. A base for the topology is the collection of all sets of the
form [A] = {p ∈ βD : A ∈ p}. This makes βD into a compact space, which
is 0-dimensional because each [A] is clopen. The discrete space D is identified
with the set of principal ultrafilters and is the dense set of isolated points of βD.
The Čech-Stone remainder βD −D is designated D∗, and [A] \ A (= [A] \D) is
designated A∗. The sets of the form A∗ thus form a base for the relative topology
on D∗.

The collection CO(X) of clopen sets of any topological space X is a Boolean
algebra under the usual operations of ∪, ∩, and complementation. The following
facts are well known, easy to prove, and useful; for instance, (b) clearly implies
the equivalence of Problems 1 and 1.

(a) The unary operation [·] is a Boolean algebra isomorphism from P(D) to
CO(βD).

(b) The unary operation ∗ is a Boolean algebra homomorphism from P(D) onto
CO(D∗), whose kernel is [D]<ω.

(c) For each infinite cardinal κ ≤ |D|, the set of ultrafilters whose smallest
members are of cardinality < κ is a dense open subspace of D∗. Therefore, U(D)
is a nowhere dense closed subspace of βD.

(d) If we define Â as {[A] ∩ U(D) : A ⊂ D} thenˆis a Boolean algebra homo-
morphism from P(D) onto CO(U(D)), whose kernel is [D]<|D|.

(e) If X and Y are compact 0-dimensional spaces and φ : X → Y is continuous,
and φ← : CO(Y ) → CO(X) is defined by φ←(K) = φ−1(K) then φ← is a Boolean
algebra homomorphism. Moreover, φ← is injective iff φ is surjective, and vice
versa.

(f) A continuous bijection between compact Hausdorff spaces is a homeomor-
phism. Consequently, φ← is an isomorphism iff φ is a homeomorphism.

A good understanding of ω∗ and ω∗1 calls for skill in shuttling back and forth
between P(D) and CO(D∗), using the ∗ operation to “go upstairs” from D to
D∗ and implicitly using various choice functions to “go downstairs” by labeling
clopen subsets of D∗ as A∗, etc. This is where the various weakenings of AC
come in. [In their absence, we translate topological language on ω∗ by using the
natural correspondence between open sets and ideals, and between clopen sets and
elements (or principal ideals).]
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A similar shuttle works for P(D) and U(D). We see it operating in the proof
of the following theorem [4].

Theorem 2.1. If cf(κ) 6= cf(λ), then U(κ) and U(λ) are not homeomorphic.

Proof. Let cf(κ) < cf(λ). Partition λ into cf(κ) sets Aα of cardinality λ. The
(disjoint) clopen sets Aα̂ upstairs have dense union in U(λ) because every member
of [λ]λ meets some Aα in a set of size λ. On the other hand, no family of cf(κ)
disjoint clopen subsets Bα̂ of U(κ) is dense in U(κ): there is a κ-element subset of
κ which meets Bα in a set of cardinality |a| and is disjoint from all earlier Bβ . �

In analyzing ω∗1 the dense open subspace S(ω1) = ω∗1 \ U(ω1), known as the
space of subuniform ultrafilters, plays an important role. It is the union of the
ascending ω1-chain {α∗ : α is a countable limit ordinal } of clopen sets. In other
words, it is what I call an ω1-oval:

Definition. A union of a chain of clopen sets in a Čech-Stone remainder of a
discrete space is an oval and is a κ-oval if the chain has cofinality κ.

In particular, the ω-ovals are the cozero sets. The small uncountable cardinal
t can be characterized as the least κ such there is a dense κ-oval in ω∗. With this
in mind it is easy to see:

Theorem 2.2. AXIOM Ω implies t = ω1.

The Boolean algebra version is that there is an ideal generated by an ω1-chain
in P(ω)/fin that meets every nonzero ideal.

Another shuttle goes between P(D) (or CO(D∗)) and P(ω × ω). I call it the
RH Transfer in honor of Rothberger and Hechler, who made good use of it.

Definition. Let A = {An : n ∈ ω} be a family of subsets of ω such that A#
n =

An \
⋃n−1

i=0 Ai is infinite for all n. An RH transfer of A to ω × ω is a bijection
ψ : ω → ω×ω which distributes the elements of ω \

⋃∞
n=0An into the bottom row

ω × {0}, and sends A#
n into the (n+ 1)st column {n} × ω.

In an RH transfer, subsets of ω that are almost disjoint from all the An are
characterized by their images being dominated by the graph of a function. The
transfer and the definition of the function can all be defined in ZF, taking advantage
of the listing of A and the well-ordering on ω. It is when we combine the transfers
with moves downstairs that some form of AC is required. The following simple
theorem [9] only requires WAC(ω, ω) in a move downstairs followed by composing
one RH transfer with the inverse of another, followed by a move upstairs.

Theorem 2.3. Any two ω-ovals in ω∗ are homeomorphic; moreover, there is a
permutation of ω whose extension to βω is a homeomorphism taking one to the
other.
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3. Some consequences of AXIOM Ω

There is some confusion about whether “Q-set” is understood to include “un-
countable,” so I have suggested extending the usual list of Gothic-letter small
cardinals to include q. The trouble is, there are two natural and useful rivals for
what q could designate. So I recommend using subscripts, as follows:

q0 = the least cardinal κ for which there is a set of reals of size κ that is not a
Q-set.

q1 = the least cardinal κ for which no set of reals of size κ is a Q-set.

Theorem 3.1. AXIOM Ω implies q1 > ω1.

This theorem is a corollary of a much stronger theorem mentioned (but not
proved) in [10]. Call a family A of ω1-many denumerable subsets of ω a strong
Q-sequence if every 2-coloring of the members of A is uniformizable. This means
that if fA → {0, 1} is given for each A ∈ A, there is a function f : ω → {0, 1}
such that f(a) = fA(a) for all but finitely many a in each A ∈ A. Clearly any
strong Q-sequence is an AD family, by which I mean a collection of denumerable
sets such that the intersection of any two is finite. We will see below how a Q-set
of cardinality ω1 is intimately associated with the special case where each fA is
constant.

Unlike q1 > ω1, the existence of a strong Q-sequence does not follow from
MAω1

and indeed is incompatible with it [10]. In contrast:

Theorem 3.2. AXIOM Ω implies there is a strong Q-sequence.

Proof. For each countable limit ordinal α let Aα = [α, α + ω). Obviously, every
2-coloring (indeed every coloring!) of the individual Aα is uniformizable. Upstairs
in ω∗1 , uniformizability of every 2-coloring translates into the following: for each
choice of clopen Cα ⊂ A∗α there is a clopen K such that K ∩ Aα = Cα for all
α. [Just let Cα be the remainder of the support of fAα

, etc.] Assuming AXIOM
Ω we shuttle over to ω∗ with a homeomorphism ψ. The images of the Aα move
downstairs to an AD family on ω which is easily seen to be a strong Q-sequence
by a translation like that above. �

Among the many statements equivalent to q1 > ω1 is the existence of a separable
nonmetrizable normal Moore space, as well as the existence of the special case
where the Moore space is locally compact and its set of nonisolated points is a
closed discrete space; see [11] and its references in Section II. This special case has
a nice alternative characterization as a normal uncountable Ψ-like space:

Definition. A Ψ-like space is a locally compact, locally countable space X in
which ω is a dense set of isolated points and X \ ω is closed discrete.

We can associate an AD family A on ω with the nonisolated points of a Ψ-like
space X, with each A ∈ A associated with a point pA such that A ∪ {pA} is a
compact open neighborhood of pA. Normality of X then translates to uniformiz-
ability of every 2-coloring of A in which each fA is constant. In this way, Theorem
3.1 is made to follow from Theorem 3.2.
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Rothberger showed that q0 ≤ b. Since b ≤ d, the following theorem shows that
AXIOM Ω implies q0 = ω1.

Theorem 3.3. AXIOM Ω implies d = ω1.

The proof of this theorem in [4] starts with the assumption that κ∗ is homeo-
morphic to ω∗ (where κ is regular uncountable). It makes a downstairs move that
implicitly uses WAC(ω1, ω1) and then explicitly constructs a κ-scale in (ωω,<∗),
i.e., a cofinal family of order type κ under the order <∗ of strict eventual domi-
nation. Recall that d is the least (uncountable) cardinality of a cofinal family in
this order. Thus Theorem 3.3 is established.

The case of general κ is then made in [4] to lead to a contradiction in evey case
except κ = ω1, as part of a sequence of proofs that culminates in the theorem
mentioned in the paragraph following Problem 1.

There is a topological route to Theorem 3.3 via the following theorem:

Theorem 3.4. Let κ be a regular cardinal. The following are equivalent.

(1)There is a κ-scale.

(2) The exterior of some (hence every) ω-oval in ω∗ is a κ-oval.

(3) there is an ω-oval E and a family C of κ disjoint clopen sets in ω∗ such that
every clopen set containing E also contains all but < κ members of C, but also
every subfamily of < κ members of C is missed by some clopen set containing E.

This theorem needs only ZF for the forward implications but the reverse im-
plications both seem to require moves downstairs utilizing WAC(κ, ω). The topo-
logical proof of Theorem 3.3 is finished by finding a pair E, C in ω∗1 that answers
to the description in (3) of Theorem 3.4, with κ = ω1. The following pair needs
nothing beyond ZF:

E =

∞⋃

n=0

A∗n where An = {α+ n : α ∈ Λ ∪ {0}}

(where Λ stands for the set of countable limit ordinals) and

C = {Cα : α ∈ Λ} where Cα = [ω · α, ω · (α+ 1))∗

In particular, if K is a clopen set that meets uncountably many Cα, and K = B∗,
then B meets uncountably may intervals [ω · α, ω · (α + 1)) and so it meets some
An in an uncountable set. Therefore, K ∩E 6= ∅, and any clopen set that contains
E consequently must contain all but countably many Cα. Since we only moved
downstairs with K, this much is true in ZF as long as one substitutes, if necessary,
members of P(ω1)/[ω1]

<ω for the clopen sets.

In contrast to this explicit example, the modification of (2) which puts ω∗1 in
place of ω∗ is actually equivalent to d = ω1 as will be explained in the next
section. This may be behind the fact that I have been unable to show (3) implies
(2) without going downstairs.
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Theorem 3.5. AXIOM Ω implies that there is a dense ω1-oval in ω∗ whose com-
plement does not contain any P-points.

There do exist models where this consequence of AXIOM Ω holds. In fact, in [13,
7.15] a proof attributed to Mary Ellen Rudin shows how the set Z of ultrafilters
on ω which do not contain any sets of density 0 is nowhere dense in ω and is a
P-set without P-points of ω∗. Under CH, the complement of Z is an ω1-oval.

The key to Theorem 3.5 is that no uniform ultrafilter on ω1 is a P-point of
ω∗1 : take a sequence of partitions Pn of ω1 into 2n uncountable pieces such that
the common refinement of Pn is the partition into singletons. Thus, in ω1, the
subspace U(ω1) fits the description of the complement.

Problem 3. Is there a model of d = ω1 in which there is a strong Q-sequence 1003 ?
and also a dense oval as described in Theorem 3.5?

4. Implications for ω∗1

There is a variation on RH transfer for ω1 that helps with the analysis of ω-
ovals in ω∗1 . Let A = {An : n ∈ ω} be a family of subsets of ω1 such that

A#
n = An \

⋃n−1

i=0 Ai is uncountable for all n. An RH-like transfer of A to ω1 × ω1

is a bijection ψ : ω1 → ω×ω1 which does one of two things, depending on whether
A∞ = ω1 \

⋃∞
n=0An is countable or uncountable. If it is countable, ψ distributes

the elements of ω1 \
⋃∞

n=0An into the bottom row ω×{0}, and sends A#
n into the

(n + 1)st column {n} × ω1. If A∞ is uncountable, ψ sends it onto {0} × ω1 and
A#

n onto {n+ 1} × ω1.
This transfer is good for analyzing ω-ovals in ω∗1 that meet U(ω1) in a noncom-

pact subset. The first case represents ovals whose closure contains all of U(ω1).
If the exterior of such an oval is also an oval, then there is an almost-ascending
sequence {Aα : α ∈ ω1} of countable subsets of ω × ω1 such that every set that is
almost disjoint from the columns of ω × ω1 is a subset of some Aα. This implies
d = ω1, as a look at the traces of the Aα on ω × ω shows. The converse is also
easy for those used to the arguments in [5] involving β and d. In the second case,
where A∞ is uncountable, one looks at sets of the form Aα ∪A∞ to arrive at the
same conclusions. Also, ω-ovals which do not meet U(ω1) can be encapsuled in
the remainder of a countable set; then, if d = ω1 we get the conclusion that every
ω-oval in ω∗1 has an ω1-oval exterior. Of course, AXIOM Ω gives the same conclu-
sion even more easily, thanks to Theorems 2.3 and 3.3. The former theorem also
shows (1) implies (5) in the following theorem, and together with the modified
RH transfer in this section it easily implies (4) is equivalent to (5). The other
implications, all of which are very easy, are shown in [4].

Theorem 4.1. The following are equivalent.

(1) AXIOM Ω

(2) Any two nonempty clopen subsets of ω∗1 are homeomorphic.

(3) There is an autohomeomorphism of ω∗1 that does not take U(ω1) to itself.
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(4) There is an autohomeomorphism of ω∗1 such that U(ω1) is disjoint from its
image.

(5) For any two ω-ovals in ω∗1 , there is an autohomeomorphism of ω∗1 taking
one to the other.

We call an autohomeomorphism of ω∗ or ω∗1 nontrivial if it cannot be induced
by a 1-1 function from ω [resp. ω1] to itself.

Corollary 1. AXIOM Ω implies that ω∗1 has nontrivial autohomeomorphisms.

Problem 4. Does AXIOM Ω imply that ω∗ has nontrivial autohomeomorphisms?? 1004

One might think that there are bijections from ω1 to itself whose effect on
ω∗1 cannot be mimicked by functions from ω to itself acting on ω∗, but appear-
ances may be deceiving. The search for bijections without mimics is especially
challenging in models where there are strong Q-sequences.

5. Some more open problems about AXIOM Ω

Of the endless questions one might ask about the implications of AXIOM Ω, the
following seem especially natural to me:

Problem 5. Does Axiom Ω place any restrictions on 2ω besides the usual one (it? 1005
cannot have countable cofinality) and the denial of CH?

Problem 6. Does Axiom Ω imply that there are (or are not?!) P-points in ω∗?? 1006

Theorem 3.5 shows that every P-point of ω∗1 is in S(ω1).

Problem 7. Does Axiom Ω have any implications for the small uncountable? 1007
cardinals a, i, r, u?

Problem 8. Does Axiom Ω negate ♣? “stick”?? 1008

Axiom “stick” states that there is a family A of ω1 countable subsets of ω1 such
that every uncountable subset of ω1 contains some member of A, while ♣ adds
the condition that A is a ladder system.

Note that Axiom Ω + “stick” implies r = ω1, since r is the least cardinality of
a π-base for a free ultrafilter on ω. [A family of sets witnessing “stick” is a π-base
for every uniform ultrafilter on ω1.]

Problem 9. Does Axiom Ω imply that there is a family of more than ω1 disjoint? 1009
clopen sets in ω∗1 , each of which meets U(ω1)?

If the answer to this problem is Yes, then so is the answer to Problem 8. In
contrast, if Axiom Ω implies all disjoint clopen families of cardinality c have (all
but< c) members missing U(ω1), we must look elsewhere than the density example
for a mimic of U(ω1) in ω∗, because that nowhere dense P-set Z is met by a family
of c-many disjoint clopen subsets of ω∗. To see this, partition ω into two subsets,
such that in both of them the ratio of numbers < n to n gets arbitrarily close
to both 0 and 1. Repeat this process countably many times, and diagonalize to
get c-many almost disjoint subsets of ω in which this same phenomenon happens.
Each one is in some member of Z.
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Problem 10. Does Axiom Ω have any implications for the cardinals in Cichoń’s ? 1010
diagram [12] that are not below d?

Problem 11. Does Axiom Ω imply that there are no ω2-ovals in ω∗? 1011 ?

Problem 12. Does Axiom Ω imply that there is an ω1-oval in ω∗ whose exterior 1012 ?
is also an ω1-oval?

In [3] it is shown (in effect) that t = ω1 is equivalent to there being a pair of
disjoint ω1-ovals in ω∗ whose union is dense in ω∗, but there are models of t = ω1

where neither can be the exterior of the other. I am unaware of any such models
where d = ω1, however.

If ♣ holds, the subspace S(ω1) of ω∗1 can be split into two disjoint ω1-ovals,
each of which has all of U(ω1) in its closure, making each one the exterior of the
other. On the other hand, this is impossible if what is called (∗) in [1] holds. But
in this latter case there may be ways of constructing disjoint ω1-ovals inside A∗

for some countable A, each of which is the exterior in A∗ of the other; this is easy
to do under CH, which is compatible with (∗). Then the union of one oval with
the complement of A∗ in ω∗1 is an ω1-oval whose exterior in ω∗1 is the other oval.

6. Notes on Problem 2

Comparatively little research has been done on the implications of a Yes answer
to Problem 2. Unlike with Problem 1, there is no end of pairs κ, λ that are candi-
dates for an affirmative answer. Here we content ourselves with a few observations
about the pair ω,ℵω. Most of what we will say carries over to any other pair that
is not eliminated by Theorem 2.1.

First, an argument similar to the construction of a Bernstein set shows that
if K is a collection of κ sets of cardinality κ, then there is a pair of disjoint sets
which meets each one in a set of cardinality κ. So if U(ℵω) is homeomorphic to
U(ω) (= ω∗), the reaping number r is ≥ ℵω+1.

The other observations have to do with the variety of dense ovals in U(ℵw),
summarized in the following theorem. In any model where it is homeomorphic to
U(ω) (= ω∗), we get the same variety in ω∗, in marked contrast to the little we
know about ovals in ω∗ if AXIOM Ω holds (see Problem 11).

Theorem 6.1. U(ℵω) has dense κ-ovals for all κ such that ω < κ < ℵω and also
κ = b and also for all regular κ between ℵω and min{cf [ℵω]ω,ℵω1

}.

For κ = ωn(n > 0), use ℵω × ωn and let Cα = ℵω × α; a cofinality argument
shows that every subset of ℵω × ωn of cardinality ℵω meets some Cα in a set of
cardinality ℵω. The remainders of the Cα in U(Aω) union up to a dense κ-oval.

For regular κ from ℵω to the minimum of cf [ℵω]ω and ℵω1
, use the powerful

result of pcf theory that there are subsequences of {ℵn : n ∈ ω} where the product
has a scale of the desired length. Let Cα be the part of ℵω × ω below the graph
of fα.
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For κ = b use Aω × ω and functions fα α < b that are constant on [ωn, ωn+1)
and nondecreasing, and are well-ordered by the order of eventual domination. Here
too, let Cα be the part of ℵω × ω below the graph of fα.

This last argument works for any κ for which there is a <∗-unbounded <∗-well-
ordered family of increasing functions of cofinality κ in ωω.
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[13] Walker, R. C., The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974.

Definition. A union of a chain of clopen sets is an oval and is a κ-oval if the
chain has cofinality κ.

Department of Mathematics, LeConte College, 1523 Greene Street, University of

South Carolina Columbia, SC 29208

E-mail address: nyikos@math.sc.edu


