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Abstract. A remarkable global structure theorem is shown for locally compact, locally
connected, monotonically normal spaces. The conclusion of the theorem is strong enough
to imply several properties that follow from monotone normality, including collectionwise
normality, countable paracompactness (in fact, that every countable open cover has a star-
finite open refinement) and a powerful theorem of Balogh and Rudin on refinement of open
covers of a monotonically normal space. It also implies that every locally compact, locally
connected, monotonically normal space has a monotonically normal one-point compactifi-
cation.

1. Introduction

Compact monotonically normal spaces have remarkably strong properties, not hinted at
in the definition of monotone normality (Definition 2.4). Foremost of these is the theorem
that they are precisely the continuous images of compact ordered spaces. The monumentally
difficult proof of this fact, known as Nikiel’s Conjecture, was found by Mary Ellen Rudin
[13].

Locally compact spaces with monotonically normal one-point compactifications also have a
very strong structure theory, exemplified by the following recent theorem by the author [11],
where it is also shown to characterize these spaces among the locally compact, monotonically
normal spaces:

Theorem 1.1. Every locally compact space with a monotonically normal one-point compact-
ification is a topological direct sum of σ-ω-bounded spaces, each of which is the union of an
open Lindelöf subset and of a discrete family of closed, ω-bounded subsets. If the space is
totally disconnected, it is a topological direct sum of ω-bounded subspaces.

Recall that an ω-bounded space is one in which every countable set has compact closure.
As is most often the case in general topology, the prefix σ- denotes being the countable union
of what follows. To say that a space X is the topological direct sum of subspaces satisfying
Property P is to say that X has a partition into open (hence also closed) subspaces satisfying
P. A wealth of topological properties are satisfied by X itself if they are satisfied by each of
the summands.
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The main result of this paper, Theorem 2.1, is that locally compact, locally connected,
monotonically normal spaces have the properties in Theorem 1.1 with some added features.
This was the assumption used in [4] to show that they have monotonically normal one-point
compactifications.

This is significant because monotone normality is very often not preserved in passing to
the one-point compactification. In [4], two classes of totally disconnected, locally compact
spaces are described where it is not preserved. The spaces in one class are σ-ω-bounded, but
not the topological direct sum of ω-bounded subspaces; the ones in the other are not even
the topological direct sum of ω1-compact subspaces. [Recall that a space is called ω1-compact
if it is of countable extent, meaning that every closed discrete subspace is countable.]

In [11] an intermediate class in models of ♣ is described: ω1-compact but not the direct
sum of σ-ω-bounded subspaces. On the other hand, it is also shown in [11] that the PID
axiom implies that every locally compact, ω1-compact, monotonically normal space is σ-ω-
bounded.

It is hoped that [11] and this paper will be the first steps towards a comprehensive structure
theory of locally compact, monotonically normal spaces. This theme will be taken up again
in the last section.

Theorem 1.1 can be used to analyze compact monotonically normal spaces by a process of
successively removing points to give locally compact subspaces. The author has begun such
a process in the locally connected case [10], in hopes of substantially simplifying the proof of
Nikiel’s Conjecture for this case, which is featured in the following beautiful generalization
of the Hahn-Mazurkiewicz theorem:

Theorem A. The continuous images of generalized arcs are precisely the compact, connected,
locally connected, monotonically normal spaces.

With [0, 1] in place of generalized arcs, and metrizability in place of monotone normality,
this is the classic Hahn-Mazurkiewicz theorem. [A generalized arc is a linearly orderable
compact connected space.] A thorough and excellent survey of the history of these theorems,
and also of Nikiel’s Conjecture, was provided by the late Sibe Mardešić [5].

All through this paper, “space” means “Hausdorff topological space”; but attention is
confined almost exclusively to locally compact (hence Tychonoff), hereditarily normal spaces,
especially monotonically normal ones.

2. The main theorem: statement and consequences

The main result of this paper is formulated with one of the two standard (and very
different) definitions of locally connected spaces in mind: they are spaces in which the
components of every open set are open. This makes them the topological direct sum of their
components.

In a sequel to this paper, it will be shown how, in MM(S)[S] models, the following
theorem (which is the main result of this paper) extends to the class of locally compact,
locally connected, hereditarily normal spaces. It is an unsolved problem whether they are
all monotonically normal in such models.
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Theorem 2.1. Let X be a locally compact, locally connected, monotonically normal space.
Every component of X has a Lindelöf subspace L such that X \ L is the union of a (pos-
sibly empty) countable discrete collection S of closed, connected, ω-bounded, noncompact
subspaces.

Moreover, if S is not empty, then each S ∈ S includes uncountably many cut points of the
component and has exactly one point in the closure of L.

Moreover, each S ∈ S is a “string of beads” in which there is a set C of cut points of
the whole component, such that C is homeomorphic to an ordinal of uncountable cofinality,
and each “bead” is the connected 2-point compactification of an open subspace whose bound-
ary consists of the two extra points, successive members of C. The union of these “beads”
comprises the entire string.

Each member S of S (if any) maps onto a connected ordered space that is naturally
associated with the set C that goes with S. This is one of a class of spaces introduced
by Cantor in the same 1883 paper [2] where he introduced infinite ordinals. Cantor order-
embedded each ordinal θ into a connected, linearly ordered space (here denoted θ#) by
inserting a copy of (0, 1) between each ordinal and its successor. The + operation extends
in the obvious way to give us α + r for all r ∈ R+, and α ∈ θ.

Corollary 2.2. Let S ∈ S and C ⊂ S be as in Theorem 2.1. Let θ be the unique ordinal
with which C is order-isomorphic when C is given the disconnection order, x < y iff y is in
the component of X \ {x} that includes a tail (final segment) of C, and let f : C → θ be the
unique surjective order-preserving function.

Then there is a continuous surjective function g : S → θ# extending f .

Proof. Identify C with θ for notational purposes. For each α ∈ θ let Bα be the “bead” whose
boundary is {α, α + 1}. Let gα : Bα → [0, 1] be a continuous function such that gα(α) = 0
and gα(α+ 1) = 1. Let g : S → θ# be the function that takes α+ r to α+ gα(α+ r) for all
r ∈ [0, 1]. This is a well-defined function since gα(α+ 1) = α+ 1 = gα+1(α+ 1 + 0) for all α.
It is surjective since each Bα is connected and so each gα is surjective. Continuity is easy to
show if one uses basic open intervals of the form [0, ε) and (β + 1 − ε, α + ε) for successors
α = β + 1, and (ξ, γ + ε) when γ is a limit ordinal and ξ < γ. �

The subspace L of Theorem 2.1 could be taken to be closed. Its boundary is the set
{pn : n ∈ ω}, where L∩Sn = {pn}, so adding it preserves the Lindelöf property. The closure
of L is connected as well: a disconnection of L would put each pn into one component or
another, and when the Sn are added on, we get a disconnection of the component of X, a
contradiction.

This argument can be used to show that if L is just assumed to be paracompact in the
main theorem, then L is actually Lindelöf. This is because of a powerful old theorem [3,
5.1.27]:

Theorem 2.3. Every locally compact, paracompact space is the topological direct sum of
(open, hence also closed) Lindelöf subspaces.

For the same reason, the main theorem could also omit all mention of the countability of
S, and yet the actual wording would be a quick corollary.
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The subspace L can, alternatively, be made open by starting with a preliminary choice,
and taking its union with the first ω beads along each bead string. The union is σ-compact
and hence Lindelöf. And, since it includes the points pn, it is also connected.

The following definition of monotone normality is given for the sake of completeness:

Definition 2.4. A space X is monotonically normal if there is an operator G( , ) assigning
to each ordered pair 〈F0, F1〉 of disjoint closed subsets an open set G(F0, F1) such that
(a) F0 ⊂ G(F0, F1)
(b) [normality] G(F0, F1) ∩G(F1, F0) = ∅.
(c) [monotonicity] If F0 ⊂ F ′0 and F ′1 ⊂ F1 then G(F0, F1) ⊂ G(F ′0, F

′
1)

There is a very different characterization, due to Borges [11, Theorem 4.5], that makes
it easy to show that monotone normality is a hereditary property. But instead of using
either definition to show the main theorem, we will be using three strong properties of
monotonically normal spaces.

Property 2.5. Every monotonically normal space is (hereditarily) collectionwise normal.

Definition 2.6. A space is collectionwise normal (CWN) [resp. strongly collectionwise Haus-
dorff (scwH)] if for every discrete family F of closed sets [resp. singletons] there is a dis-
crete family {UF : F ∈ F} of open sets such that F ⊂ UF and such that UF1 ∩ UF2 =
∅ whenever F1 6= F2.

The usual definition of CWN has “disjoint” in place of “discrete,” but it is an elementary,
well-known exercise that the two definitions are equivalent [3].

Property 2.7. In a monotonically normal space, every open Lindelöf subset has (Lindelöf
closure and) a hereditarily Lindelöf boundary.

This second property follows quickly from the first property and from the fact that every
monotonically normal space of countable spread (i.e., every discrete subspace is countable)
is hereditarily Lindelöf [12]. Property 2.5 implies that the boundary of an open Lindelöf
subspace L is of countable spread, in the following way. Let D be a discrete subspace of
L \L. Then D is closed discrete in the relative topology of L∪D; and Property 2.5 implies
it can be expanded to a discrete collection of relatively open sets in L ∪ D, each meeting
L; but every discrete collection of sets in a Lindelöf space is countable. [When applied to
collections of sets rather than to point sets in a topological space, “discrete” means that
every point of the space has a neighborhood meeting at most one member of the collection.]

The third key property is a striking result of Balogh and Rudin [1].

Property 2.8. Let X be monotonically normal, and let U an open cover of X. Then
X = V ∪

⋃
E, where E is a discrete family of closed subspaces, each homeomorphic to a

stationary subset of a regular uncountable cardinal, and V =
⋃
V is the union of countably

many collections Vn of disjoint open sets, each of which (partially) refines U .

In locally compact spaces, the stationary subsets in E can be taken to be the cardinals
themselves (see Theorem 3.4 below). This is what will be directly used here.

Theorem 2.1 is so strong that it implies both properties 2.5 and 2.8. In fact it shows a
little more.
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Theorem 2.9. Let X be a locally compact, locally connected space that has the properties
in the conclusion of Theorem 2.1. Then X is collectionwise normal (CWN) and countably
paracompact.

Proof. It is enough to show 2.10 for the individual components since they are (cl)open by
local connectedness. It is an elementary exercise to show that a topological direct sum is
CWN iff each summand is CWN, and the same is true of countable paracompactness, which
means that every countable open cover has a locally finite refinement.

By Theorem 2.1, each component is the union of countably many closed countably compact
subsets; for example, the subspace L is the union of countably many compact ones. So every
discrete collection of closed subsets is countable, and CWN follows from the elementary
exercise that every normal space is “ℵ0-collectionwise normal.”

As for countable paracompactness, we can actually show that every countable open cover U
has a star-finite open refinement. For each n, let {pn} = Sn∩L. Now, countable compactness
of Sn implies that Sn \ {pn} has a finite cover Wn by (open) sets of the form U ∩ Sn \ {pn}.
Then W =

⋃∞
n=0Wn is star-finite.

Now if L \
⋃
W is compact, then it has a finite cover UL by sets of the form U ∩ L where

U ∈ U , and then W ∪ UL is a star-finite open refinement of U .

In the general case, we fall back on the theorem [3, 5.3.11] that a regular Lindelöf space is
strongly paracompact, which means that every open cover has a star-finite open refinement.
For each n, let Vn be an open neighborhood of pn in the relative topology of Sn. Let G
be a (countable) star-finite relatively open refinement of the trace of U on L = L ∪ {pn :
n ∈ ω}. For each n, and each of the finitely many G in st(pn,G) = {G ∈ G : pn ∈ G}, let
G′ = G ∪ (Vn ∩ Sn). Since pn is a cut point of X, G′ is an open neighborhood of pn. Let
G ′ = {G′ : G ∈ st(pn,G), n ∈ ω}. Then W ∪ G ′ is a star-finite open refinement of U . �

Theorem 2.10. Let X be a locally compact, locally connected space that has the properties
in the conclusion of Theorem 2.1. If U is an open cover of X, then X =

⋃
V ∪

⋃
W, where

W is a discrete family of copies of regular uncountable cardinals, and V is the union of
countably many collections Vn of disjoint open sets, each of which (partially) refines U .

Proof. This too can be proven just by using the components: the discrete families and
partial refinements can be done on each component separately and the union taken over all
components. So we assume X is connected.

If X is Lindelöf, then V can simply be a countable subcover of U . Otherwise, by Theorem
2.1, X =

⋃
{Sn : n ∈ ω} ∪ L where L is an open Lindelöf subspace and S = {Sn : n ∈ ω} is

a collection of “bead strings.”

Fix Sn ∈ S and let Cn be as in Theorem 2.1, identified with an ordinal θn of uncountable
cofinality. For each α ∈ θn, let Bα

n be the “bead” whose boundary consists of {α, α + 1}.
Let V(α, n) be the set of intersections of the interior of Bα

n (= Bα
n \ {α, α+ 1}) with a finite

U -subcover of Bα
n . An elementary application of the axiom of choice shows that⋃

{V(α, n) : α ∈ θn, n ∈ ω}

is the union of a countable family of disjoint open sets. Then a countable subcover of L can
be trivially added. �
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3. The case of Lindelöf degree ω1

This section deals with a non-Lindelöf space X as in the main theorem, with the additional
properties of being connected, and of Lindelöf degree ω1 (that is, every open cover has a
subcover of cardinality ≤ ℵ1). This is symbolized by `(X) = ω1. In a locally compact space,
the latter property is easily shown to be equivalent to being the union of ℵ1 open sets with
compact closures. Such open sets form the most natural base for a locally compact space,
but it is often useful to use other kinds of basic open sets. For example:

Lemma 3.1. Every locally compact space has a base of open Lindelöf subsets. If in addition
the space is locally connected, then the open Lindelöf connected subsets form a base.

Proof. The first sentence has a quick proof using the fact that locally compact spaces are
Tychonoff. But here is a unified proof for both sentences.

Let X be locally compact. For each p ∈ X and open set G such that p ∈ G, let G0 be
an open set such that G0 is compact and p ∈ G0, G0 ⊂ G. Suppose Gn has been defined so
that Gn is compact and Gi ⊂ Gn for all i < n. Cover the boundary of Gn with finitely many
open subsets whose closures are compact and contained in G. Let Gn+1 be the union of Gn

with these finitely many open sets; then Gn ⊂ Gn+1 and the induction proceeds through ω.
Let H =

⋃∞
n=0Gn; H is an open Lindelöf (because σ-compact) neighborhood of p contained

in G.

If X is, in addition, locally connected, let G0 be connected, and let all the open sets
covering the boundary of each Gn be connected and meet Gn. An easy induction shows that
each Gn is connected and so H is connected. �

Recall the concept of a canonical sequence [7].

Definition 3.2. A canonical sequence in a space X is a well-ordered family Σ = 〈Xξ : ξ ∈ ω1〉
of open subspaces of X such that Xξ is Lindelöf and Xξ ⊂ Xη for all ξ < η in ω1, and
Xα =

⋃
{Xξ : ξ < α} for all limit ordinals α.

With a slight abuse of language, we let
⋃

Σ mean
⋃
{Xξ : ξ ∈ ω1}.

The proof of the main theorem 2.1 begins with the construction of a canonical sequence
in non-Lindelöf components of X as described. For components of Lindelöf degree > ω1, the
later stages of the construction are given in the following section.

The proof of the following theorem appears in [7], but is included for the convenience of
the reader.

Theorem 3.3. Let X be a locally compact space, such that every Lindelöf subset has Lindelöf
closure. If `(X) = ω1, then there is a canonical sequence Σ = 〈Xα : α ∈ ω1〉 for X such that⋃

Σ = X, and such that each Xα is connected, open, Lindelöf, and properly contained in Xβ

whenever β > α.

Proof. Let X0 be a Lindelöf open subspace. By Property 2.7, X0 is Lindelöf.

In general, if Xα has been defined, we cover its boundary with countably many Lindelöf
open sets, each of which meets the boundary of Xα, and let Xα+1 be the union of Xα

with the added sets. If α is a limit ordinal and Xξ has been defined for all ξ < α, let
Xα =

⋃
{Xξ : ξ < α}. Since α is countable, Xα is Lindelöf, etc. �
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The following strengthening of Property 2.8 for locally compact spaces was a key step in
the proof of Theorem 1.1 in [11].

Theorem 3.4. Let U be an open cover of a locally compact monotonically normal space X.
Then X has a discrete collection C of closed copies of regular uncountable cardinals, such
that X \

⋃
C has a σ-disjoint cover V by open sets refining the trace of U on X \

⋃
C.

Let U be a cover of X =
⋃

Σ by open sets with compact closures, so that each is a subset
of some Xα. As in Theorem 3.4, let X =

⋃
V ∪

⋃
C where V =

⋃∞
n=0 Vn, and each Vn is a

disjoint collection of open sets. By taking components, we may assume each member of each
Vn is connected.

Each member of C is a copy of ω1, inasmuch as each C in C is countably compact and
noncompact, and the cofinality of Σ is ω1. Similarly, there is some αC < ω1 such that
C ∩Xα 6= ∅ for all α > αC .

For ease of comparison with the following section, we make a change of notation Y = X,
Yα = Xα for all α ∈ ω1. Let

Γ = {α : for all V ∈ V , (V ∩ Yα 6= ∅ =⇒ V ⊂ Yα)}
Lemma 3.5. Γ is a club.

Proof. Closedness is trivial, and we use a standard leapfrog argument to show that it is
unbounded. Let α0 be any countable ordinal. The members of each Vn are connected, and
Yα0+1 \ Yα0+1 is hereditarily Lindelöf and disconnects Y , and Vn is a disjoint collection for
each n. Therefore, at most countably many members of each Vn (and hence of V) that meet
Yα0 will also meet Y \ Yα0+1. Since these members of V have compact closure, they are all
contained in some Yβ, (β < ω1). Let the least such β > α0 be α1. Now by induction we get
a strictly increasing sequence 〈αn : n ∈ ω〉 with αn+1 defined from αn in the same way that
α1 was defined from α0. Let α = supnαn. Then α ∈ Γ, because Yα =

⋃
{Yαn : n ∈ ω}. �

By definition of Γ, the members of V miss all the boundaries Fα = Yα\Yα such that α ∈ Γ.
The only sets in the cover of Y given by Property 2.8 that meet these boundaries are the
members of C. Since they are a discrete family, each point of Fα is isolated in the relative
topology of Fα whenever α ∈ Γ.

As our first step in pinning down the bead strings in the main theorem 2.1, we show what
might be called the “Thorn Lemma”:

Lemma 3.6. Let X be a locally compact, locally connected space with a canonical sequence
Σ = 〈Xα : α ∈ ω1〉. Let α be a limit ordinal and let p ∈ Xα \ Xα. If p is isolated in the
relative topology of Xα \Xα, and G is an open neighborhood of p with compact closure, such
that G ∩Xα \Xα = {p}, then there exists ξ < α such that G ∩Xα \Xν is (nonempty, and)
clopen in the relative topology of Xα \Xν whenever ξ ≤ ν < α.

Proof. Since G is a neighborhood of p, and Σ is canonical, G ∩ Xα \ Xµ is nonempty for
all µ < α. If there is no such ξ, then there is an ascending sequence 〈ξn : n ∈ ω〉 whose
supremum is α and for which there exists zn ∈ G \G∩ (Xα \Xξn). Any accumulation point
of Z = {zn : n ∈ ω} must be in G and can only be p itself, but G is a neighborhood of p
missing Z, contradicting compactness of G. �
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For each limit ordinal α ∈ Γ and each p ∈ Fα there is ξ < α and a compact, connected
neighborhood Dp of p such that Dp ∩ Yα \ Yξ is clopen in the relative topology of Yα \ Yξ.
In each C ∈ C, the PDL gives a uniform ξC ∈ Γ that works for an unbounded collection of
points of C. We may assume, since C is discrete, that Dp misses all members of C besides
the member in which p is located. And this means that if q is the unique member of Fα∩C,
Dq must meet every Fν , ξC ≤ ν ≤ α, ν ∈ Γ, in the singleton Fν ∩ C. It is now easy to see
that each point of C is a cut point of X, and that, more generally,

SC =
⋃
{Dq \ YξC : q ∈ C ∩ Fα and α > ξC)}

is a bead string as in the main theorem. Moreover, since SC is connected, it must meet every
Fα such that α ≥ ξC .

Let S = {SC : C ∈ C}. Let pC be the least point of SC for all C ∈ C. Then {pC : C ∈ C}
is the boundary of

⋃
S, and is closed discrete. Let M be the complement of

⋃
S in X; then

{pC : C ∈ C} is also the boundary of M .

Since X is connected and bd(M) is closed discrete, M is connected by the argument
preceding Theorem 2.3. We next use the following well-known fact.

Lemma 3.7. Let E be a stationary subset of a regular uncountable cardinal. Every σ-disjoint
family of bounded open subsets of E has nonstationary union.

The proof is an easy application of the Pressing-Down Lemma (PDL) applied to the
ordinals of E that are limit points of E, and the elementary fact that the union of countably
many nonstationary sets is nonstationary.

Now M contains no closed copy of a stationary subset of an uncountable regular cardinal,
because V traces a σ-disjoint family of relatively open subsets on it, and each member of
V has compact closure, making the closures of the traces compact subsets of M . So M is
paracompact by the following consequence [1, Theorem I] of Property 2.8.

Theorem 3.8. A monotonically normal space is paracompact if, and only if, it does not have
a closed subspace homeomorphic to a stationary subset of a regular uncountable cardinal.

By Theorem 2.3 and the discussion around it, M is Lindelöf. It follows that
⋃
S is

countable, completing the proof of the main theorem 2.1 in the case where `(X) = ω1.

4. Transition to the general case

In the general case where `(X) is arbitrary, the construction in the preceding section gives
a proper open subspace Y inside each X of Lindelöf degree > ω1. The boundary of Y is
composed of points in the closures of the respective closed copies of ω1, the sets C ∈ C. The
closure of each C is its Stone-Čech compactification, which is well known to be its one-point
compactification. But there is no reason why finitely many different C’s should not share
the same extra point [although infinitely many cannot, because that would put the extra
point in the closure of L]. One might even have all the extra points tied together as in the
following example:

Example 4.1. Let Π = Π0 ∪ Π1, where Π1 = [0,∞) × {ω1} and Π0 = ω × L, where L

is the closed long ray ω#
1 defined by Cantor. The relative topology on Π0 is the product
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topology. Points of Π1 have basic open neighborhoods as follows. If r /∈ ω, let Bε(r, ω1) =
(r − ε, r + ε)× {ω1}, and let the base be {Bε(r, ω1) : ε < 1/2}. If n ∈ ω, let

Bε,α(n, ω1) = [(n− ε, n+ ε)× {ω1} ∩ Π1] ∪ [{n} × (α, ω1)]

and let the base be {Bε,α(n, ω1) : ε < 1/2}. [Of course, ∩Π1 in the displayed formula is
redundant except when n = 0.

It is easy to see that Π is locally compact, locally connected and connected. Monotone
normality is easy to show using the Borges criterion [11, Theorem 4.5]. If we let Πα =
ω × [0, α) for α ∈ ω1, we have a canonical sequence for Π0 whose union is dense in Π.

Subspaces like Π are inconvenient for proving the main theorem 2.1 in a straightforward
manner, because the bead strings we are following in the initial parts of the induction may
not be parts of the ultimate bead strings. There are various ways of overcoming this difficulty,
and the one we will use in this section was chosen because it lays part of the groundwork for
the sequel to this paper.

This method modifies the choice of Yα so that the bead strings that do not stop within Y
will have the extra point at the top as a cut point of the entire component of which Y is a
subspace. This process will continue to operate in the following section.

From now on, we will assume X is connected in addition to being locally compact, locally
connected, and monotonically normal. We extend the concept of a canonical sequence as
follows.

Definition 4.2. Let θ be an ordinal of uncountable cofinality and let Γ be a closed un-
bounded (“club”) subset of θ. A general Γ-sequence in a space X is a well-ordered family
Σ = 〈Xξ : ξ ∈ Γ〉 of open subspaces of X such that Xξ ⊂ Xη for all ξ < η in Γ, and
Xα =

⋃
{Xξ : ξ < α} for all limit points α of Γ. If in addition, Xξ is Lindelöf for all ξ ∈ Γ,

then Σ will be called a canonical Γ-sequence.

As before, we let
⋃

Σ mean
⋃
{Xξ : ξ ∈ Γ} and will usually suppress the Γ- prefix.

It is useful to picture X as a tree, using the components of each open subspace of the form
X \ Xξ in a general Γ-sequence as the “limbs” that grow from the “fork” at the boundary
of Xξ. Because X is locally connected, each component is open. Note that “limbs” never
re-connect: if V is a component of X \Xη and W is a component of X \Xξ and η < ξ then
either W ∩V = ∅ or W ⊂ V ; and then, W ⊂ V because Xξ is an open set containing V \V .
In general, the boundary of each component of X \Xα is a nonempty subset of Xα \Xα.

Our inductive construction will produce a canonical sequence for X for which there are
only countably many really large limbs at each fork, as in the following general lemma:

Lemma 4.3. Let X be a locally connected space, with a canonical sequence Σ in which each
Xξ (ξ ∈ Γ) has hereditarily Lindelöf boundary. Then all but countably many components of
X \Xξ are subsets of Xξ+1 whenever ξ ∈ Γ.

Proof. Let V be the (disjoint) collection of all components of X \ Xξ that meet X \ Xξ+1.
Connectedness of each V ∈ V implies that V meets Xξ+1 \Xξ+1. But this set is hereditarily
Lindelöf by Property 2.7 and so cannot contain a family of more than countably many
disjoint (relatively) open sets, so V must be countable. �

9



Rather than letting Σ be obtained by an arbitrary application of the proof of Theorem
3.3, we will utilize Lemma 4.3 and Theorem 4.4 below to produce a fast-growing “tree”
{Yα : α < ω1} inside X.

To ensure that each Yα is connected, we utilize a theorem and a concept in [14, 26.14,
26.15]. If S is a connected space, and U is any open cover of S, then any two points p, q of
S are connected by a simple chain in U .

That is, there is a finite sequence U0, . . . Un of members of U such that p ∈ U0\U1, Ui∩Uj 6=
∅ ⇐⇒ |i− j| ≤ 1, and q ∈ Un \ Un−1.

Theorem 4.4. Let X be a locally compact, locally connected space in which every open
Lindelöf subset has Lindelöf closure, and let V be a connected open subspace of X with
Lindelöf boundary. Then there is a connected, Lindelöf open neighborhood H(V ) of bd(V ) in
X.

Proof. Using Lemma 3.1, cover bd(V ) with countably many Lindelöf, connected open sets
Wn (n ∈ ω). Let W =

⋃
{Wn : n ∈ ω}. The boundary of W ∩ V is the union of two

disjoint subsets, bd(V ) and the boundary B in V of W ∩V . If W ∩V is not connected, each
component meets B, so that if H is a connected, Lindelöf, open subset of V containing B,
then H(V ) = W ∪H is as desired.

To obtain H, let D be a cover of V by connected Lindelöf open subsets and let {Dn : n ∈
ω} ⊂ D cover B. For each i ∈ ω let Ci be a simple chain in D from Di to Di+1. Let Ci =

⋃
Ci

and let H =
⋃∞
i=0Di ∪ Ci. �

We now build {Yα : α < ω1} by induction, using an arbitrary {Xα : α < ω1} as in Theorem
3.3 as a foundation. Let Y0 = X0. If Yα ⊃ Xα has been defined for α ∈ ω1 so that Yα is
connected, open, and Lindelöf, use Lemma 3.1 and Property 2.7 to get a cover {Gn : n ∈ ω}
of the boundary Yα\Yα of Yα by connected, open, Lindelöf subsets of X, each of which meets
Yα, and let Sα+1 = Yα ∪Xα+1 ∪

⋃∞
n=0Gn.

Then Sα+1 is Lindelöf, and as in Lemma 4.3, only countably many components of X \ Yα
meet X \ Sα+1. Let V be such a component. If V is Lindelöf, let H(V ) = V , otherwise let
H(V ) be as in Theorem 4.4. Let

Yα+1 = Sα+1 ∪
⋃
{H(V ) : V is a component of X \ Yα that meets X \ Sα+1}.

Then Yα+1 is clearly connected, open and Lindelöf. Letting Yα =
⋃
ξ<α Yξ whenever α is a

countable limit ordinal completes the construction of the canonical sequence Σ(Y ) = 〈Yα :
α < ω1〉. In particular, Yα is Lindelöf for all α by Property 2.7, and it is connected by the
elementary fact that the closure of a connected set is connected. Let Y =

⋃
{Yα : α < ω1}.

The limbs of Y are either whole limbs of X or initial segments of limbs of X:

Lemma 4.5. Let α ∈ ω1 and let V be a component of X \ Yα. Then V ∩ Y is a component
of Y \Yα. Moreover, V ∩Yβ is connected and V ∩ Yβ = V ∩Yβ for all β > α. Also, if V has
Lindelöf closure in X, then V ⊂ Yα+1.

Proof. First, suppose V has Lindelöf closure. If V ∩X \ Sα+1 = ∅, then V ⊂ Sα+1 ⊂ Yα+1.
Otherwise, H(V )∩ V = V ⊂ Yα+1 and so V ∩ Y = V is a component of Yα+1 \ Yα and hence
of Y \ Yα.
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If V has non-Lindelöf closure, then H(V ) is a connected subset of Yα+1 that contains the
boundary of V \ Sα+1. Also, H(V ) ∩ V is an open, connected subset of V and is the only
summand in the definition of Yα+1 that meets V . Therefore, H(V ) ∩ V = H(V ) \ Yα =
V ∩ Yα+1.

The component of Y \ Yα that contains H(V ) ∩ V must be a subset of V ; on the other
hand, Y is built up by induction in such a way that this component contains all points of
Y ∩ V . Indeed, the boundary of H(V ) ∩ V in V is the intersection of the boundary of Yα+1

with V ; and the open summands in the definition of Yα+2 are all either subsets of V or
disjoint from V , and the union of the former with Yα+1 ∩ V is connected. The rest of the
induction works in the same way, so that V ∩ Yβ is connected for all β > α. Obviously,

V ∩ Yβ ⊂ V ∩ Yβ = (V ∩ Yβ) ∪ [V ∩ (Yβ \ Yβ)].

Since Yβ is open, it follows that (V ∩ Yβ) = V ∩ Yβ ⊂ V ∩ Yβ.

As for V ∩ (Yβ \Yβ) = (V ∩ (Yβ)\Yβ: points of Yβ \Yβ are in the closures of the individual
components of Yβ \ Yα and there is no overlap where the closures meet Yβ \ Yβ, and so
V ∩ Yβ) \ Yβ ⊂ V ∩ Yβ \ Yβ, and the reverse containment is trivial. �

Recall the countably many bead strings that have noncompacgt closure in Y . From this
lemma it follows that separate bead strings in Y run along different limbs of X, and so the
components of X \ Y are associated with distinct bead strings.

In preparation for the next section, we replace the informal talk of limbs of X with a
formal definition of a tree which generalizes the tree Υ(Σ) of [7] in the same way that a
generalized Γ-sequence generalizes that of a canonical sequence.

Definition 4.6. Let X be a space with a Γ-sequence Σ. The tree Υ(Σ) (or Υ(X) or simply
Υ if the context is clear) has as elements all boundaries bd(V ) = V \ V of components V of
some X \Xα whose closure V is not Lindelöf.

The order on Υ is from “bottom” to “top”, i.e., if V0 is a component of X \Xα and V1
is a component of X \Xβ for some β > α, then we put bd(V0) < bd(V1) iff V1 ⊂ V0.

It is easy to see that bd(V0) < bd(V1) iff V1 ∩ V0 6= ∅ iff bd(V1) ⊂ V0 iff bd(V1)∩ V0 6= ∅. We
use the notation Υ(α) to denote the αth level of Υ (with the 0th level as its first level), i.e.,
the set of members of Υ whose set of predecessors is of order type α. Note that

⋃
Υ(α) is a

(perhaps proper) subset of Xα \Xα.

The way Υ is defined, some members may form boundaries for more than one component
of X \Xα, including perhaps uncountably many components with compact closures. Also,
distinct members of Υ may overlap, but not those from different levels.

A chain (that is, a totally ordered subset) of Υ that is bounded above need not have a
(unique) supremum. In particular, if Vξ is a component of X \ Xξ for all ξ < η < γ, and
Vη ⊂ Vξ whenever ξ < η < γ, and

⋂
{Vξ : ξ < γ} \ Xγ has components with non-Lindelöf

closures, then the boundary of each one of these components has {bd(Vξ) : ξ < γ} as its
chain of predecessors in Υ.

If p is on the boundary of one of these components (call it Vγ), then (as noted above)
p ∈ Xγ \ Xγ. Moreover, if G is a connected open neighborhood of p, and G ∩ X \ Vξ 6= ∅,
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then G meets the boundary of Vξ (otherwise G would be the union of the disjoint nonempty
open sets G∩Vξ and G\Vξ). Hence, G meets the boundary of every Vη for which ξ < η < γ.
By local connectedness, p is in the closure of

⋃
{bd(Vξ) : ξ < γ} if γ is a limit ordinal.

There is one important case where a chain that is bounded above in Υ has a unique
supremum: this is the case of a transfinite sequence of singletons, as in the ω-sequence case
of the Thorn Lemma 3.6, and the easy proof is left to the reader.

5. The proof of the main theorem, completed

If our connected space X is of Lindelöf degree > ω1, the space Y of the preceding two
sections is only a subspace, whose boundary Fω1 is a countable closed discrete subspace of
X. Each point of Fω1 is the extra point in the one-point compactification of a bead string
of Y . The space may “end” at some of these points, meaning that they have neighborhoods
contained in Y . All others are cut points of X: if A is a component of X \Y whose boundary
is {p} ⊂ Fω1 , then p is a cut point of X.

Now A can be subjected to the same analysis that produced Y , with A\Y as our starting
point in place of X. It may be that A \ Y is is Lindelöf, when the analysis stops after
countably many steps with the whole limb accounted for. In this case, A will be part of the
Lindelöf subspace L of the main theorem. Otherwise the analysis gives another space like Y
at the top of one bead string of Y .

The analysis begins with the point p for which {p} = bd(A). Let Bp(0) be a connected
relatively open neighborhood of p in A \ Y with compact closure. Then Bp(α) is defined
exactly like Yα was, except that now A \ Y plays the role that X did in the construction of
Y .

For each α < ω1, let Xα = Yα, let

Xω1+α = Y ∪
⋃
{Bp(α) : p ∈ Fω1}, and Xω1+ω1 =

⋃
{Xω1+α : α < ω1}

The analysis of X of Lindelöf degree > ω1 can now be completed in accelerated fashion.
It repeats the process that takes us from Y = Xω1 to Xω1+ω1 in a way that will now be
explained.

It is helpful to go along one branch B of Υ(X) at a time, pausing at each level Υ(γ) for
which γ is either an ordinal of uncountable cofinality or the supremum of a sequence of such
ordinals. On such a level, there is exactly one isolated {p} in Υ(γ)∩B. By a slight abuse of
language, we call both p and {p} “jump points,” treating them as prescribed in the preceding
paragraph. After each sequence of jumps indexed by a limit ordinal in its natural order, we
have a single jump point on the branch B (as in Lemma 3.6) unless the sequence is cofinal
in B.

Call a jump point {p} ∈ Υ(γ) “trivial” (a) it is the boundary of just one component of
X \Xγ and (b) the analogue of Xω1 immediately above it and below level γ+ω1 is just a long
string of compact beads, whose endpoints have a supremum in

⋃
Υ(γ + ω1). The following

lemma makes it easy to identify these points.
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Lemma 5.1. Let p be a jump point in Υ(γ) and let W be the union of all components of
X \ Xγ with p in their closure. Then p is trivial if, and only if, (1) Z =: W ∩ Xγ+ω1 is
compact and (2) Z \Xγ+ω1) is a singleton.

Proof. Necessity is clear, so we show sufficiency. Compactness of Z implies that all long bead
strings in Z meet Υ(γ+ω1). Condition (2) ensures that exactly one component V of X \Xγ,
[and indeed of X \Xγ+α for all countable α], has non-Lindelöf closure. Finally, compactness
of Z implies that the Lindelöf space Lγ that corresponds to L has compact closure. There
is a countable limit α such that Lγ ⊂ Xγ+α and W ∩Xγ+α has discrete boundary. Exactly
one point on this boundary is in the closure of the one component of X \ Xγ+α that has
non-Lindelöf closure. The closure of this component meets Xγ+ω1 in a compact bead string,
and W ∩Xγ+α meets all the qualifications of a compact bead [even though it is more natural
to think of it as an α-sequence of compact beads]. �

Lemma 5.2. Any ω-sequence of nontrivial jump points pn on a branch B of Υ is cofinal in
B.

Proof. Otherwise, the sequence 〈pn : n ∈ ω〉 converges on a point p for which {p} is on
a limit level α of countable cofinality. For each n ∈ ω let νn satisfy {pn} ∈ Υ(νn). By
the obvious extension of the Thorn Lemma 3.6, all but finitely many pn are in a compact
clopen neighborhood of p, of the form V ∩Xα in the relative topology of Xα, where V is a
non-Lindelöf component of X \Xξ for some ξ < α, such that Υ has no unbounded branches
containing bd(V ) that branch off above ξ but before α.

If pn ∈ V then V ∩Xνn+1 \Xνn is easily seen to satisfy the properties of a compact bead
with endpoints pn and pn+1. And now, by Lemma 5.1, the part of B between pn and pn+1

represents a string of compact beads, no matter how many trivial jumps there are between
pn and pn+1. This contradicts nontriviality of pn. �

Theorem 5.3. Υ has at most countably many nontrivial jump points and at most countably
many branches that are copies of limit ordinals of uncountable cofinality.

Proof. Let Ψ be the subtree {{p} : p is a nontrivial jump point} ∪ Υ(0) of Υ. Then by
Lemma 6.2, Ψ is of height ≤ ω; that is, every member of Ψ has at most finitely many
predecessors. Also, Υ(0) is countable, and each element {p} of Ψ has at most countably
many immediate successors in Ψ, and so Ψ is countable.

The branches described in the statement of this theorem go with the sets C in the “More-
over” part of the main theorem. Each one emanates either within Xω1 itself, or within an
analogue of Xω1 immediately above a nontrivial jump point, or from a trivial jump point
such that all jump points above it (if any) are trivial, and is minimal among the trivial
jump points in this category. Let J be the set of these minimal points. If x ∈ J , then
{x} ∈ Υ(γ + ω1) ∩ V where V is a component of X \ Xγ with a member {p} of Ψ as its
boundary. There can only be countably many such x associated with a given {p} ∈ Ψ, so J
is countable, and thus the set of all branches described in the theorem is countable. �

Finally, for each x ∈ J , we remove B(x) \ {x} where B(x) is the unbounded string of
compact beads that has {x} as its boundary, except for x itself. Let L be what remains.
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The the proof of the main theorem can now be completed as it was in the case of `(X) = ω1

at the end of Section 3.

6. Future directions

The sequel to this paper, [9], will do for hereditarily normal spaces in MM(S)[S] models
what has been done here for monotonically normal spaces just assuming ZFC. The only
extra role of MM(S)[S] that is not available in PFA(S)[S] models or from the Proper
Forcing Axiom PFA, is the implication that normal spaces are strongly collectionwise Haus-
dorff (scwH). In the sequel [9], it will be shown how one can substitute “X is normal and
hereditarily scwH” for “X is hereditarily normal,” and have the global structure of the main
theorem 2.1 hold in PFA(S)[S] models and under the PFA.

The main new complication in [9] is that the discrete collection of copies of ω1 given
by monotone normality and Property 2.8 is not a priori available to us, but only becomes
available after much technical analysis. In fact, the aim of this analysis is almost the opposite:
to find a club Γ of ω1 such that every component of bd(Xγ) that is not on an unbounded bead
string of Xω1 is infinite. Then some powerful consequences of the PFA, which also hold in
PFA(S)[S] models, are used to obtain the conclusion of the main theorem in the `(X) = ω1

case almost exactly as they were used in [8] to show that every normal and hereditarily scwH
manifold of dimension > ω1 is metrizable. Once this is accomplished, the rest of the proof
for the hereditarily normal case in MM(S)[S] models is almost the same as in the preceding
section; the normal + hereditarily scwH case requires a little extra maneuvering.

After the sequel, the next paper in this series will probe the fine structure of the Lindelöf
subspace L and the individual beads. These can be just as complicated as the space itself;
a bead could have any number of copies of the whole space hidden away inside it, as could
L. But by repeatedly invoking the main theorem and its adaptation in the hereditarily
normal MM(S)[S] models, the whole space can be resolved into a subspace of dimension
≤ 1 and a family of disjoint locally compact, locally connected, first countable subspaces such
that X is monotonically normal if, and only if, each member of the family is monotonically
normal. Whether “first countable” can be strengthened to “perfectly normal” (equivalently,
“hereditarily Lindelöf”) or monotone normality can be shown outright, is a subject for later
research.

Finally, there is the interesting question of how much of the structure that local connect-
edness gave in the present paper can be obtained without it. There are a number of tricks
that can be used to make good use of the collection C that Theorem 3.4 gives, including
an alternative way of getting Xα \Xα for countable ordinals α to be countable, closed, and
discrete if X is monotonically normal. The more general case of hereditarily normal, locally
compact spaces promises to be quite different, however, without local connectedness.
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