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Abstract. A Reed space is a regular space which is the union of countably many open
metrizable subspaces. A Reed space is monotonic if it is the union of an ascending sequence
〈Mn : n ∈ ω〉 of open metrizable subspaces. An outstanding open problem is whether
every normal Reed space is metrizable, and is called the Normal Reed Space Problem.
Extensive background information is given about Reed spaces in general, with emphasis on
the importance normality plays in this problem. A monotonic Reed space is constructed
with many of the properties a counterexample must have. Some suggestions are given for
modifying it to produce a nonmetrizable normal Reed space.

1. Introduction

One of the most remarkable unsolved problems in all of topology was posed by G.M. Reed
back in the 1990’s:

Problem 1. If a normal space is a union of countably many open metrizable subspaces, is
it metrizable?

It is very rare to have an unsolved problem that uses only concepts found in most in-
troductory courses in topology. It is even more rare for such problems to be as difficult as
Problem 1. Despite intensive efforts to solve it, we do not even have consisency results either
way for it, nor for the following, successively more general problems:

Problem 2. Is every normal space with a σ-disjoint base paracompact?

Problem 3. Is every normal, screenable, first countable space paracompact?

This paper introduces the following terminology.

Definition 1.1. A Reed space is a regular space which is the union of countably many open
metrizable subspaces. A Reed space is monotonic if it is the union of an ascending sequence
〈Mn : n ∈ ω〉 of open metrizable subspaces.

Example 2.15 in the next section is a non-monotonic Reed space.

Problem 1 can now be rephrased:

The Normal Reed Space Problem. Is every normal Reed space metrizable?

The wording here alludes to the famous, long-open (1934 – 1983) Normal Moore Space
Problem, whose statement has “Moore” instead of “Reed.” For the history of this problem,
see [17]; and for the mathematics of its solution, see [9].
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The main example of this paper is a ZFC construction of a Reed space which fails rather
badly to be normal. But it has many features that it shares with any possible normal non-
metrizable monotonic Reed space. Moreover, the construction is so general that it may give
much insight into why it failed to be normal, and might pave the way for either a consis-
tent example or a proof that the answer to Problem 1 is affirmative. This seems especially
promising in the strongly 0-dimensional case. In normal spaces, this means Ind X = 0. This
is defined the same way as “X is normal,” but with “clopen” replacing “open”: given disjoint
closed sets F0 and F1, there are disjoint clopen sets U0 and U1 containing F0 and F1, respec-
tively. The metrizable open subspaces in the main example are strongly zero-dimensional.
This is already enough to give them them a very simple structure, as explained in Section
3. This structure is expounded on in Sections 8 and 9 after the main example is treated in
the intervening sections.

The next section gives some useful information about Reed spaces. The sections that follow
are almost exclusively exclusively devoted to the class, here designated M, of monotonic
Reed spaces. Except for Section 8, its focus is narrowed further to its subclass ZM of
those X ∈ M where Ind(Mn) = 0 for all Mn in an ascending sequence of open metrizable
subspaces whose union is X.

In this paper, “normal” and “regular” are understood to include “Hausdorff.” For concepts
not defined here, see the standard reference [8] or the standard textbook [28] of general
topology.

2. Additional Background

Problem 2 is called “Classic Problem XI” in [18]. It goes back at least to the mid-70’s. It is
noteworthy in part because both Mary Ellen Rudin [13] and Zoltán Balogh [18], at different
times, mistakenly thought they had examples under ♦+. Yet these two were arguably the
best set-theoretic topologists of their time at constructing counterexamples, and by far the
best at constructing Dowker spaces.

Definition 2.1. A Dowker space is a normal space whose product with [0, 1] is not normal.

Part of the difficulty of these problems lies in the fact that a counterexample for any of
them has to be a screenable Dowker space. [Recall that a screenable space is one for which
every open cover has a σ-disjoint open refinement.]

Remarks 2.2. Obviously, every space wth a σ-disjoint base is screenable and first countable.
Bing’s Metrization Theorem [8, 4.4.8], [28] states: a space X is metrizable ⇐⇒ it is regular
and has a σ-discrete base. From this it is immediate that every union of countably many
open metrizable subspaces has a σ-disjoint base.

Every published ZFC example of a Dowker space is patterned after the one of Rudin and
the ones of Balogh. A nonmetrizable normal Reed space from ZFC would be very different
from any constructed so far. This is even true of any consistent examples: there are only
two published examples of screenable Dowker spaces, one by Rudin using ♦++ [23] and one
by Balogh in ZFC [3], and both are very far from being first countable. Moreover, one of the
most important unsolved problems about Dowker spaces is whether there is a ZFC example
of one that is first countable [25] [26].
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An obvious contrast between Problem 1 on the one hand, and Problems 2 and 3 on the
other, is that the latter two only have “paracompact” as the conclusion, while Problem 1
goes all the way to “metrizable”. However, the two conclusions are equivalent, because
every paracompact space that is the union of open metrizable subspaces is metrizable. In
the case of countably many subspaces, countable paracompactness is enough when combined
with normality. [As is well known, paracompact spaces are normal and (trivially) countably
paracompact.]

Definition 2.3. A countably paracompact [resp. countably metacompact ] space is one in
which every countable open cover has a locally finite [resp. point-finite] open refinement.

The following is an old result of G.M. Reed [21], whose unpublished proof is included here
with his permission.

Theorem 2.4. A normal Reed space is metrizable ⇐⇒ it is countably paracompact.

Proof. Necessity is clear. To show sufficiency, we use the following characterization [8, 5.2.3]
[7]

A space X is normal and countably paracompact ⇐⇒ each countable open cover {Ui}∞i=0

of X has a locally finite open refinement {Vi}∞i=0 such that Vi ⊂ Ui for all i ∈ ω.

Let each Ui be open and metrizable, and for each n ∈ ω, let Gin be a discrete-in-Ui collection
of open sets such that

⋃∞
n=0 Gin is a base for Ui. [Recall Remarks 2.2].

With Vi as above, let Hi
n = {G ∈ Gin : G ⊂ Vi}. Then {Hi

n}∞n=0 is a base for Vi. In
particular, Vi =

⋃∞
n=0Hi

n, and the closure of each
⋃
Hi
n in X is a subset of Vi, so Hi

n is
discrete in X. Consequently, {Hi

n : n ∈ ω, i ∈ ω} is a σ-discrete base for X. �

It follows from Theorem 2.4 and the next theorem, due to Dowker [7], that a negative
answer to Problem 1 gives a Dowker space.

Theorem 2.5. Let X be a normal space. The following are equivalent:

(1) X is countably paracompact.

(2) X is countably metacompact.

(3) X × [0, 1] is normal.

A 1955 theorem of Nagami [16] explains why a counterexample to Problems 2 and 3 is also
a Dowker space. Nagami’s theorem states that a space is paracompact if, and only if, it is
normal, screenable, and countably paracompact — equivalently, by Theorem 2.5, countably
metacompact.

In the case of monotonic Reed spaces, normality is not needed in the statement of Theorem
2.4. This follows quickly from the following well-known characterization, shown by Dowker
as part of his proof of Theorem 2.5.

Lemma 2.6. A space X is countably paracompact [resp. countably metacompact] if, and
only if, for each sequence Fn ↓ ∅ of closed subsets, there is a sequence of open sets Gn such
that Fn ⊂ Gn and such that

⋂
{Gn : n ∈ ω} = ∅ [resp.

⋂
{Gn : n ∈ ω} = ∅].

Corollary 2.7. A monotonic Reed space is metrizable ⇐⇒ it is countably paracompact.
3



Proof. Again, necessity is clear. To show sufficiency, make the open cover {Ui}∞i=0 in the
proof of Theorem 2.4 ascending. Then if Fi = X \ Ui, we have Fi ↓ ∅. Letting Vi be the
interior of X \ Gi, we have Vi ⊂ Ui, and we follow the proof of Theorem 2.4, which never
used local finiteness of {Vi}∞i=0. �

Remark 2.8. An interesting feature of the preceding proof is that a single open cover — the
most natural one — is enough to establish countable paracompactness and hence metrizability
in a monotonic Reed space.

Countable metacompactness is not enough for Corollary 2.7, but G.M. Reed has observed
[private communication] that it works if “Moore” is substituted for “metrizable” there.

Definition 2.9. A space X is developable if it has a base B which is the union of countably
many open covers Bn such that, for each choice of x ∈ X and Bn ∈ Bn containing x,
{Bn : n ∈ ω} is a base for the neighborhoods of x. A regular developable space is a Moore
space.

The following concept makes the substitution precise:

Definition 2.10. A base B for a space X is uniform iff, for every x ∈ X, any infinite
subfamily of B, each of which contains x, is a base for the neighborhoods of X.

An old theorem of Bob Heath [14] [8, 5.4.7] 1 states that a space is a metacompact Moore
space ⇐⇒ it has a uniform base. The following is folklore.

Lemma 2.11. Every space that has a point-finite open cover by metrizable subspaces has a
uniform base.

Proof. Let X =
⋃
{(Uα, dα) : α ∈ Γ}, where dα is a compatible metric on Uα. For each

x ∈ X let
A(x) = {y : y ∈ Uα for some α such that x ∈ Uα}.

For each n ∈ ω, let

B(x, n) = {y : y ∈ A(x) and dα(x, y) < 2−n for all α such that {x, y} ⊂ Uα}.
Bk(t) and Bk(u) are clearly disjoint iff Let Bn =

⋃
{B(x, n) : x ∈ X}. It is routine to verify

that
⋃∞
n=0 Bn is a uniform base for X. �

Theorem 2.12. Let X be a Reed space. The following are equivalent.

(1) X is countably metacompact.

(2) X is a metacompact Moore space.

(3) X is a Moore space.

Proof. (1) =⇒ (2): by Definition 2.6 and Lemma 2.11 and Heath’s theorem mentioned just
before it.

(3) =⇒ (1): Every Moore space is countably metacompact. This is well known and is
provable in several easy ways. One is that Moore spaces are θ-refinable [11], and a space is
countably metacompact ⇐⇒ it is countably θ-refinable [12]. �

1Metacompact spaces are called “weakly paracompact” in [8] and “pointwise paracompact” in [14].
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The following corollary was independently shown earlier by G.M. Reed [unpublished] by
a somewhat different proof. It shows that “finite” cannot be substituted for “countable” in
the Normal Reed Space Problem.

Corollary 2.13. If a normal space is the union of finitely many open metrizable subspaces,
it is metrizable.

Proof. By Lemma 2.11, Heath’s theorem, and Nagami’s 1955 theorem stated immediately
after Theorem 2.5. �

In the absence of normality, countable metacompactness is much weaker than countable
paracompactness. The following well-known old example of a Moore space illustrates this.
It is also a Reed space in a very simple way.

Example 2.14. The underlying set for X is the closed upper half plane. Points of the open
upper half plane are isolated. Each point x on the x-axis is given neighborhoods along a ray
from that point, letting g(n, x) be all points within 2−n of (x, 0) along the associated ray. For
points of Q = Q×{0} this ray is the one of slope −1, while for points of P = (R \Q)×{0}
it has slope 1. This space is a union of two open metrizable subspaces, X \P and X \Q. It
is also monotonic: let Q = {qi : i ∈ ω} = Q and let Mn = X \Q ∪ {qi : i ≤ n}.

An application of the Baire Category Theorem to the usual topology on the x-axis shows
that Example 2.14 is neither normal — P and Q cannot be put into disjoint open sets —
nor countably paracompact: the open cover {X \ Q} ∪ {g(1, x) : x ∈ Q} does not have a
locally finite open refinement.

On the other hand, Example 2.14 is countably metacompact. There are many different
ways to show this using the theory of “generalized metric spaces,” but here is a direct proof.
Given closed sets Fn ↓ ∅, let Un = Fn ∪

⋃
{g(n, x) : x ∈ Fn ∩ (R× {0})}. Clearly, Un ↓ ∅.

Example 2.15. A Reed space which is not monotonic. In Example 2.14, replace P and Q
with complementary Bernstein subsets B0 and B1 of the x-axis. The resulting space X is
the union of the open metrizable subspaces X \B0 and X \B1, but a routine application of
the Baire Category Theorem to the usual topology on the x-axis shows that any ascending
sequence of open subsets whose union is X must have a member meeting both B0 and B1

in uncountable dense subsets of some open interval of the x-axis, and this member cannot
be normal.

Apart from the failure of X to be monotonic, every other property given for Example 2.14
is satisfied by Example 2.15. In particular, it is countably metacompact, hence a Moore
space by Theorem 2.12.

Example 2.16. [Reed, unpublished] A countably paracompact, nonmetrizable Reed space
from a Q-set. Here “Q-set” designates an uncountable subset Q of the x-axis of which each
subset is a Gδ (equivalently, an Fσ) in the relative Euclidean topology of Q. The existence
of a Q-set in this sense is ZFC-independent.

This Reed space has a non-Reed prototype known as “Heath’s tangent V space,” whose
underlying set is the upper half plane H together with Q as above. Points of H are isolated,
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while the neighborhoods of points on the x-axis are initial nontrivial segments of rays that
emanate from these poins at slopes of 1 and −1.

This prototype was the first (consistent) example of a nonmetrizable, metacompact Moore
space. A standard technique called “the Wage machine” modifies it to produce one that is
not normal, but is countably paracompact. The machine is described in [22] in general terms.
Its application here is to replace each point on the x-axis by a pair of points, with one using
the ray of slope 1 for its base of neighborhoods, and the other of slope of −1. This also
produces a Reed space similar to that in Example 2.15. Details are left to the reader.

Example 2.15, Theorem 2.4 and Corollary 2.7 suggest the following weakening of the
Normal Reed Space Problem:

Problem 4. Is every normal Reed space monotonic?

Corollary 2.13 is not enough for this. It suggests listing an infinite open cover in a sequence
and showing that the union of each initial segment is metrizable. However, the union after
finitely many (perhaps two) steps might not even be normal, let alone metrizable.

An affirmative answer to Problem 4 would reduce Problem 1 to what might naturally be
called called The Normal Monotonic Reed Space Problem:

Problem 5. Is every normal monotonic Reed space metrizable?

3. Special properties of the main example

The main example of this paper, denoted V , is a (monotonic) Reed space with an ascending
sequence of open metrizable subspaces Vn ↑ V . It is non-normal, and so Ind V 6= 0. However
Ind Vn = 0 for all n. In other words, V is in the class ZM.

For a metrizable space M , Ind(M) = 0 is equivalent to M being a copy of a subspace
of a countable product of discrete spaces [E, 7.3.15], which might as well be of the same
cardinality ≥ 2. This countable power Dω is known as Baire’s 0-dimensional space of weight
m where m = |D| · ω, and is here denoted B(m).

The natural base for Dω is the one that is determined by the partitions P(n) into equiv-
alence classes:

[x]n = {y ∈ Dω : yi = xi for all i ≤ n}.
Each partition refines the preceding ones, and in B(m) = Dω this means chopping up each
[x]n−1 into m-many pieces to produce P(n). This even applies if we define [x]−1 as Dω.

Our main example V not countably metacompact; in other words, it satisfies (1) and (2)
of the following definition. And it also satisfies (3).

Definition 3.1. A space is strongly Dowker [resp. strongly almost Dowker] if it is a normal
[resp. regular] space with a countable collection of closed sets Fk such that

(1) Fk ↓ ∅,
(2) If Gk is an open set containing Fk, then

⋂∞
k=0Gk 6= ∅ and

(3) Fk+1 is nowhere dense in the relative topology of Fk for all k ∈ ω. Equivalently:

(3′) Fk \ Fk+1 is dense in Fk for all k.
6



The motivation for these terms will be given in Section 8, along with a proof that every
nonmetrizable monotonic Reed space is strongly Dowker [Theorem 8.1]. Moreover, this proof
shows that the ascending sequence 〈Mn : n ∈ ω〉 of open metrizable subspaces can be chosen
so that 〈Fn = X \Mn : n ∈ ω〉 witnesses (3). The space V is a strongly almost Dowker space
witnessed by Fk = V \ Vk for all k ∈ ω.

There are several features shared by all monotonic Reed spaces X in class ZM in which
Mk+1 \Mk(= Fk+1 \Fk+2) is nowhere dense in Mk+1 for all k ∈ ω. The first feature does not
require X ∈ ZM, but the other two do require it.

• For all k > 0, Xk =: Mk \Mk−1 is relatively closed in Mk and, by (3′), each neighborhood
of each point of Xk meets all Xi for which i ≤ k. Here X0 =: M0.

• Each open subset U of Mk is a union of disjoint basic clopen subsets: for each x ∈ U ,
take the least n for which [x]n ⊂ U . Here [x]n is determined by a given embedding of Mk in
B(m). In the main example, Mk is an actual copy B(c), and is designated Vk.

• If Mk is identified with a subspace of B(m), each partition Pk(n) = {Mk∩ [x]n : x ∈Mk}
of Mk traces a basic partition P ′k(n) on Xk which identifies it also as a subspace of B(m).
The traces on Mk−1 of each P ∈ Pk(n) are clopen in the relative topology of Mk−1, but need
not be members of Pk−1(`) for any `. In the main example, they are unions of denumerably
many members of Pk−1(n+ 1).

4. The main example defined

For X and Mk as above, we substitute V and Vk, respectively, in the main example, but
continue to use Xk as above. Topologically, each Xk is {k} × [0, 1]ωD, where [0, 1]D refers to
[0, 1] with the discrete topology. In particular, X0 = V0 is thus canonically homeomorphic
to B(c), as is Xk for all k. For k > 0 it takes some work to define a homeomorphism from
Vk to B(c), as might be expected from the non-normality, etc. of V .

We adopt the following notation:

Xk = {p : p = (k; r0, . . . ri, . . . ), ri ∈ [0, 1]}, Vk =
k⋃
i=0

Xi, V =
∞⋃
i=0

Xi, and Fk = V c
k = X \ Vk.

The usual base for the relative topology on Xk is here denoted:

Bk =
∞⋃
n=0

Bnk , where Bnk = {Bk(s) : s = (r0, . . . rn)}

where Bk(s) = {p ∈ {k} × [0, 1]ω : p �dom(s)= s}. By the bracket notation, Bk(s) = [p]n if
{k} × [0, 1]ωD is identified with B(c).

There is a high degree of self-similarity built into V , as is already apparent from the
definitions above. This makes a description of the topology below comparatively concise.

We begin the definition of the topology τ by letting W0 = B0 and Wn
0 = Bn0 . For greater

self-similarity in defining Wk for all k below, we also write W0(s) = B0(s).
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Next we defineW0
1 . Let σ be a bijection from [0, 1] to the set Σ of all one-to-one sequences

in [0, 1]. We designate σ(r) as σr for convenience. Each set of the form B1(r) “grabs” (i.e.,
is associated with) the set of open balls {W0(σr(n)) : n ∈ ω}. From each of these balls it
“ropes” (i.e., attaches to itself) the ball W0(σr(n)), r) on the next level, so that W0

1 is the
collection of all sets of the form

W1(r) = B1(r) ∪
∞⋃
i=0

W0(σr(i), r)

where r ∈ [0, 1]. Of course, we could have written B0(σr(i), r) instead of W0(σr(i), r), but
this does not work for W0

k if k > 1. So, in general, if W0
k−1 has been defined for k > 0, we

let W0
k be the collection of all sets of the form

Wk(r) = Bk(r) ∪
∞⋃
i=0

Wk−1(σr(i), r)

We next define Wn
k to be the collection of all sets of the form

Wk(r0, . . . , rn) = Bk(r0, . . . rn) ∪
∞⋃
i=0

Wk−1(σr0(i), r0, . . . rn).

Let Wk =
⋃
n∈ωWn

k . In other words, Wk = {Wk(s) : Bk(s) ∈ Bk}. Let W =
⋃∞
k=0Wk.

We let the topology τk on Vk be the one whose base is the Boolean algebra generated by
Wk, via the elementary operations of binary union and intersection, and complementation.
The topology τ on V is the one whose base is the Boolean algebra generated by W . Since
the operations for generating a subalgebra of a Boolean algebra are finitary, and W is the
ascending union of the Wk,

⋃
{τk : k ∈ ω} is a base for τ . The following lemma simplifies

this picture further.

Lemma 4.1. The topology τk on Vk is the relative τk+1-topology on Vk. Hence τk is the
τ -relative topology on Vk.

Proof. If k = 0, then each W1(r0, . . . rn) ∈ W1 meets V0 in a disjoint family of members of
W0. So, because of the way Boolean algebras are generated, there are no new basic clopen
sets added to τ0 by the contribution of members of τ1. This proves the case k = 0 of the first
sentence.

If k > 0, and τk−1 is the τk-relative topology on Vk−1, then the same argument (with
subscripts k and k + 1 in place of 0 and 1) applies to show the first sentence of the lemma.

A slightly different induction shows that τk is the relative τ`-topology on Vk for all ` >
k, and this will complete the proof of the “Hence” portion, by the remarks immediately
preceding the lemma.

Since τ` traces the τ`−1 topology on V`−1, and τ`−1 traces the τ`−2 topology on V`−2, etc.,
the rest follows by transitivity of the relation, “T traces the T ′-topology on

⋃
T ′.” �

In the Appendix, there is a detailed picture of how the tracings propagate backwards, and
of the structure of the members of the Wk themselves. But this picture will not be needed
any earlier in this paper.
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The following lemma is the key to much of what we show below.

Lemma 4.2. Disjoint members of each Bk expand to disjoint members of Wk.

Proof. In other words, if Bk(r) and Bk(s) are disjoint, then so are Wk(r) and Wk(s).

We proceed by induction on k. For k = 0 this is true by definition. So let k > 0. If
r = (r0, . . . rm) and s = (s0, . . . sn), then Bk(r) and Bk(s) are disjoint iff they are distinct iff
ri 6= si for some i ≤ min{m,n}.

If i = 0 then Wk(r) and Wk(s) are disjoint because of the induction hypothesis on k and
because the attached Wk−1(σri(j), ri) and Wk−1(σsi(j

′), si) differ in the second coordinates
of their indices. If i > 0, the induction hypothesis works even more simply. �

Definition 4.3. A space X is 0-dimensional if it is Hausdorff and ind(X) = 0; that is, X
has a base of clopen sets.

Theorem 4.4. The space (V, τ) is 0-dimensional, hence regular.

Proof. An easy exercise shows that if a space with a base of clopen sets is T0, then it is
Hausdorff. The base given above for τ is a Boolean algebra, so all its members are clopen.

To show V is T0, suppose x ∈ Xk and y ∈ X` be distinct points and k ≤ `. If k = ` then
we use Lemma 4.2 and metrizability of Xk. Otherwise, let x ∈ W 0

k . Clearly, y /∈ W 0
k . �

5. Additional basic properties of (V, τ)

The quick definition of W and then of τ has its drawbacks, including the difficulty of
visualizing the neighborhoods of points, and of proving that each Vk is metrizable.

To address the first difficulty, we shrink each Wk(r0, . . . rn) when k > 0 to a subset
Gk(r0, . . . rn) and use these shrinkages as basic neighbornoods in Vk for the points of Xk.

For each W = Wk(r0), let Z(W ) be the set of all members of W0
0 ∪ · · · ∪W0

k−1 that meet
W . An easy backwards induction shows that Z(W ) is countable: each of the countably
many Wk−1(σr0(i), r0) that is “roped” into W by Bk(r0) is in one member, Wk−1(σr0(i)), of
W0

k−1, and meets only countably many members of W0
0 ∪ · · · ∪ W0

k−2, etc. Of course, none
of the members of Z(W ) meets Bk(r0).

List Z(W ) bijectively as {ZW
n : n ∈ ω}. Let Gnk be the collection of all sets of the form

Gk(r0, . . . , rn) = Wk(r0, . . . , rn) \ (ZW
0 ∪ ... ∪ ZW

n ).

As with Wk and W , let Gk =
⋃∞
n=0 Gnk and let G =

⋃∞
k=0 Gk. Because of the bijective

“shrinkages,” each Gnk is a disjoint (by Lemma 4.2) collection of clopen sets.

The Appendix has some (optional) details about the effect that the ZW
n have on members

of Wk. For now, we just note that

Wk(r0) \ (ZW
0 ∪ ... ∪ ZW

n ) =
⋃
{Gk(r0, . . . , rn) : ri ∈ [0, 1] whenever 0 < i ≤ n}.

. This is because of the way ZW
j depends only on W = Wk(r0), and the way Wk(r0) is the

disjoint union of all the Wk(r0, . . . , rn) for any n.

Lemma 5.1. Let x = 〈k; r0, . . . , rm, . . . 〉. Then {Gk(r0, . . . rn) : n ∈ ω} is a base for the
neighborhoods of x in (Vk, τk).

9



Proof. Let U = Wk(r0) and let U∗ = Wk(r0, . . . rn). The subalgebra of τk generated by the
sets in Wn

k has the members of Wn
k as its atoms: by Lemma 4.2, each W ∈ Wn

k has no
proper subset in this subalgebra besides ∅. Similarly, if m < n, then the only member of
Wm

k that meets U∗ is Wk(r0, . . . rm) ⊃ U∗.

Now let ` < k. No member of W` contains x. If W ∈ W` meets U∗, let W0 be the unique
member of W0

` that contains W . Then W0 = ZU
i for some i, and U∗ \W contains U∗ \ ZU

i ,
which in turn contains Gk(r0, . . . rp) for a sufficiently large p. In fact, p = max{i, n} will do
if W ∈ Wn

` .

From these particulars, it easily follows that every member of the base of τk generated by⋃
{Wj

` : ` ≤ k, j ≤ n} that contains x will also contain Gk(r0, . . . rq) for a sufficiently large
q. �

Theorem 5.2. For all k > 0, Xk is nowhere dense in Vk.

Proof. Equivalently, Vk is dense in Vk+1 (and hence in V itself). Let x = 〈k; r0, r1, . . . 〉 ∈ Xk.
Let xn = 〈k − 1;σr0(n), r0, r1, . . . 〉 ∈ Xk−1. Then, for all j ∈ ω, xj ∈ Gk(r0, . . . rn) unless

Wk−1 (σr0(j)) = Z
Wk(r0)
i for some i ≤ n. Therefore, Gk(r0, . . . rn) contains all but finitely

many terms of 〈xj : j ∈ ω〉, which therefore converges to x. �

Now we move on to the proof that Vk is metrizable for each k. We will actually prove that
Vk is homeomorphic to B(c) after a pair of preliminary lemmas.

Lemma 5.3. For each k > 0,
⋃
W0

k is a proper subspace of Vk, and
⋃
G0k is a proper subspace

of
⋃
W0

k .

Proof. The only member ofW0
k that could meet a given W = Wk−1(r, r0) is Wk(r0), but that

can only happen if r is one of the σr0(i). This leaves all but countably many Wk−1(r, r0) out
of
⋃
W0

k for each choice of r0. The second conclusion is immediate from a much stronger
one by way of Lemma 4.2: each Gk(r0) ∈ G0k is a proper subspace of Wk(r0) = W because
ZW

0 has been subtracted off. �

Lemma 5.4. For each k, n ∈ ω,
⋃
Gnk is clopen in Vk, and so is

⋃
Gk for all k.

Proof. Clearly,
⋃
Gjk ⊂

⋃
Gik whenever i ≤ j, so

⋃
Gk =

⋃
G0k . If p ∈ Xk, then p ∈

⋃
Gnk

for all n. So let p ∈ X` for some ` < k. If ` = k − 1, then Wk(r0, . . . rn) meets X` in
the balls of the form B`(r−1, r0, . . . , rn), where r−1 = σr0(i) for some i ∈ ω. By induction
on ` [see the Appendix for further details], Wk(r0, . . . rn) meets X` in all balls of the form
B`(r`−k, . . . , r−1, r0, . . . , rn) where, for i > 0, r−i = σr0(i) for some i ∈ ω.

It follows that
⋃
Gnk meets X` in a family D of balls of the form B`(r`−k, . . . , r−1, r0, . . . , rn)

There is a unique ball B = B`(s`−k, . . . , s−1, r0, . . . , rn) in B` for which p ∈ B. If p /∈
⋃
Gnk ,

then B∩
⋃
Gnk = ∅. Then, by Lemma 4.2, B expands to a member ofW (hence of G) disjoint

from all expansions of members of D. So p /∈ c`Vk(
⋃
Gnk ). �

Before proving that each Vk is a copy of B(c), we recall some elementary facts about
B(m), generically defined as Dω where D is an infinite discrete space of cardinality m.
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(1) The product of a copy of B(m) and any nonempty discrete space of cardinality ≤ m is a
copy of B(m). Replace one D factor with D0 ×D, a discrete space of cardinality m.

(2) If C is a nonempty clopen subset of B(m), then C is homeomorphic to B(m). If C = [x]n
this is trivial: if p = 〈ri : i ∈ ω〉 ∈ C, let ϕ(p) = 〈rn+i : i ∈ ω〉. Otherwise, for x ∈ C, let
n(x) = min{n : [x]n ∈ C}. Then, PC = {[x]n(x)+1 : x ∈ C} is a partition of C into m-many
clopen copies of B(m), so that C itself is homeomorphic to B(m).

Criterion (3) A space X is a copy of B(m) if, and only if,

(i) there is a sequence of partitions Pn of X into m clopen sets, and

(ii) each Pn+1 partitions each member of Pn into m clopen sets, and

(iii) If Pn ∈ Pn for all n ∈ ω, and Pn+1 ⊂ Pn for all n, then
⋂
Pn = {x} for a unique

x ∈ X.

(4) If X has a base which is a union of partitions Pn as in (3), then every open cover U of X
can be refined to a partition into members of that base. Instead of defining n(x) as in (2),
let
n(x) = min{n : Pn(x) ⊂ U for some U ∈ U},

where Pn(x) is the unique member of Pn that contains x.

Theorem 5.5. Each Vk is a copy of Baire’s 0-dimensional space B(c) of weight c. Moreover,
each Vk has a base that is the union of partitions into basic open neighborhoods of the form
G`(r0, . . . rn), where ` ≤ k.

Proof. When k = 0, Vk = Xk and Gn0 = Bn0 for all n, and the partitions Gn0 for V0 are as
described.

Assume the theorem is true for k − 1. Let P = {Pk−1n : n ∈ ω} be a sequence of
partitions of Vk−1 into members of Gk−1, with notation as in Criterion (3) except for the
superscript. By the preceding two Lemmas, Vk \

⋃
G0k is a nonempty clopen subset of Vk−1.

Use Lemmas 4.2 and 5.4 and fact (2) above to get a partition P ′0 of Vk \
⋃
G0k into c-many

clopen sets from
⋃
{Pk−1n : n > 0} and let Pk0 = P ′0 ∪ G0k . If Pn−1 has been defined, let

P ′n partition
⋃
Gn−1k \

⋃
Gnk (which is also a clopen subset of Vk−1) into clopen sets from⋃

{Pk−1m : m ≥ n} Let P ′′n partition each member of P ′n ∪P ′′n−1 into c-many clopen sets from⋃
P. Let Pkn = P ′′n ∪ Gnk .

Clearly, the P k
n satisfy (i) and (ii) of Criterion (3). To show (iii), consider the two possi-

bilities for a sequence 〈Pn ∈ Pkn : n ∈ ω〉, with Pn+1 ⊂ Pn for all n.

Case 1. Pn ∈ Gnk for all n.
Let Pn = Gk(r0, . . . , rn). Then Pn+1 ⊂ Pn iff Pn+1 = Gk+1(r0, . . . , rn, rn+1) for some

rn+1 ∈ [0, 1]. Clearly, the Pn close down on the unique x ∈ Xk whose nth coordinate after
the initial k is rn.

Case 2. There exists n such that Pn ∈ P ′′n .
Let n0 be the least such n, then Pn0 ∈ Pk−1m for some m ≥ n0. Then, with Pk−1m replacing
Pn in Criterion (3) (iii), it is immediate that (3)(iii) is witnessed by {Pn : n ∈ ω}. �
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The foregoing proof works even if P ′n is empty for some n, but this cannot happen for all
n, because

⋂∞
n=0

⋃
Gnk = Xk. In fact, it can be shown that P ′n is never empty, but we do not

need this fact anywhere in this paper.

6. The subspace ∇

We now introduce a subspace of V which is the key to the proof in the next section that
V is not countably metacompact (and, alas, the proof that it is not normal).

Definition 6.1. For k ∈ ω, ∇(k) = Xk ∩
⋂∞
n=k

⋃
W0

n, and ∇ =
⋃∞
k=0∇(k).

The proof of Lemma 5.3 shows that already
⋃
W0

1 leaves out a big subspace of X0 = V0,
so it is perhaps noteworthy that ∇(k) is not only nonempty, but is a copy of B(c) for each k.
The following lemmas show that ∇(k) is quite robust, and also give some useful elementary
facts about the basic open subsets of V .

Lemma 6.2. Let k < m ∈ ω. Let Wn(sn) ∈ W0
n when k ≤ n ≤ m, and suppose Wk(sk) ∩

· · · ∩Wm(sm) 6= ∅. Then Wk(sk) ∩ · · · ∩Wm(sm) = Wk(sk, . . . sm), and sn = σsn+1(jn) for
some jn ∈ ω whenever k ≤ n < m.

Proof. It is clear from the definition of Wk(r) that Wk(r) meets Wk−1(r
′) if, and only if,

r′ = σr(i) for some i ∈ ω, and that Wk(r) ∩Wk−1(r
′) = Wk−1(r

′, r). A shift in notation
shows this for all pairs 〈Wn(sn),Wn+1(sn+1)〉, k ≤ n < m.

To show that the intersection of all the Wn(sn) is Wk(sk, . . . sm), we use induction on
` = m − k. We have it for ` = 1. Suppose it is true for ` = n. A shift in notation gives⋂n+1
i=k+1Wi(si) = Wk(sk+1, . . . sn+1). From Lemma 4.2, it quickly follows that if Wk(sk, . . . sn)

meets Wk−1(s), then it meets it in Wk−1(s, sk, . . . sn). Another shift in notation (si →
si+1, k → k + 1, s→ sk) gives us

Wk(sk+1, . . . sn+1) = Wk+1(sk+1, sn+1) ∩Wk(sk) =
n+1⋂
i=k

Wi(si).

So now we have it for ` = n+ 1. �

The converse is trivial; in fact:

Lemma 6.3. Let k < m ∈ ω, and suppose there exists n ∈ [k,m) ∩ ω such that sn /∈
{σn+1(i) : i ∈ ω}. Then

⋂n
j=kWj(sj) = ∅.

Proof. Take the first two sentences in the preceding proof. �

The following criterion plays a key role in the following theorem, and also in the next
section.

Lemma 6.4. Let x = 〈k; r0, . . . , rn, . . . 〉. Then x ∈ ∇(k) iff for each n, rn = σrn+1(jn) for
some jn ∈ ω.

Proof. Clearly, x ∈ ∇(k) iff for each ` ∈ ω, there is a (unique, by Lemma 4.2) member
Wk+`(s`) of W0

k+` such that x ∈ W (s`). Now use Lemmas 6.2 and 6.3. �

Theorem 6.5. For each k, ∇(k) and ∇∩ Vk are homeomorphic to the Baire space B(c).
12



Proof. We will use partitions of Xk and Vk into basic clopen subsets Bk(r0, . . . , rn) and
Gk(r0, . . . , rn) in their relative topologies, identifying the ones that meet ∇, and show that
their intersections with ∇ satisfy the conditions of Criterion (3) leading up to Theorem 5.5.

Let N n
k be the set of all members of Bnk that meet ∇(k). It follows from Lemma 6.4 that

Bk(r0, . . . , rn) ∈ N n
k if, and only if, rn−i = σn−i+1(ji) for some (unique) ji and 0 < i ≤ n. In

particular, every member of B0
k meets ∇.

If Bk(r0, . . . , rn) ∈ N n
k , then there are c-many t ∈ [0, 1] such that rn = σt(in) for a (unique)

in: they are the ones for which rn is in the range of σt. By induction, one obtains a tree 2

of sequences (r0, . . . , rn, tn+1, . . . , tn+m) for each m ∈ ω with each choice of such t for n + 1
and their counterparts up to n + m. The union of any ω-sequence of such extensions that
agree on common domains gives a (unique) point of ∇(k) by Lemma 6.4.

One conclusion is that N 0
k = B0

k. Another is that each member of N n
k splits into c-many

members of N n+1
k . Finally, each nested sequence of Bn ∈ N n

k as n → ∞ closes down on a
singleton of ∇(k).

Therefore, if we let Pn = {B ∩ ∇ : B ∈ N n
k }, then {Pn : n ∈ ω} satisfies all three

conditions in criterion (3) of the proof of Theorem 5.5, and thus ∇(k) is homeomorphic to
B(c).

In the proof of Theorem 5.5, the Pkn can take the place of Bnk above in defining N n
k , and

the proofs go through with obvious changes in notation. The key thing to observe is that
if G = G`(r0, . . . rn) meets ∇, and G is split into c-many basic clopen sets, then c-many of
those clopen sets also meet ∇. Hence Vn ∩∇ is a copy of B(c). �

7. X is neither normal nor countably metacompact

The first lemma in this section features a family D of closed sets that is discrete in Vk and
remains discrete all the way down through Vk+n. But then it acquires so many limit points
in Vk+n+1 that it leads to a theorem that V is strongly almost Dowker, and gives part of the
proof that V fails to be normal.

Lemma 7.1. Let D be a denumerable subfamily of Bnk for some fixed k and n. For each
subfamily D′ of D, let C(D′) = c`V (

⋃
D′ ∩∇). Suppose that D ∩∇ 6= ∅ for all D ∈ D, and

that no two members of D meet the same member of W0
k+`, 0 ≤ ` ≤ n. If D0 and D1 are

infinite subcollections of D, then C(D0) ∩ C(D1) meets every set of the form Fm.

Proof. Let {Dj : j ∈ ω} be a 1-1 listing of D, and let Di = {Dj : j ∈ Ai} for i = 0, 1.

Case 1. n = 0, so that Dj = Bk(r
j
0) and ri0 6= rj0 if i 6= j. In this case the “no two of

which. . . ” clause is vacuously true, and the proof does not involve ∇.

Let {σsα : α ∈ Γ} list an infinite family of sequences, with sα 6= sβ when α 6= β, such that

ran(σsα includes infinitely many rj0 for which j ∈ Ai(i = 0, 1). Given j, Dj = Bk(σsα(hj))

for some hj ∈ ω, and Wk+1(sα) meets infinitely many Dj in Bk(σsα , sα) = Bk(r
j
0, sα).

2The set-theoretic definitions of “tree” and “branch” are given in the Appendix [Definition A.1.]
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More generally, Wk+1(sα, r1, . . . , rm) meets infinitely many members of both D0 and D1

for each choice of (sα, r1, . . . , rm); and Gk+1(sα, r1, . . . , rm) meets all but finitely many of
these members. Therefore, every point of Bk+1(sα, r1, . . . , rm) and hence of Bk+1(sα) is in
the closure of both

⋃
D0 and

⋃
D1.

At this point, we have up to c-many balls Bk+1(sα) ∈ B0
k+1 at our disposal, and any

denumerable subfamily can be treated just like D, with k+1 in place of k. However, there is
no need to split the subfamily up, because every member is in C(D0)∩C(D1). So a simpler
argument produces c-many members of B0

k+2 inside C(D0)∩C(D1), and then, by induction,
c-many members of B0

k+m for all m.

Case 2. n > 0. In this case, the following notation is helpful. As in the proof of Lemma
5.4, each D ∈ D can be written as Bk(r−n, . . . , r−1, r0), where r−i = σr−i+1

(`i) for some
`i ∈ ω. (This is where D ∩ ∇ 6= ∅ comes in.) The condition “no two members of D
. . . ” ensures that no infinite subfamily D′ of D meets only finitely many members of Wk+`

for some ` ≤ n. (That would imply that C(D′) does not meet Xm for m > k + `.) Let
Dj = Bk(r

j
−n, . . . , r

j
−1, r

j
0). This same condition is equivalent to rj0 6= ri0 for i 6= j, together

with rj−i = σr−i+1
(hij) for a unique hij whenever 0 < i ≤ n.

Now if W ∈ W 0
k+`, and W ∩ Dj 6= ∅, then W ∩ Xk = Bk(r

j
`−n, . . . , r

j
−1, r0), and W =

Wk+`(r
j
`−n). Since Dj ∩ ∇ 6= ∅, Dj meets at least one member of W0

k+` for all ` ∈ ω. When

` = n, Dj = Wk+n(rj0) ∩Xk. Now the induction can proceed as in Case 1, with the various

Bk(r
j
0) replaced by Bk+n(rj0) with subscripts appropriately shifted. These balls are no longer

equal to the Dj, so it is good to write D′j instead and use D′ instead of D etc. �

Lemma 7.2. If U0 and U1 are uncountable families of disjoint members of Bk, such that
each member of U0 ∪ U1 meets ∇, and no two members of U0 ∪ U1 are in the same member
of B0

k, then there are denumerable subsets Di of Ui such that C(D0)∩C(D1) meets every set
of the form Fm.

Proof. We may assume that there exists n such that U0 ∪ U1 ⊂ Bnk . Indeed, by cutting
down on Ui if necessary, we have n0 and n1 such that U0 ⊂ Bn0

k and U1 ⊂ Bn1
k . Let

n = max{n0, n1}. For each U ∈ U0 ∪ U1 let H(U) ⊂ U be a member of Bn
k that meets ∇,

and let U ′i = {H(U) : U ∈ Ui} for i = 0, 1. Then if Lemma 7.2 is witnessed by U ′0 and U ′1,
then it is clearly witnessed by U0 and U1.

Arbitrarily choose D0 = Bk(r
0
0, . . . , r

0
n) ∈ U0. As can be seen from the proof of Lemma 6.2,

the unique member ofWk+n that meets D0 is Wk+n(r0n). Then Wk+n(r0n)∩Xk is the union of
all sets of the form Bk(s0, . . . , sn−1, r

0
n) where, as usual, each term but the last is one of ℵ0

possibilities for each possible term to its immediate right. So we can choose D1 ∈ U1 outside
this set of possible Bk(s0, . . . , sn−1, r

0
n).

In general, if Di = Bk(r
i
0, . . . , r

i
n) has been chosen from U0 ∪ U1 for all i < j, and j is

even, there are only countably many sets of the form Bk(s0, . . . , sn−1, r
i
n) altogether, and we

can choose Dj ∈ U1 from outside this set. Similarly choose Dj from U0 if j is odd. Let
D = {Dj : j ∈ ω}. Then D is as in Lemma 7.1 and Di = {Dj : j ≡ i mod 2, j ∈ ω} is as
desired. �
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Remark 7.3. It takes very little extra work to continue the building up of D to the point
where |D| = |B| as long as B ⊂ Bnk for fixed k and n. (Otherwise, singular cardinals of
countable cofinality complicate the proof.) But the special case where |D| = ℵ0 is all that is
needed in this paper.

Theorem 7.4. V is not countably metacompact.

Proof. Let Un be an open set containing Fn = V \ Vn. We show that X0 ∩
⋂∞
n=0 Un 6= ∅, and

this will complete the proof.

Suppose the intersection is empty. By the Baire Category Theorem, ∇(0) \ (U0 ∩ · · · ∩
Un) has nonempty interior in its relative topology for some n. In fact, there exists n and
uncountably many sα ∈ [0, 1] such that ∇(0)∩W0(sα)\ (U0∩· · ·∩Un) has nonempty relative
interior. This gives uncountably many members of B0 that satisfy the hypotheses of Lemma
7.2, contradicting the hypothesis that Fn is a subset of the open set U0 ∩ · · · ∩ Un. �

Corollary 7.5. V is strongly almost Dowker.

Proof. By Theorems 5.2 and 7.4. �

Lemma 7.6. There is a closed discrete subspace of X0 ∩∇ of cardinality c such that no two
are in the same member of W0

0 .

Proof. We define the closed discrete D = {dα : α < c} by induction, with a subsidiary
induction on each coordinate. Let d0 ∈ W0(0) ∩ ∇ be arbitrary. If dα has been chosen for
all α < β, let dα(k) stand for rαk in dα = 〈0; rα0 , r

α
1 , . . . 〉. By the argument in Lemma 6.2,

dα(k) = rαk identifies the unique W ∈ W0
k that contains dα: W = Wk(r

α
k ). Let

Aβk =
⋃
{ran(σdα(k)) : α < β}

and let dβ(0) /∈ Aβ1 . Since |Aβ1 | < c this is easy.

If dβ(k) has been chosen, let Cβ
k = {dα(k) : α < β}. Let dβ(k+ 1) = r satisy (1) r /∈ Aβk+2;

(2) ran(σr) ∩ Cβ
k = ∅ and (3) dβ(k) = σr(i) for some i ∈ ω. All this is easily done: the

countable range of σr need only avoid Cβ
k and contain dβ(k), and even though r is outside

Aβk+2, there are c-many possible r.

Obviously, D is discrete: if α 6= β, then dα(0) 6= dβ(0), which puts dα and dβ into different
members of W0

0 .

To show that D is closed, let p = 〈k; r0, . . . , rn, . . . 〉 ∈ Xk. Then p ∈ Wk(r0). If dα ∈
Wk(r0), then

dα = 〈0; r−k, . . . , r−1, r0, . . . , rn, . . . 〉 and rαi = ri+k for all i.

where r−i ∈ ran(σr−i+1
), because dα ∈ ∇ and because of the inductive construction of

Wk(r0). But then r1 = dα(k+ 1), and this can be true of at most one α. If such an α exists,
let W = Wk(r0) and let W0(r−k) = ZW

n . Then dα is not in the neighborhood Gk(r0, . . . , rn)
of p. �
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Definition 7.7. An open expansion of a subset A in a space X is a family {Ua : a ∈ A}
of open sets such that Ua ∩ A = {a}. Let κ be a cardinal number. A space X is strongly
κ-collectionwise Hausdorff (abbreviated strongly κ-cwH) if every closed discrete subspace
D of cardinality ≤ κ has a discrete open expansion. A space X is strongly collectionwise
Hausdorff (strongly cwH) iff it is strongly |X|-cwH.

The definitions of κ-collectionwise Hausdorff (κ-cwH) and collectionwise Hausdorff (cwH)
are obtained by replacing “discrete open expansion” with “disjoint open expansion”. G. M.
Reed [21] and others have shown that every normal Reed space is cwH (and, by an elementary
exercise using normality, strongly cwH). On the other hand, none of Examples 2.14 through
2.16 is cwH. I do not know whether V is cwH, but:

Theorem 7.8. V is neither strongly ℵ1-cwH nor normal.

Proof. This follows routinely from Lemma 7.2 and the proof of Lemma 7.6, where D was
chosen so that no two points of D are in the same member of W0

m for all m ∈ ω. Let D′

be an ℵ1-cardinality subset of the closed discrete subspace of a D of this special sort. Let
U = {Ud : d ∈ D′} be a disjoint open expansion of the singletons of D′, that is, Ud∩D′ = {d}.
We may assume that U ⊂ W0 = G0 = B0. Then, letting U = U0 = U1 in Lemma 7.2, one
can see how badly U fails to be discrete.

To show that V is not normal, let E0 and E1 be uncountable disjoint subsets of D′, and
let G0 and G1 be open subsets of V0 containing E0 and E1 respectively. Without loss of
generality, we may assume that each Gi is the union of a disjoint expansion Ui of Ei into
basic open subsets of V0. Then U0 and U1 are as in Lemma 7.2. So, if Di ⊂ {Ud : d ∈ Ei}, it
follows that G0 ∪G1 meets every set of the form Fn, contradicting normality of V . �

8. Notes on “almost Dowker” spaces

Countable metacompactness is such a weak property that Brian M. Scott coined the term
“almost Dowker space” for a regular space that is not countably metacompact [24]. However,
he overlooked several published examples, including two by J. Chaber [4], one of which (called
Y4) is a Reed space 3. Two more “almost Dowker” spaces [5, Examples 3.2 and 3.3] were
found by Gary Gruenhage in the same year. The second was shown to have a σ-locally
countable base in [10] and by G.M. Reed [21] to be a Reed space.

Like most published non-normal “almost Dowker” spaces, Chaber’s Y4 and Gruenhage’s
two examples in [5] each have a countable discrete collection of closed subsets Cn such that
if Fk =

⋃∞
n=k Cn, and Gk is an open set containing Fk, then

⋂∞
k=0Gk 6= ∅ even though,

obviously, Fk ↓ ∅. Hence, by Lemma 2.6 they are “almost Dowker.” However, they fail
very badly to be Dowker: were there disjoint open subsets Un ⊃ Cn, it would follow that
Fk ⊂ Gk =

⋃∞
n=k Un and Gk ↓ ∅, a contradiction. So one might call such spaces “barely

almost Dowker.”

Strongly almost Dowker spaces, like V , are at the opposite extreme. These include all
Dowker spaces of which I am aware:

3In the description of Y4 in [4], the sets P ∗ ∪Aq are metrizable for each q ∈ Q, and open in Y4. However,
the union of any two of these subspaces is not normal: Aq and Aq′ are disjoint closed subsets of Y4 if q 6= q′,
but cannot be expanded to disjoint open subsets.
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Problem 6. Is every Dowker space strongly Dowker?

Other examples of strongly almost Dowker spaces include the published examples of lin-
early Lindelöf spaces and of (consistent) weakly first countable, not first countable compact
spaces. For surveys of these spaces, see [19] and [15], respectively. Here, the following
theorem is of immediate interest:

Theorem 8.1. Every nonmetrizable normal monotonic Reed space is strongly Dowker.

Proof. Let X =
⋃∞
k=0Mk, where each Mk is an open metrizable subspace of X, and Mk ⊂

Mk+1 for all k. The hypothesis that X is nonmetrizable is equivalent to the statement that
{Fk = X \Mk : k ∈ ω} is a witness to X being Dowker. This is clear from Theorem 2.5,
Corollary 2.7, and Remark 2.8.

We will replace each Mk by an open metrizable subspace M∗
k containing Mk, such that

M∗
0 is dense in X, and such that {F ∗k = X \M∗

k : k ∈ ω} is a witness to X being strongly
Dowker. This will complete the proof of Theorem 8.1 and also justify the comments after
Definition 3.1.

For k > 0, let Wk = Mk \ Mk−1, where the overhead bar means closure in X. Let
M∗

0 = M0 ∪
⋃∞
k=1Wk. Including M0, this is the union of a collection of disjoint open

metrizable subsets of X, so M∗
0 is metrizable. It is also dense in X. To show this, let

M1
k = Mk \ (W1∪· · ·∪Wk) for all k > 0. Then Fk∩Mk = ∅, and for k > 0, X \M∗

OFk∩Mk+1

is the disjoint union of M1
k+1 and Wk+1, because Fk∩Wj = ∅} for all j ≤ k. Let F 1

k = Fk\M∗
0

for all k > 0. Then

F 1
k = Fk \

∞⋃
`=k

W` =
∞⋃
`=k

M1
k .

Let F ∗0 = F0 \M∗
0 = F 1

1 . An easy induction shows that F 1
k ∩Mk+1 is nowhere dense in Mk+1,

and so F ∗0 is nowhere dense in X, and M∗
0 is a dense open subspace of X.

The closed subspaces F 1
k are enough to witness that X is almost Dowker. Indeed, if Hk

is an open set containing F 1
k for each k, and

⋂∞
k=1Hk = ∅, then Gk = Hk ∪

⋃∞
j=k+1Wj is an

open set containing Fk. Since the Wk are disjoint,
⋂∞
k=1Gk = ∅, a contradiction.

A subtle point here is that X \M∗
0 meets Fk for every k (and hence F 1

k 6= ∅ for all k.
Indeed, were (X \M∗

0 ) ∩ Fk empty for some k (hence for all n > k), then X would be the
union of the open metrizable subspaces M∗

0 and Mk, making X metrizable by Corollary 2.13.
[This is the only place where normality of X comes in at this stage, but it also shows up in
analogous places in the treatment of M∗

k for k > 0.]

The process that produced M∗
0 and the subspaces F 1

k (including F 1
1 = F ∗0 ) can be applied

to F ∗0 in place of X, giving relatively open subspaces W 1
k = M1

k \ Mk−1 (k > 1), and
M∗

1 = M∗
0 ∪

⋃∞
k=2W

1
k . Also, F 2

k = F 1
k \M∗

1 , and F 2
2 = F ∗1 = F 1

1M∗
1. This sets the pattern

for stage n, with W n
k and M∗

n and F n+1
k and F ∗n .

However, there are new complications already with n = 1. This is because F ∗0 is nowhere
dense in X. So, although the W 1

k are disjoint relatively clopen sets in F ∗0 , and
⋃∞
k=2W

1
k

(the complement of M∗
0 in M∗

1 ) is thus metrizable, they are a disjoint family of relatively
17



closed, nowhere dense sets in M∗
1 . This is reminiscent of the “barely almost Dowker” spaces.

However, the placement of the various W 1
k makes the following claim go through.

Claim. M∗
1 is metrizable.

Once the claim is proved, the inductive definition of M∗
n can proceed for all n, with the

proof of metrizability of M∗
1 modified for later n only by obvious changes in subscripts and

superscripts.

Proof of Claim. Each W 1
k is a relatively closed subspace of M∗

1 , and a subset of Mk. It is
therefore disjoint from the relatively closed subspace Mk+1 \Mk of Mk+1. Hence we can put
W 1
k and M∗

1 ∩ (Mk+1 \Mk into disjoint open subsets of M∗
1 ∩ (Mk+1. We use induction on

k ≥ 2.

Let G2 and H2 be disjoint open subsets of M3 containing W 1
2 and M3 \M2 respectively,

with G2 ⊂M∗
1 . Next, W 1

3 is a subset of M1
3 \M1

2 = M3 \M2∪W2; in particular, it is disjoint
from M2. Let G3 and H3 be defined like G2 and H2, but with the additional condition
that G3 ⊂ H2. This sets the pattern for the remaining Gn and Hn, with obvious subscript
changes.

Now the Gn are disjoint open subsets of M∗
1 , and they are a discrete family, because each

point of X has a neighborhood meeting only finitely many of the Mn, hence finitely many
of the Gn. Thus M∗

1 has a locally finite open cover {M∗
0} ∪ {Gn : n ≥ 2}, and each member

of the cover has a σ-locally finite open base, and so it is metrizable.

The proof for going from M∗
n to M∗

n+1 is a straightforward generalization of the foregoing
proof, if one keeps working with the original Mn where they appeared above. �

An important feature of this proof is that the M∗
n are metrizable. This ensures that any

normal monotonic Reed space fits the description in Section 3 that implied the three bullet
points in the Ind(X) = 0 case. It is not necessary to know a priori whether the space is
metrizable or not.

The proof of Theorem 8.1 can be easily adapted to show a more general theorem.

Theorem 8.2. If a normal space X is the ascending union of an ω-sequence of normal,
countably paracompact open subspaces, then X is either countably paracompact or strongly
Dowker.

Outline of proof. The chief modification is to shrink the open Gm to open sets G′m such that
Wm
k ⊂ Gm and c`Mm+1(G

′
m) ⊂ Gm. In this way, the open covers {M∗

n−1} ∪ {Gm : m > n} of
M∗

n are not only discrete, they can be used to show that every countable open cover of M∗
n

has a locally finite open refinement. Details are left to the reader. �

For this theorem, it is not necessary for M∗
n itself to be normal. In other words, the new

ascending open cover need not itself satisfy the hypotheses of the theorem. Whether it can
actually fail to do so is an open question.

18



9. Future directions

Recall thatM stands for the class of monotonic Reed spaces, and ZM for the subclass of
the X ∈ M that satisfy Ind(Mn) = 0 for all Mn in an ascending union of open metrizable
spaces whose union is X.

It is too early to tell how representative ZM is of the whole class M, but the fact that
Theorem 8.1 referred to all spaces in M is encouraging, as is Morita’s classic theorem that
every metrizable space of infinite weight m is a perfect image of a subspace of Baire’s zero-
dimensional space B(m). [8, Exercise 4.4.J].

The main example V is a good starting point for future research on ZM. This research
must contend with the many features that the spaces in ZM have in common with V , as
well as with the extra features of V that made normality fail so badly.

Turning to the common features first, the proof of Theorem 8.1 shows that all three bullet
points in Section 3 hold for normal spaces in ZM. We revert to the notation used in the
bullet points, but we can also adopt some later notation if it helps to compare various spaces
in ZM to V . For example:

(A) Each Xk can have a simple expression as a subspace of {k}×Dω. The canonical partitions
P ′k(n) [see the third bullet point] can be labeled as Bnk and their union as Bk, a base for the
relative topology on Xk.

(B) If |D| ≤ c, D can be identified with a subset of R with the discrete topology, and the
notation Bk(r0, . . . , rn) used for members of Bnk . Of course, sometimes a slightly different
choice is more natural, as in Example 9.3 below.

(C) By the first bullet point, any open set G containing any B ∈ Bnk meets every X`,
0 ≤ ` < k in a relatively open set which is not relatively closed since it has limit points in
Xk. By the second bullet point, it can be defined as a union of members of B`.

Other standard properties of subspaces of B(m) give us additional structure.

(D) Once Mk−1 has been identified with a subspace of B(m), the members of Bk are closed
in the relative topology of Mk, and each Bnk is a discrete collection there. Then there is an
expansion of Bk to a discrete collection of clopen subsets of Mk, while the rest of Mk is given
a partition as in Theorem 5.5. Careful choice of these clopen sets, and of partitions of the
complement of the union of each one, can then produce the Pk(n) ∩Mk of the third bullet
point.

The variation between members of ZM is due to in part to which subspaces of Dω the Xk

are copies of, but even more to the way the analogues of σ influence the way the members
Bnk attach members of the B` for which ` < k.

Where subspaces are concerned, the following theorem of G.M. Reed puts a consistent
constraint on the cardinality of a counterexample to Problem 1 (the Normal Reed Space
Problem).

Theorem 9.1. [21] If b = c, then every normal Reed space of cardinality < c is metrizable.
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The cardinal b is one of many “small uncountable” cardinal numbers ≤ c studied in depth
in [6] and [27]. Martin’s Axiom (MA) implies that b = c, and there are a wide variety of
forcing models in which it holds, and where c can be “arbitrarily large,” including models of
MA.

The technique of producing attachments in the main example V is among the simplest:
σ depended only on the members of B0

k. The way the earlier X` were met by the attach-
ments was determined by the way the attached members of B1

k−1 expanded to a collection
of relatively clopen subsets of Vk−1. The 0 → 1 transition was the simplest way to ensure
that the members of B0

k−1 would get “tied together” while keeping the expansions of distinct
members of B0

k disjoint.

There is plenty of room for variation on this technique, including the use of separate σ’s
for each Bnk as k and n vary. The high degree of self-similarity of V greatly simplified that
technique, and the taking of the Boolean generated by the (already tight) way that σ “tied
together” the B0

k as tightly as metrizability of the Vk allowed. The technique can easily be
varied in the way expansions of the Bnk split up the expansions of the B0

k that they refined,
and the way those depended on the expansions of earlier Bn+`−k` .

As it stands, σ ties together the B0
k far more tightly than is needed to destroy countable

metacompactness, yet not tightly enough to prevent the existence of closed discrete subspaces
of cardinality c as critically placed as the points of D in the proof of Lemma 7.6: compare
the first sentence in the proof of Theorem 7.8 with the hypothesis of Lemma 7.1.

One strategy for obtaining normality would be to impede the process that produced D in
Lemma 7.6 by making the counterparts of most σr into c-sequences rather than ω-sequences.
But then, forMk to be metrizable, the members of B0

k have to beGδ-sets, and this complicates
the process. A simpler process, at the outset at least, is to tie things together more loosely
in hopes of defining expansions of the singletons of D that give a discrete collection of open
sets. There are a number of axioms of set theory that require that normal first countable
spaces to be collectionwise Hausdorff (cwH), and cwH + normal =⇒ strongly cwH. So this
is an important first step in any effort to define a nonmetrizable normal Reed space just
from the ZFC axioms.

One method of loosening the grip of σ, so to speak, is to use the following concept, which
has a long history of use in set theory and in set-theoretic topology.

Definition 9.2. Given a limit ordinal α, a ladder at α is a strictly ascending sequence of
ordinals less than α whose supremum is α. Given an ordinal θ, a ladder system on θ is a
family

L = {Lα : α ∈ θ, α is a limit ordinal of countable cofin ality}
where each Lα is a ladder at α.

We will use the symbol Λ for the set of countable limit ordinals.
The best known ladder systems have θ = ω1, partly because then all limit ordinals < θ

can be used, but more so because there are many ZFC-independent axioms that influence
what can be done with them.
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Example 9.3. For each k ∈ ω let Xk = {k}× (Λ(k−1))ω, where Λ(− 1) = ω1, and otherwise
the superscript (k) denotes the kth Cantor-Bendixson derivative, with Λ(0) = Λ, and Λ(k+1)

as the set of nonisolated points in the relative topology of Λ(k). The restriction as k grows is
to ensure that Xk is nowhere dense in Yk =

⋃k
i=0Xi under the following topology whenever

k > 0 . Let L be a ladder system on ω1, with the restriction that Lν is a subset of Λ(k−1) for
all ν ∈ Λ(k). Similarly to V , let Bk(ν0, . . . , νn) = {x ∈ Xk : x(i) = νi for all i ≤ n} and let

W1(ν) = B1(ν) ∪
∞⋃
i=0

W0(Lν(i), ν)

and, in general,

Wk(ν0, . . . , νn) = Bk(ν0, . . . , νn) ∪
∞⋃
i=0

Wk−1(Lν(i), ν0, . . . , νn)(i).

Thus Lν plays the role that σr played for V . As with V , a base for the topology on
Y =

⋃∞
i=0Xk is the Boolean algebra generated by these Wk(ν0, . . . , νn) as k and n range over

ω.

The looseness of Example 9.3 can lead to very different kinds of behavior, depending on
the ladders chosen and on which axioms beyond ZFC (if any) are chosen. But before going
further, a cautionary note: if weight could be substituted for cardinality in Theorem 9.1, this
would mean that Example 9.3 cannot be a nonmetrizable normal Reed space under b = c
unless we assume CH. Of course, one could modify Example 9.3 by making |θ| = c instead
of θ = ω1.

The following well-known axiom has the effect of Example 9.3 being “too tight”:

Axiom 9.4. Axiom ♣ states that there is a ladder system L on ω1 such that, for any
uncountable subset S of ω1, there is Lα ∈ L such that Lα ⊂ S.

Any L as in ♣ actually has the stronger property: Lα ⊂ S for a stationary (hence
uncountable) set of α’s. This makes Example 9.3 strongly almost Dowker, but it will also be
non-normal: the arguments for Lemma 7.2 and Lemma 7.6 go through with relatively minor
modifications. Details will appear in a forthcoming paper.

This is not to say that a modification of Example 9.3 under ♣ cannot produce a nonmetriz-
able Reed space. A more generous cutting down of the Wk(ν0) in the refinements Wk(ν)
to produce Gk(ν) than the one in Example 9.3 may be worth pursuing. Given the failure
of even Rudin and Balogh to find a counterexample under the less demanding Problem 2,
under the much stronger axiom ♦+, a consistent counterexample under ♣ even to Problem
2 would be a remarkable achievement.

Other axioms make Example 9.3 much looser, and may give a better chance at a coun-
terexample for Problem 1. Looseness is obvious under MAω1 . A well known consequence of
MAω1 is that, for each ladder system L on ω1, there is a partition P of ω1 into countably
many subsets such that each one meets each ladder in a finite set. This has the effect of
making W0

0 a σ-discrete collection in M1. However, in M2, the discreteness of many of the
Pj ∈ P will be lost. All it takes to destroy discreteness in M2 is one ladder Lα = {αn : n ∈ ω}
for which some Pj meets infinitely many of the Lαn . As of this writing, the issue of whether
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Example 9.3 must be metrizable under MAω1 is still unsettled. This is also the case with the
stronger axiom PFA, despite [1, Theorem 3.6], which has the following immediate corollary:

Corollary 9.5. [PFA] For each ladder system L on ω1, there is a club subset C of ω1 such
that C ∩ Lα is finite for all α ∈ C.

As James Baumgartner put it in a workshop lecture at SETOP (1980), “This doesn’t just
kill ♣, it stomps it into the ground.”

Other axioms may have implications for other kinds of spaces in ZM. The choice of
[0, 1]D in V was motivated by the following measure. Let W ⊂ W 0

k . Let

µ(W) =
( 1

2k
)
µ̃({r : Wk(r) ∈ W})

where µ̃ is an extension of Lebesgue measure on [0, 1] to all subsets of [0, 1]. Such an extension
is equiconsistent with that of an uncountable measurable cardinal number. Extend µ to
subsets of Wn

k of the form R = {Wk(r0, . . . rn) : ri ∈ Ai} (“rectangular polytopes”), by
letting µ(R) = (1/2k)Πn

i=0µ̃(Ai). Then extend µ to all subcollections of W and thence to
all subsets of Xk using what is known as“Fischer’s axiom,” which states that all countably
additive measures on a set can be extended to a countably additive measure for all subsets of
X. Fischer’s axiom is equiconsistent with that of a strongly compact cardinal number. This
suggests the use of µ instead of the Baire Category Theorem (as in the proof of Theorem
7.4) for refuting countable metacompactness for various spaces in ZM.

Appendix: Trees for W and G

Each basic open set in Wk and Gk meets the sets X` (` ≤ k) in subsets that form a tree
of height k + 1 in a natural way.

Definition A.1. A tree is a partially ordered set (T,≤) in which the predecessors of each
element are well-ordered. The minimal elements of a tree T constitute level 0, denoted T (0).
Given T (α) for all α < β, level β consists of the minimal level of T \

⋃
{T (α) : α < β}.

The height of T , denoted h(T ), is the least γ such that T (γ) is empty. If h(T ) is a successor
α + 1, then a leaf of T is an element of T (α).

Since our trees will be of finite height, they will always have a maximum nonempty level.

Given a basic open set of the form Wk(r0), we define its associated tree Tk(r0) as follows.
Writing T for Tk(r0), the 0th level T (0) is the singleton {Bk(r0)}(= {Wk(r0) ∩Xk}. Then

T (1) = {Bk−1(σr0(i), r0) : i ∈ ω}.
Clearly,

⋃
T (1) = Wk(r0) ∩Xk−1. In general, given ` < k,

T (k − `) = {B`(r`−k, . . . , r−1, r0) : rj = σrj+1
(ij) for some ij ∈ ω}, `− k ≤ j < 0}. (1)

The order ≤ on Tk(r0) is that of “roping”: Bk(r0) ropes all the Bk−1(σr0(i), r0), which are
thus its immediate successors in T = Tk(r0). Given i ∈ ω, let r−1 = σr0(i). Then if k > 1,
the immediate successors of Bk−1(r−1, r0) are the sets of the form Bk−1(r−1, r0), and so forth.
The top nonempty level of T is T (k), and

⋃
T (k − `) = Wk(r0) ∩X` for all ` ≤ k.

Definition A.2. A branch of a tree is a maximal chain, i.e., totally ordered subset.
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Each branch of Tk(r0) is determined by its leaf (topmost node), B0(r−k, . . . r−1, r0). T(r0)
is order-isomorphic to the full ω-ary binary tree of height k + 1. The immediate successors
of each node indexed by (rh, . . . , r0) are the nodes indexed by (σrh(i), rh, . . . , r0).

The tree that goes with Gk(r0) is obtained by a process of “clipping” Tk(r0) at various
nodes. If B is a removed node, then all nodes B′ above B are removed along with it. The
clipped nodes are determined by ZW

0 , where W = Wk(r0). The simplest case is where ZW
0 ∈

Wk−1, and one could make ZW
0 = Wk−1(σr0(0)). Then ZW

0 meets Wk(r0) in Wk−1(σr0(0), r0),
and then this basic open set is removed to give Gk(r0) = Wk(r0) \ ZW

0 .

If instead we let ZW
0 ∈ Wk−` for ` > 1, we may find ourselves clipping Tk(r0) in infinitely

many places, as in the following example.

Example A.3. Let k = 2 and W = W2(r0). Let σr0(i) = 2−i for all i ∈ ω. For each i,
let σ2−i(0) = 0. Then each B0(0, 2

−i, r0) = W0(0, 2
−i, r0) is a “leaf” of T2(r0). If we make

ZW
0 = W0(0), then all these leaves are clipped away in W2(r0) \ ZW

0 = G(r0).

More generally, when k > 2 and we let ZW
0 = Wk−2(0), and σr0 and σ2−i are as before, the

clipped nodes are the Bk−2(0, 2
−i, r0). These nodes no longer equal Wk−2(0, 2

−i, r0), which
are the basic clopen sets that are actually removed from Wk(r0) = W by ZW

0 to produce
Gk(r0).

The tree Tk(r0) is easily generalized to Tk(r0, . . . , rn for all n and is left as an exercise for
the reader. The only really new feature is dealing with ZW

0 through ZW
n , not just ZW

0 alone.
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