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Definition 0.1. Let S be an uncountable set. A Kurepa family on S is a
collection K of countable subsets of S such that |K ↾ A| ≤ ω for all countable sets
A. A Kurepa family K on S is called cofinal if it is cofinal in the poset [S]ω.

Kurepa families can also be defined without reference to the set S. In that case,
a Kurepa family is called “cofinal” if it is cofinal in the poset ([

⋃
K]ω,⊂). This is

the approach taken in [7].

Cofinal Kurepa families on ωn can be constructed in ZFC by induction for all
n < ω [7]. To obtain one of cardinality ℵω or of higher cardinality apparently
requires more than just ZFC: there is a model constructed using a 2-huge cardinal
in which there is an unattained upper bound of ℵω on their size. See Theorem 2.3
of [5] and Theorem 4.2 below.

One of the main results of this paper is a necessary and sufficient topological con-
dition for the existence of cofinal Kurepa families on arbitrarily large sets [Theorem
1.2 below].

All through this paper, “space” means “Hausdorff space.”

1. A topological equivalence

Lemma 1.1. Let ν be an uncountable cardinal. If µ = cf [ν]ω and there is a cofinal
Kurepa family N on ν then |N | = µ = cf [µ]ω and there is a cofinal Kurepa family
(of cardinality µ) on µ.

Proof. Suppose there is a cofinal Kurepa family N ⊂ [ν]ω. Let C by any cofinal
subfamily of [ν]ω. Then N ⊂ {N ∩C : N ∈ N , C ∈ C}, hence |N | ≤ ω · |C|. Letting
|C| = µ thus gives |N | ≤ µ, and cofinality of N gives |N | = µ.

Closing a Kurepa family under finite intersection yields a Kurepa family of the
same cardinality, so we may assume N = {Nα : α ∈ µ} is closed under finite
intersection. For each N ∈ N let m(N) = {α : Nα ⊂ N}. Since N is a Kurepa
family, m(N) is a countable subset of µ. Also, m(N1 ∩N2) = m(N1) ∩m(N2) and
so K = {m(N) : N ∈ N and m(N) is infinite} is a Kurepa family of cardinality
no greater than µ. To show that K is cofinal in [µ]ω and hence of cardinality ≥ µ,
let M be a countable subset of µ and let N(M) be a member of N containing⋃
{Nα : α ∈M}. Then clearly M ⊂ m(N(M)). �

Can we go directly from the first hypothesis in Lemma 1.1 to the first conclusion?
That is:

Problem 1. If ν is uncountable, is cf [cf [ν]ω]ω = cf [ν]ω?
1
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Clearly, cf [ωn]
ω = ωn for n ≥ 1. So Problem 1 is only interesting for ν ≥ ℵω,

and it takes some very large cardinals to get cf [ℵω]
ω to be greater than ℵω+1 (see

below). [It is easy to see that if cf [ν]ω ≤ ν+ then cf [ν+]ω = ν+.]

Cofinal Kurepa families on arbitrarily large sets were first constructed in [4] using
GCH and �κ at singular cardinals κ of cofinality ω. This was done indirectly, by
constructing locally countable, ω-bounded [this means: every countable subset
has compact closure] spaces of arbitrarily large cardinality. It is easy to see that
the collection of compact, open subsets of such spaces is a cofinal Kurepa family on
the underlying set. Later, the author noticed that GCH could be replaced in the
construction in [4] by the axiom that cf [κ]ω = κ+ for all singular κ of countable
cofinality. This axiom and the �κ axiom used in [4] hold in the Core Model, and
it is easy to show that they continue to hold if the Covering Lemma holds over
the Core Model. Therefore, to put an upper bound on the cardinality of cofinal
Kurepa families, one must assume there is an inner model with a proper class of
measurable cardinals.

Our first theorem was approximated in an article by A. Dow [1], partially cor-
recting a handwritten note by S. Todorčević. See Theorem A near the end of this
section.

Theorem 1.2. Let λ be an infinite cardinal. The following are equivalent.
(a) There is a cofinal Kurepa family on λ.
(b) There is a locally metrizable, ω-bounded 0-dimensional space of weight cf [λ]ω.
(c) There is a cofinal Kurepa family on every set of cardinality ≤ cf [λ]ω.

Proof. (a) implies (b) Let K be a cofinal Kurepa family on λ, which we may
assume to be uncountable. Let R be the ring of sets generated by K and let B be
the Boolean algebra generated by K. Then B = R ∪ {Rc : R ∈ R}. Clearly each
member of R is countable and has uncountable complement. Let S(B) be the Stone
space of B. The underlying set of S(B) is the set of B-ultrafilters, and a base for
the topology is the collection of all sets of the form S(B) = {p ∈ S(B) : B ∈ p}.

Here are some fundamental facts of Stone duality: S(B) is a compact, 0-dimensional
space; all clopen subsets of S(B) are of the form S(B) for some B ∈ B; and the
function S taking B to S(B) is an isomorphism of Boolean algebras. It follows
easily that in our example, S(R) is metrizable (though not necessarily countable)
for all R ∈ R. Since λ is uncountable, {Rc : R ∈ R} is an ultrafilter of B and is
the only point of S(B) without a countable base; call this point p∞.

Since K is cofinal, every countable subset of S(B) that does not include p∞ is
contained in the compact set S(K) for some K ∈ K. Thus S(B) \ {p∞} is ω-
bounded, locally metrizable, and 0-dimensional. It is also of Lindelöf degree cf [λ]ω

and its weight is equal to its Lindelöf degree because it is locally second countable.

(b) implies (c): Let X be a locally metrizable, ω-bounded 0-dimensional space
of weight cf [λ]ω. Each point of X has a compact open neighborhood, and this
combined with ω-boundedness implies that every countable subset ofX is contained
in a compact open metrizable subset.

Let {Vα : α < cf [λ]ω} be a base for X and, for each α < cf [λ]ω let xα be a
point outside

⋃
{Vβ : β < α}. This gives us a subspace Y = {xα : α < cf [λ]ω}

with a well-ordering such that each initial segment is open; in other words, Y is
right-separated. From local second countability of X, it follows that each compact
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open subset of X has only countably many compact open subsets of its own. It also
follows that Y is locally countable and so each countable subset of Y is contained
in a compact open subset of X. Thus {Y ∩ C : C is compact open in X} is a
cofinal Kurepa family on Y . Using traces and bijections, one sees that every set of
cardinality ≤ |Y | has a cofinal Kurepa family on it. �

Problem 2. Is it possible to eliminate zero-dimensionality from (b)?

We will return to this problem in Section 4. Here is a problem in the opposite
direction.

Problem 3. Can (b) in Theorem 4.2 be strengthened as follows?

(b+) There is a locally countable, ω-bounded space of weight (equivalently, of
cardinalty) cf [λ]ω.

This is indeed a strengthening, because local compactness is an easy consequence
of ω-boundedness in a locally countable space, and every locally compact, locally
countable space is 0-dimensional and locally metrizable. Local metrizability fol-
lows from the elementary fact that every countable, compact space is of countable
weight, and from Urysohn’s metrization theorem. Theorem 1.2 makes Problem 3
equivalent to Problem 4 in [3], which asked:

Problem A. Is S(κ) (That is, the statement that there is a locally countable,
ω-bounded space of size κ) equivalent to the existence of a cofinal Kurepa family
on κ?

The best we have on this so far is the following precursor of Theorem 1.2:

Theorem A. [1, Proposition 7.6]. Let θ be an uncountable cardinal number. Then
(1) =⇒ (2) =⇒ (3), where:

(1) There is a well-founded cofinal Kurepa family of size θ which is closed under
finite intersections.

(2) S(κ)

(3) There is a cofinal Kurepa family of size θ.

The drawback of Theorem A is that no one has ever constructed a family as in
(1) such that θ > ℵ1, even assuming extra axioms. It is easy to construct well-
founded cofinal Kurepa families or cofinal Kurepa families of size θ that are closed
under finite intersection, given that there is a cofinal Kurepa family of size θ, but
finding one with both properties seems to be a formidable problem.

2. MAD families of countable sets

Definition 2.1. Let κ be an infinite cardinal number. Two sets of cardinality κ
are said to be almost disjoint if their intersection is of cardinality < κ.

By a slight abuse of language, we use the term “AD family” to denote a family
of almost disjoint sets of the same cardinality. Another slight abuse of language
appears in the following definition.

Definition 2.2. A family A of subsets of an infinite set S is called a MAD family
on S if it is an infinite AD family of subsets of S which is maximal among all AD
families of subsets of S. Let a(κ) denote the least cardinality of a MAD family of
countable subsets of κ.
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The usual notation for a(ω) is just a. It is easy to see that a(κ) ≥ κ for all κ,
and that a(κ) ≤ a(λ) whenever κ ≤ λ. It is also well known that a is uncountable.
Further information about a is provided below, beginning with a trick that I learned
from James Baumgartner (but which probably goes back to Sierpiński) and which
uses the following concept:

Definition 2.3. A family H of countable subsets of a set X is [X]ω-hitting, if
each denumerable subset of X meets some H ∈ H in an infinite set.

Lemma 2.4. For each cardinal κ let κ∗ be the least cardinality of a [κ]ω-hitting
family of countable subsets of κ. Then κ∗ = cf([κ]ω).

Proof. It is enough to show κ∗ ≥ cf([κ]ω). Think of T = κ<ω as the full κ-ary tree
of height ω. Then |T | = κ and so we can hit [T ]ω with a family H of cardinality
κ∗. Each countable subset of κ is the range of some branch. So now, if we let

C(H) = {α ∈ κ : ∃n(〈n, α〉) is in some branch B such that B ∩H is infinite)}

then {C(H) : H ∈ H} is cofinal in [κ]ω. �

Corollary 2.5. For each infinite cardinal κ, a(κ) ≥ cf [κ]ω.

Proof Clearly, every maximal AD family is ω-hitting, whether infinite or not. But
for uncountable cardinals, maximal AD families are infinite, while cf [ω]ω = 1. �

Theorem 2.6. If κ ≥ c, then then a(κ) = κω = cf [κ]ω.

proof It is an elementary exercise that κω = |[κ]ω| ≥ κ and also cf [κ]ω ≥ κ for all
uncountable κ.

Now [κ]ω =
⋃
{[C]ω : C ∈ C} for all cofinal C ⊂ [κ]ω. It follows that

(1) κω = |[κ]ω| ≤ c · cf [κ]ω ≤ κω · κω = κω

so equality holds all around. Then if κ > c we have κω = c · cf [κ]ω = cf [κ]ω and if
κ = c then κ = κω ≥ cf [κ]ω ≥ κ so again equality holds all around. This shows the
second equality in Theorem 1. As for the first, we clearly have a(κ) ≤ κω, while
a(κ) ≥ κω follows from Corollary 2.5 and the second equality. �

So at c and above, the cardinalities of MAD families are all of the form λω and the
ones on κ are of cardinality κω. Under the Singular Cardinals Hypothesis (SCH), κ,
κω = κ+ whenever κ is a singular cardinal of countable cofinality, otherwise κω = κ

for all other cardinals ≥ c. [The SCH says that if 2cf(κ) < κ then κcf(κ) = κ+.]
Thus if we assume SCH (which is true unless there are inner models with very
large cardinals) then there are MAD families of all cardinals ≥ c except for singular
cardinals of countable cofinality.

What about when κ < c? The following problem is open:

Problem 4. Is it a theorem of ZFC that a(κ) = max{a, cf [κ]ω}?

It is clear from Corollary 2.5 that a(κ) ≥ max{a, cf [κ]ω} for all infinite κ. Equal-
ity does hold if κ ≥ c, by equation (1) and Theorem 2.6. Equality also holds
whenever there is a Kurepa family on κ. To show this, we first recall the following
concept.
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Definition 2.7. Let B = {Bn : n ∈ ω} be a collection of subsets of a countable

set S, such that for each n there exists m > n such that B#
m = Bm \

⋃m−1
i=0 Bi is

infinite. Let {Zn : n ∈ ω} list all the infinite B#
m. An RH transfer of B to ω× ω

is a bijection ψ : S → ω×ω which distributes the elements of S \
⋃
∞

n=0 Zn into the
bottom row ω × {0}, and sends Zn into the (n+ 1)st column {n} × ω.

Note that the image of Zn under ψ is either ({n}×ω)−{0} or {n}×ω depending
on whether or not 〈n, 0〉 is in ψ(a) for some a ∈ S \

⋃
∞

n=0 Zn.

The following lemma is a routine application of RH transfers.

Lemma 2.8. If S is a countably infinite set and {Zn : n ∈ ω} is a family of infinite
subsets of S, no finite subcollection of which has cofinite union, and there is a MAD
family of cardinality µ on ω, then there is an AD family A on S such that |A| = µ

and such that every infinite subset of S that is almost disjoint from every Zn meets
some member of A in an infinite set.

Corollary 2.9. If S is a countably infinite set and Z is a countably infinite AD
family on S, and there is a MAD family of cardinality µ on ω, then Z can be
extended to a MAD family of cardinality µ on S.

Theorem 2.10. If there is a cofinal Kurepa family on κ, and λ = cf([κ]ω), and
there is a MAD family of cardinality µ on ω, then there is a MAD family of cardi-
nality µ · λ on κ.

Proof. Let {Kξ : ξ < λ} list a cofinal Kurepa family κ. Define collections Aξ of
almost disjoint infinite subsets of all the Kξ as follows. Let A0 be any MAD family
of cardinality µ on K0.

If Aη has been defined for all η < ξ, and Kξ is almost contained in the union of
finitely many sets of the form Kη∩Kξ (η < ξ) let Kξ = ∅. If there are finitely many
sets Kηi

that almost contain
⋃
{Kη : η < ξ}, let Aξ = ∅ if Kξ \

⋃
{Kη : η < ξ}(= A)

is finite, otherwise let Aξ = {A}.

Otherwise, define Aξ by applying Lemma 2.8 with S = Kξ, letting {Zn : n ∈ ω}
list all infinite sets of the form Kη ∩ Kξ (η < ξ), and let Aξ be the A of Lemma
2.8.

Finally, let A =
⋃

ξ<λ Aξ. To see that this works, let Z be any infinite subset
of κ. Let ξ be the least ordinal such that Z ∩ Kξ is infinite. Then clearly Z is
almost disjoint from all Kη such that η < ξ, and so Z meets some member of Aξ

in an infinite set. Hence A is MAD. Since the Kurepa family K is of cardinality λ,
|A| ≤ µ · λ; and now equality follows from Corollary 2.5. �

Since there is a cofinal Kurepa family on ωn, of cardinality ωn for all finite n,
we have:

Corollary 2.11. a(ωn) = max{a, ωn} for all finite n.

Since a is uncountable, we have:

Corollary 2.12. a = a(ω1).

Putting Theorems 2.6 and 2.10 together, we get:
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Theorem 2.13. For all cardinals κ,

max{a, cf [κ]ω} ≤ a(κ) ≤ κω = max{c, cf [κ]ω}

and the first ≤ is an equality if there is a cofinal Kurepa family on κ. Moreover, if
κ ≥ c then a(κ) = κω.

3. Mrówka families

Notation 3.1. Let A be an infinite AD family of countably infinite subsets of a
set S. Ψ(S,A) denotes the space whose underlying set is the union of S with a set
{pA : A ∈ A} disjoint from S, with a set being open iff it contains a cofinite subset
of A for every pA that it contains.

If S is not specified, Ψ(A) will denote Ψ(
⋃
A,A) and it will be understood that

A is an AD family of countable subsets of
⋃
A.

It is easy to show that Ψ(S,A) is 0-dimensional and locally metrizable; that it is
pseudocompact iff A is a MAD family on S; that S is a dense set of isolated points,
while {pA : A ∈ A} is closed discrete; and that A ∪ {pA} is a clopen copy of ω + 1
for all A ∈ A.

Definition 3.2. Let S be an infinite set. A Mrówka family on S [resp. fully
Mrówka family on S is a MAD family M of countable subsets of S, such that
for every continuous f : Ψ(S,M) → R, there exists r ∈ R such that |Ψ(S,M) \
f←{r}| < |M| [resp. such that Ψ(S,M) \ f←{r} is countable]. We call Ψ(S,M) a
[fully] Mrówka space.

Mrówka showed that there is a fully Mrówka family on ω, of cardinality c. The
other ZFC possibility is:

Theorem 3.3. There is a fully Mrówka space of cardinality a.

Proof. If a = c we use Mrówka’s construction, or a simpler construction below which
takes advantage of a = c. Otherwise, if A is a MAD family of cardinality a, every
real-valued function on Ψ(A) has range < c. [Also, if f : Ψ(A) → R is continuous,
its range (being pseudocompact, hence compact) is countable.] Consequently, the
Stone-Čech compactification βΨ(A) cannot have a dense-in-itself subspace: if it
did, then it would admit a continuous function onto [0, 1], but the range of any
real-valued continuous function has to be (the closure of) the range of its dense
subspace Ψ(A), of size < c. [It even has to be countable.]

So now βΨ(A) is scattered and so, of course, is every subspace. Since βΨ(A) is
compact and totally disconnected, it is 0-dimensional. Let p be an isolated point
of the Stone-Čech remainder βΨ(A) \ Ψ(A), and let C be a clopen (in particular,
compact) subset of βΨ(A) containing p and missing the rest of βΨ(A) \Ψ(A).

Claim. The trace of C on Ψ(A) is a fully Mrówka space of cardinality a.

⊢ Proof of Claim. The trace C \ {p} meets the subspace Ψ(A) \ ω of nonisolated
points in an infinite set, otherwise C \ {p} would be compact, being a clopen
subspace of Ψ(A); and this would contradict the fact that Ψ(A) is dense in βΨ(A).
Thus the trace is a version of Ψ and is clearly of cardinality a. To show that
it is fully Mrówka, let f : C → R be a continuous function, and let r = f(p).
Every open neighborhood of p in C has compact, hence countable complement.
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Thus the complement of f←{r} is countable, being the union of the subspaces
(f←(r − 1

n
, r + 1

n
))c of Ψ(A). ⊣

To construct a fully Mrówka space when a = c, begin with any version X =
Ψ(ω,M) of Ψ. We will build quotient spaces Xα(α < c) by induction, each time
identifying at most two points of X, neither of which was identified with any other
point at any earlier stage.

Let {fα : α < c} list all functions f : ω → R. Let X0 = X. If Xα and
the quotient map φα : X0 → Xα have been defined, and fα cannot be extended
to a (unique!) continuous function on all of Xα, or if it can be so extended to
f#α : Xα → R, and the preimage under f#α of some point has countable complement
(equivalently, complement of cardinality < c,) let Xα+1 = Xα.

Otherwise, there exist points xα0 , x
α
1 of X0 such that neither has been identified

with any other point ofX0 at any earlier stage, and such that if gα is the composition
of f#α with φα, then gα(x

α
0 ) 6= gα(x

α
1 ). Let Xα+1 be the quotient of Xα obtained

by identifying xα0 and xα1 , and let φα+1 : X0 → Xα+1 be the composition of φα
with the quotient map. Then fα cannot be extended to a continuous function from
Xα+1 because it approaches two different limits, gα(x

α
0 ) and gα(x

α
1 ).

If α is a limit ordinal, and Xβ has been defined for all β < α, let Xα be the direct
limit of the Xβ . In other words, Xα is the quotient space obtained by identifying

to single points all pairs {xξ0, x
ξ
1} that have been defined for some ξ < α.

This applies even to α = c, and the resulting space Xc is fully Mrówka, as can
be seen by considering any continuous g : Xc → R and finding the α such that
g ↾ ω = fα. Continuity of f#α was not destroyed at stage α, because once it is
destroyed, fα can no longer be extended to a continuous function on any later Xγ .
So g sends all but countably many points of Xc to a single real number r, as desired.
�

Theorem 3.3, and Mrówka’s result that there is always a fully Mrówka space of
cardinality c, are the best that can be done in ZFC. Arnold Miller has shown that
adding any number of Cohen reals to a model of CH produces a model where the
only cardinalities of MAD families on ω are a = ℵ1 and c, but c can be arbitrarily
large. Hence these are also the only cardinalities of fully Mrówka families, whether
on ω or elsewhere. (The “or elsewhere” follows from Lemma 6 and the comments
following it.)

On the other hand, Hechler [2] showed that one can produce models where c is
arbitrarily large and there are MAD families on ω of all uncountable cardinalities
≤ c. The MAD families this forcing produces are all fully Mrówka.

For the sake of brevity, we refer to a Mrówka family of cardinality κ as a κ-
Mrówka family.

Theorem 3.4. If there is a κ-Mrówka family on ω, then there is a κ-Mrówka
family on ν for all ν ≤ κ. Moreover, if the original family is fully Mrówka, then so
is the resulting family.

Here are some recent results of A. Dow and J. Vaughan. The proof of the first
is similar to that of the a = c case of Theorem 3.3.
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Theorem B. If κω = 2κ, then there is a Mrówka family on κ.

Theorem C. Let κ = κω. If there is a Mrówka family on κ, then there is a Mrówka
family on κ+.

The proof of Theorem 3.6 below is similar.

Using Theorem B at cardinals of countable cofinality, Theorem C for successor
cardinals, and an inductive construction for all cardinals < κ when κ is singular of
uncountable cofinality, Dow and Vaughan showed:

Theorem D. Assume GCH. Then there is a Mrówka family on κ, of cardinality κω,
for all infinite cardinals κ, and there is a fully Mrówka family on κ iff κ ∈ {A0,A1}.

In the first part of Theorem D, GCH can be replaced with the hypothesis “SCH
+ every singular cardinal is a strong limit cardinal,” thanks to the well-known fact
that κcf(κ) = 2κ for all singular strong limit cardinal of countable cofinality.

The proof of the following theorem is very similar to that of the a < c part of
Theorem 3.3.

Theorem 3.5. If κ ≤ c, and κ is of uncountable cofinality, there is a Mrówka
family of cardinality κ if, and only if, there is a MAD family of cardinality κ.

Proof of “if”. If κ = c then Mrówka’s original construction works, and when κ = α

there is Theorem 3.3. Otherwise, if A is a MAD family of cardinality κ, then βΨ(A)
is scattered and there exists a point y ∈ βΨ(A) with the following properties:

(1) There is a compact neighborhood C of y in which y is the unique point of
maximal Cantor-Bendixson level, and such that C ∩Ψ(A) has cardinality κ.

(2) If p is a point of lower Cantor-Bendixson level than that of y, then for every
compact neighborhood D of p in which p is the one point of maximal level, D∩Ψ(A)
has cardinality < κ.

Assuming (1) and (2), the subspace Y = C ∩ Ψ(A) is a version of Ψ which
is a Mrówka space. Indeed, every neighborhood of y in Y has a complement of
cardinality < κ in Y , and since κ is not of countable cofinality, and f : Y → R is
continuous, and r = f(y), then |Y \ f←(r)| < κ.

To see that there is at least one point y as in (1), let W be a clopen cover of
βΨ(A) by sets of the form C(x) where x is the unique point of maximal Cantor-
Bendixson level in C(x). Then use compactness to get a finite subcover, at least
one member of which must satisfy (1). Then take a point satisfying (1) of minimal
level to get y. �

A similar construction to that in the proof of Theorem C is used in the following
proof, substituting a Kurepa family and Lemma 2.4 and Claim 1 for the hypothesis
that κ = κω.

Theorem 3.6. If there is a cofinal Kurepa family on κ, and there is a κ-Mrówka
family on κ, then there is a κ+-Mrówka family on κ+.
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Proof. Let K and M be a cofinal Kurepa family and a κ-Mrówka family on [0, κ),
respectively. From Lemma 1.1 and Lemma 2.4 it follows that |K| = κ: every MAD
family of countable subsets of [0, κ) is [κ]ω-hitting. Let λα = κ · α; in particular,
λ0 = 0. Divide up κ+ into chunks [λα, λα+1) that are natural copies of κ. For each
α < κ+ let fα : [0, κ) → [λα, λα+1) be the unique order-preserving bijection and let
Mα = {f→M :M ∈ M}.

We will define AD families Aα on [0, λα) by induction starting with A1 = M0 =
M. If Aβ has been defined for all β < α let Aα =

⋃
β<α Aβ . If α = β + 1 and β is

either a successor or a limit ordinal of uncountable cofinality, let Aα = Aβ ∪Mβ .
On the other hand, if β is a limit ordinal of countable cofinality, we define Aα as
follows. Let ξn ր β, with ξ0 = 0.

Claim 1. There is an AD family A of κ countable subsets of [0, β) such that every
member of A is almost disjoint from every [0, λξn), and such that every infinite
subset of [0, β) that is almost disjoint from every [0, λξn) meets some member of A
in an infinite set.

⊢ Proof of Claim 1. Let {Kξ : ξ < κ} list K. There is a MAD family D on
ω of cardinality ≤ κ: take the trace of M on a countable subset B of κ that
contains infinitely many members of M and transfer the trace to ω with a bijection
f : ω → B. Define collections Kξ of almost disjoint infinite subsets of Kξ as follows.
If K0 ⊂ [0, γ) for some γ < β, let K0 = ∅, otherwise use Lemma 2.8 with A = K0

and D as the MAD family on ω and

Zn = [λξn , λξn+1
) ∩K0

to obtain K0 that behaves like A of Lemma 2.8, with µ ≤ κ. That is, |K0| = µ;
K0 is AD; every member of K0 is almost disjoint from every Zn; and every infinite
subset of K0 that is almost disjoint from every Zn meets some member of K0 in an
infinite set.

If Kη has been defined for all η < ξ, and Kξ is contained in the union of some
[0, λξn) with finitely many sets of the form Kη ∩Kξ (η < ξ) let Kξ = ∅. Otherwise,
define Kξ by applying Lemma 2.8 with S = Kξ as we defined K0 with S = K0, but
this time letting {Zn : n ∈ ω} list not only the sets [λξj , λξj+1

) ∩ Kξ but also all
infinite sets of the form Kη ∩Kξ (η < ξ). Each member of Kξ will then be almost
disjoint from each [0, γ) such that γ < β, because γ < λξn for some finite n.

Finally, let A =
⋃

ξ<κ Kξ. To see that this works, suppose Z is almost disjoint

from each [0, γ) such that γ < β. Let ξ be the least ordinal such that Z ∩ Kξ is
infinite. Then clearly Z is almost disjoint from all Kη such that η < ξ, and so
Z meets some member of Kξ in an infinite set. Since the Kurepa family K is of
cardinality κ, |A| ≤ κ; to show equality, note that if we let Qθ be the set of all
θth members of the chunks [λξj , λξj+1

) then {Qθ : θ < κ} is a family of κ disjoint
countably infinite subsets of [0, β) each of which is almost disjoint from each [0, γ)
(γ < β); and the union of fewer than κ members of A cannot meet them all. ⊣

To conclude the construction of Aα, we define a bijection φ from A to Mβ . Then
let

A1
β = {A ∪ φ(A) : A ∈ A} and let Aα = A1

β ∪ Aβ .
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Then M′ =
⋃

α<κ+ Aα is the desired family. An easy induction shows that Aα

is a MAD family on [0, λα) for all α < κ+, except when α is a limit ordinal of
countable cofinality, and so M′ is MAD.

Corollary 3.7. If there is a κ-Mrówka family on ω, there is a max{κ, ωn}-Mrówka
family on ωn.

Lemma 3.8. If X is a first countable T2 space, in which every point has a neigh-
borhood of cardinality ≤ c, then every subset of cardinality ≤ c is contained in a
clopen subset of cardinality ≤ c.

Proof. Let A be a subset of X of cardinality ≤ c and let F0 be the closure of A.
Since every point of F0 has a sequence from A converging to it, and limits of nets
in T2 spaces are unique, |F0| ≤ c. Let G0 be an open subset of X, of cardiality ≤ c,
containing F0.

If α ≤ ω1 and Fβ and Gβ ⊃ Fβ have been defined for all β < α, with |Gβ | ≤ c,
suppose first that α = β+1. Let Fα be the closure ofGβ and letGα be an open set of
cardinality ≤ c containing Fα. If α is a limit ordinal, let Fα = Gα =

⋃
{Gβ : β < α}.

Then Fω1
= Gω1

is clearly open, but it is also closed, because every point in its
closure is in the closure of some countable subset B, and B ⊂ Gβ for some β < ω1

since the Gξ form an ascending chain; so B ⊂ Fβ+1. �

Corollary 3.9. Every fully Mrówka family is of cardinality ≤ c.

Proof. Let κ > c, let X be a κ-Mrówka space, and let C be an uncountable clopen
subspace of cardinality ≤ c. Let f be the characteristic function of C. Because
C is clopen, f is continuous; and the complement of every point preimage has
uncountable cardinality. �

What if κ < c? Well, if κ+ = c then we can use Mrówka’s original construction to
get a fully Mrówka space of cardinality c. Otherwise, an argument almost identical
to that of Lemma 3.8 shows:

Lemma 3.10. If a space X is locally countable and every countable subset of X
has closure of cardinality ≤ κ, and κ is uncountable, then every countable subset of
X is contained in a clopen set of cardinality ≤ κ.

From this and an argument similar to the last corollary, it follows that if κ
is regular, and there is a fully Mrówka space of cardinality κ, it must contain a
separable subspace of cardinality κ. In particular, there must be a MAD family on
ω of cardinality κ. When is the converse true? Even the simplest case is unsolved:

Problem 4. If a = ℵ1 and there is a MAD family on ω of cardinality ℵ2, is there
a fully Mrówka space of cardinality ℵ2?

4. Generalized Kurepa families and applications

A modification of “Kurepa” is easily seen to be satisfied if zero-dimensionality
is dropped from Theorem 1.2:

Definition 4.1. Let κ, λ and µ be cardinal numbers, with κ ≤ λ. A (κ, λ;µ)-
Kurepa family is a collection K of sets of cardinality λ such that |K ↾ A| < µ for all
A ∈ [

⋃
K]κ. It is cofinal if it is cofinal in [

⋃
K]λ.
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The following theorem generalizes Theorem 1.2, and the proof only requires
trivial modifications:

Theorem 4.2. Let κ, λ and µ be infinite cardinals, with κ < λ. The following are
equivalent.

(a) There is a cofinal (κ, κ;µ)-Kurepa family on λ.
(b) There is a κ-bounded, 0-dimensional space of local weight < µ and weight

cf [λ]κ.
(c) There is a cofinal (κ, κ;µ)-Kurepa family on every set of cardinality ≤ cf [λ]κ.

�

For some choices of κ and µ, the conditions in Theorem 4.2 are satisfied for all
λ > κ in ZFC. For example, there is clearly a cofinal (κ, κ; (2κ)+)-Kurepa family on
such λ. In the case κ = ω we cannot substitute c = 2ω for c+, because the Chang
Conjecture variant is compatible with CH, and under CH a (ω, ω; c)-Kurepa family
is an ordinary Kurepa family. But the following problems are open:

Problem 5. Do there exist in ZFC infinite numbers κ such that there is a cofinal
(κ, κ; 2κ)-Kurepa family on every set?

Problem 6. Does ¬CH imply that there is a cofinal (ω, ω; c)-Kurepa family on
every infinite set?

For the next theorem, we will eliminate the last parameter in Definition 4.1.

Definition 4.3. A (κ, λ, κ+)-Kurepa family is called a (κ, λ)-Kurepa family, while
a (κ, κ)-Kurepa family is called a κ-Kurepa family.

In particular, a Kurepa family (Definition 0.1) is an ω-Kurepa family.

Caution. The use of the prefix κ here is different from that in the definition of a
κ-Mrówka family. There, the κ referred to the cardinality of the family. Here, it says
nothing about the size of the κ-Kurepa family, instead referring to the cardinality
of its members and the cardinality of the traces on each set of cardinality κ.

Our next theorem and problem address the question of what happens if zero-
dimensionality is dropped from Theorem 1.2:

Theorem 4.4. If there is a locally metrizable, ω-bounded (hence locally compact,
hence Tychonoff) space of weight λ, then there is a cofinal (ω, ω1)-Kurepa family
on every set of cardinality ≤ cf [λ]ω.

Problem 7. Does the existence of a cofinal (ω, ω1)-Kurepa family on λ imply that
of:

(a) a cofinal Kurepa family on λ?
(b) a cofinal ω1-Kurepa family on λ?

If the answer to (a) is Yes, then so is the answer to Problem 2, by Theorems
1.2 and 4.4. An affirmative answer to (a) in turn would be implied by one for
the following problem, since compact point-preimages in a map with metrizable
domain are of countable weight.

Problem 8. Is every locally compact, locally metrizable space the perfect image
of a locally compact, locally metrizable, 0-dimensional space? What if the space is
ω-bounded as well?
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Definition 4.5. A (κ, λ;µ)-Kurepa family is weakly cofinal if every member of
[
⋃

K]κ is contained in some K ∈ K.

Obviously, weak cofinality and cofinality are equivalent if λ = κ. Moreover, the
existence of a weakly (κ, λ)-cofinal family always implies that of a cofinal family if
λ = cf [λ]κ. This is a consequence of the following lemma.

Lemma 4.6. Let C and K be collections of sets such that every member of C is a
subset of some member of K. Let κ = sup{|C| : C ∈ C}. If |K| ≤ λ for all K ∈ K
and κ < λ = cf [λ]κ then there exists a cofinal subcollection L of [

⋃
K]λ such that

L ↾ C ⊂ K ↾ C for all C ∈ C.

Proof: Let W ∈ [
⋃
K]λ. Let ν = κ+[≤ λ]. Define Lα(W ) for all α ≤ ν as

follows. Let L0(W ) = W . If α is a limit ordinal let Lα(W ) =
⋃

β<α Lβ(W ). If

α = β + 1 ≤ ν let Kβ(W ) be a subcollection of K of minimum cardinality such
that each set of the form C ∩Lβ(W ) (C ∈ C) is a subset of some K ∈ Kβ(W ). Let
Lα(W ) = Lβ(W ) ∪

⋃
Kβ(W ).

By induction, |Lα(W )| = λ for all α ≤ ν: at limit ordinals we are taking the
supremum of ≤ λ sets while if |Lβ | = λ then no more than cf [λ]κ = λ sets are
needed to cover all sets of the form C ∩ Lβ(W ).

Let L = {Lν(W ) : W ∈ [
⋃
K]λ}. Clearly L is cofinal in [

⋃
K]λ. The Lα(W )

form a monotone nondecreasing sequence for each W , so that if C ∈ C, there exists
β < ν such that C ∩ Lν(W ) = C ∩ Lβ(W ). Then there exists K ∈ Kβ(W ) such
that C ∩ Lβ(W ) ⊂ K, while K ⊂ Lν(W ), so that C ∩ Lν(W ) = C ∩K. �

If κ happens to be a regular limit cardinal (= a weakly inaccessible cardinal)
and there is no C ∈ C of cardinality κ, then it is not necessary to have κ < λ in
Lemma 4.6, and we can also get by with letting ν = κ. Of course, κ ≤ λ since every
member of C is a subset of some member of K.

Theorem 4.7. If there is a weakly cofinal (κ, λ;µ)-Kurepa family on a set Y , then
there is a cofinal (κ, λ′;µ)-Kurepa family for all λ′ ≤ |Y | such that λ′ = cf [λ′]κ.

Proof: In Lemma 4.6 let C = [Y ]κ, let K be a weakly cofinal (κ, λ;µ)-Kurepa
family. Then L, with λ′ in place of λ, is the desired family. �

Corollary 4.8. If there is a cofinal Kurepa family on λ, then there is a cofinal
(ω, cf [κ]ω)-Kurepa family on cf [λ]ω for all infinite κ ≤ λ. �

In the topological setting which inspired Lemma 4.6, Theorem 4.7, and Corollary
4.8, C is [Y ]ω where Y is a locally countable subset Y of a locally metrizable, ω-
bounded space X, while K is the set of traces on Y of the clopen subsets of X
of Lindelöf degree ω1. Theorem 4.9 below implies that every member of C is a
subset of some member of K, and we we can choose the L of Lemma 4.6 so that
L ↾ C = K ↾ C for all C ∈ C. This we do by simply letting L be the set of traces
of clopen sets of Lindelöf degree λ′ on Y . This works for the following reason: if D
is a clopen set of Lindelöf degree ω1 and E is a clopen subset of D, let F be any
clopen set of Lindelöf degree λ > ω1; then F

′ = (F \D) ∪E meets D exactly in E
and is also of Lindelöf degree λ. If X is 0-dimensional, then we can begin with K
being the set of traces on Y of compact open subsets of X and we can let λ be any
infinite cardinal number.
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Theorem 4.9. Let X be an ω-bounded, first countable space and let ω < λ ≤ |X|.
Then every subset of X of cardinality λ is contained in a clopen subset of X of
Lindelöf degree cf [λ]ω. If X is 0-dimensional, then also every countable subset is
contained in a compact open subset.

There are some cardinal invariants of the space X of Theorem 1.2 which are still
unsettled. One is its density, the least cardinality of a dense subspace.

Theorem 4.10. Every locally separable topological space has a locally countable
dense subspace. Moreover the subspace can be chosen to admit a partition into
countable clopen subsets.

Proof: Let X be locally separable, and let D be a maximal family of disjoint
separable open subsets of X. Picking a countable dense subset of each D ∈ D and
taking the union of these subsets gives us a locally countable dense subspace Y of
X, and {Y ∩D : D ∈ D} is a partition as described. �
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