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Abstract

It is independent of the usual (ZFC) axioms of set theory whether
every collectionwise Hausdorff tree is either metrizable or has an un-
countable chain. We show that even if we add “or has an Aronszajn
subtree,” the statement remains ZFC-independent. This is done by
constructing a tree as in the title, using the set-theoretic hypothesis
♦∗, which holds in Gödel’s Constructible Universe.
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1 Introduction

The interval topology on trees is a rich source of examples of locally com-
pact spaces, particularly under extra set-theoretic hypotheses, such as the
axiom ♦∗ which will be used in this paper. The interplay between order and
topology in trees also highlights the contrast between various set-theoretic
hypotheses. For example, Theorem 3.3 of [1] has the following corollary:

1



1 INTRODUCTION 2

Theorem A An Aronszajn tree is collectionwise Hausdorff iff it does not

have a stationary antichain.

[Terminology relating to trees is explained below.] A corollary is that every
Souslin tree is collectionwise Hausdorff. On the other hand, MA(ω1) implies
that all Aronszajn trees are special, and hence that there are no Souslin
trees and no collectionwise Hausdorff Aronszajn trees. It also implies [4,
Theorem 3.1] that every collectionwise Hausdorff tree is either metrizable or
has an uncountable chain. In the first author’s doctoral dissertation [2], the
set-theoretic hypothesis was weakened to one involving Aronszajn trees:

Theorem B. If every Aronszajn tree is special, then every collectionwise

Hausdorff tree is either metrizable or has an uncountable chain.

It is natural to inquire, in light of Theorem A, whether the set-theoretic
hypothesis in Theorem B can be weakened to “every Aronszajn tree has a
stationary antichain.” In the main part of the first author’s dissertation [2],
it was shown that the answer is negative:

Theorem C. It is consistent with ZFC and also with ZFC+CH that every

Aronszajn tree has a stationary antichain, and that there is a collectionwise

Hausdorff tree which is not metrizable and does not have an uncountable

chain.

Theorem C was established by an iterated forcing beginning with a ground
model of ♦∗. In the intermediate forcing stages, all Aronszajn trees were
given stationary antichains (and thus rendered non-collectionwise Hausdorff),
while preserving a tree T in the ground model such that

(01) T is collectionwise Hausdorff,

(02) T is not metrizable,

(03) T has no uncountable chains, and

(04) T has no Aronszajn subtrees.

The main theorem of this paper is that such a tree exists if one assumes
♦∗ 3.4. As far as we know, it is the only construction of such a tree under any
hypotheses. From Theorem B it follows that, under MA(ℵ1), there does not
exist a tree satisfying (01), (02) and (03). On the other hand, ♦ implies that
there exists a Souslin tree, which satisfies (01), (02) and (03) (but obviously
not (04)). For a construction of a Souslin tree using ♦, see e.g. Theorem 7.8
in Chapter 2 of [3]. Our ♦∗ construction is a modification which employs
two disjoint stationary subsets of ω1 in contrasting ways.
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Definitions and Notations 1.1 A partial ordered set 〈T,<T 〉 is a tree iff
for every t ∈ T , {s ∈ T : s <T t} is a well–ordered set. If there is no
confusion, we simply write < for <T . Also for simplicity we write T for
〈T,<T 〉.

For an element t of a tree T , the height of t, denoted by htT (t), is the
order type of {s ∈ T : s <T t}. If it is clear that T is referred to, then we
simply write ht(t) for htT (t). The set {t ∈ T : htT (t) = α} is called the α–th
level of T , and it is denoted by T (α). The height of a tree T , denoted by
ht(T ), is the least ordinal α such that T (α) = ∅. We let T�α =

⋃
ξ<α T (ξ).

We let t̂ = {x ∈ T : x ≤T t}, and we say that a subtree S of T is
downward closed, provided for all t ∈ S, t̂ ⊆ S.

A chain in a tree T is a linearly ordered subset of T . An antichain in a
tree is a set of pairwise incomparable elements.

T is an ω1–tree iff ht(T ) = ω1 and for all α < ω1, |T (α)| ≤ ℵ0. T is an
Aronszajn tree iff T is an ω1–tree and every chain is countable. T is a Souslin

tree iff T is an Aronszajn tree and every antichain is countable.
The tree topology (also known as the interval topology on a tree T is the

topology such that if t ∈ T is not a minimal element, then all sets of the
form (s, t] := {x ∈ T : s <T x ≤T t} constitute a local base at t, and if t ∈ T
is a minimal element, then {t} is an open set. We only consider Hausdorff
trees.

A topological space X is collectionwise Hausdorff iff for every closed dis-
crete subspace D, there exists a family of disjoint open sets {Ud : d ∈ D}
such that Ud ∩ D = {d} for each d ∈ D. A topological space is ω–fair,
provided every countable subspace has a countable closure.

Let P and Q be partially ordered sets. We say that a function f : P −→ Q
is an order–embedding, provided f is one–to–one and for x, y ∈ P , x ≤P

y ⇐⇒ f(x) ≤Q f(y).

For ordinals α and β, we let

<αβ = {x : x is a function, dom(x) < α and ran(x) ⊆ β},

where dom(x) is the domain of x and ran(x) is the range of x. We consider
<αβ as a tree ordered by inclusion. For the sake of simplicity, we assume that
every function in <αβ has non–empty domain.
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2 A generalization of ω1-trees

In this section, we study the structure of ω–fair trees of cardinality ℵ1 and of
height ω1. These trees can be seen as a generalization of ω1–trees. Because
of the next lemma, we regard every tree T with |T | ≤ ℵ1 and ht(T ) ≤ ω1 as
a downward closed subtree of <ω1ω1.

Lemma 2.1 Suppose that T is a tree such that |T | ≤ ℵ1 and ht(T ) ≤ ω1.

Then there is an order–embedding f : T →<ω1ω1 such that f→T is downward

closed in <ω1ω1.

Proof. Omitted. 2

Here we introduce the notation Tα, which is useful when one deals with
a subtree of <ω1ω1.

Definition 2.2 Suppose that T is a subtree of <ω1ω1. For each α ∈ ω1, we
define

Tα = {x ∈ T : dom(x) < α, ran(x) ⊆ α and ran(x) is not cofinal in α}.

Note that some authors use Tα for the α–th level of T , which is T (α) in our
notation.

Remark 2.3 If α is a successor ordinal, say α = β + 1, then

Tα = {x ∈ T : dom(x) ≤ β and ran(x) ⊆ β}.

We investigate properties of Tα.

Lemma 2.4 Suppose that T is a downward closed subtree of <ω1 ω1. The

following statements are true:

(1) Tα is downward closed for all α ∈ ω1.

(2) Tα is open for all α ∈ ω1.

(3) If α is a successor ordinal, then Tα is closed.

(4) If α is a limit ordinal, then Tα =
⋃

ξ<α Tξ.

(5) If T is ω–fair, then Tα is countable for all α ∈ ω1.
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Proof. We will show (3) and (5). To prove (3), suppose that α = β + 1,
and let x ∈ T \ Tα; then either dom(x) > β or ran(x) * β by Remark 2.3. If
dom(x) > β, then (x�β, x] is a neighborhood of x missing Tα. If ran(x) * β,
then x(ξ) /∈ β for some ξ ∈ dom(x), and (x� ξ, x] is a neighborhood of x
missing Tα.

To prove (5), first observe that Tα =
⋃

ξ<α{x ∈ Tα : dom(x) = ξ}. So
it is enough to show that Eξ := {x ∈ Tα : dom(x) = ξ} is countable for all
ξ < α. We do this by induction. For n < ω, En is countable because for all
x ∈ En dom(x) = n − 1 and ran(x) ⊆ α. Suppose that Eξ is countable for
all ξ < γ(< α).

Case 1: γ is a successor ordinal.
Suppose γ = ξ + 1. Observe that

Eγ ⊆ {x ∪ {〈ξ, η〉} : x ∈ Eξ and 0 ≤ η < α}.

Since Eξ is countable, so is Eγ.

Case 2: γ is a limit ordinal.
Observe that

Eγ ⊆ {x ∈ Tα : dom(x) < γ} =
⋃

ξ<γ

Eξ.

Since T is ω–fair and
⋃

ξ<γ Eξ is countable, we have that Eγ is countable. 2

We will use the next lemma to show that the tree we shall construct is
not metrizable.

Lemma 2.5 Suppose T is a tree such that |T | ≤ ℵ1, ht(T ) ≤ ω1 and T is

ω–fair. Then the following are equivalent:

(1) T is paracompact.

(2) {α ∈ ω1 : Tα \ Tα 6= ∅} is not a stationary subset of ω1.

Proof. (1)=⇒(2). Suppose that S = {α ∈ ω1 : Tα\Tα 6= ∅} is stationary.
Let U be an open refinement of the open cover {Tα : α ∈ ω1} of T . We will
show that U is not locally finite. For each α ∈ S, pick xα ∈ Tα\Tα, and choose
Uα ∈ U such that xα ∈ Uα. Then we can pick yα ∈ Uα such that yα < xα,
and we can choose α′ < α such that yα ∈ Tα′ . By Fordor’s Theorem, there
exits a β ∈ ω1 such that {α : α′ = β} is stationary. Since Tβ is countable
(Lemma 2.4(5)), there exists an x ∈ Tβ such that {α : x ∈ Uα} is stationary.
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(2)=⇒(1). If {α ∈ ω1 : Tα \ Tα = ∅} contains a club subset of ω1, say C =
{αξ : ξ < ω1} (enumerated in increasing order), then T =

⋃
ξ<ω1

(Tαξ+1
\Tαξ

),

and for every ξ ∈ ω1, Tαξ+1
\ Tαξ

is a clopen metrizable subspace of T . 2

We will use the following lemma to show that the tree we shall construct
is collectionwise Hausdorff.

Lemma 2.6 Suppose T is a tree such that |T | ≤ ℵ1, ht(T ) ≤ ω1 and T is

ω–fair. Then the following are equivalent:

(1) T is collectionwise Hausdorff.

(2) For every antichain A of T , {α ∈ ω1 : A ∩ (Tα \ Tα) 6= ∅} is not a

stationary subset of ω1.

Proof. (1)=⇒(2). A proof is similar to that of Lemma 2.5.

(2)=⇒(1). Let D be a closed discrete subspace of T ; then D is a countable
union of antichains [4, Theorem 1.8). Let D =

⋃
n∈ω An, where An is an

antichain. By the assumption, we can find a club subset Cn of ω1 for each n
such that for each α ∈ Cn, An ∩ (Tα \ Tα) = ∅. Let C =

⋂
n∈ω Cn, and use

the same argument as in the proof of Lemma 2.5. 2

Lemma 2.7 Suppose that T is a tree such that ht(T ) = ω1. If U is an

ω1–subtree of T , then
⋃
{û : u ∈ U} is also an ω1–subtree of T .

Proof. Omitted. 2

The following lemma will be used to show the tree we will construct has
neither uncountable chains nor Aronszajn subtrees.

Lemma 2.8 Suppose that T is a downward closed subtree of <ω1ω1 such that

T is ω–fair and {α ∈ ω1 : Tα \ Tα = ∅} is a stationary subset of ω1. Then

T has no ω1–subtrees; equivalently, it has neither uncountable chains nor

Aronszajn subtrees.

Proof. Let S = {α ∈ ω1 : Tα\Tα = ∅ and α is a limit ordinal}. Assume,
on the contrary, that T has an ω1–subtree U . By Lemma 2.7, we may assume
that U is downward closed.

Claim. {α ∈ ω1 : U(α) ⊆ Tα \ Tα} is a club subset of α.
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Assuming the claim holds, we can find α ∈ S such that U(α) ⊆ Tα \Tα. This
implies that U(α) = ∅, a contradiction. Now it remains to show the claim.

Proof of Claim. To show the set is unbounded, fix an arbitrary α0 ∈ ω1. Take
α1 > α0 such that U�α0 ⊆ Tα1

; then choose α2 > α1 so that Tα1
∩U ⊆ U�α2;

this is possible because Tα1
is countable (Lemma 2.4(5)). Take α3 > α2 so

that U�α2 ⊆ Tα3
. Continuing in the same way, let β = sup{αn : n ∈ ω}. We

have U�β ⊆ Tβ so U(β) ⊆ Tβ. For every x ∈ U(β), dom(x) = β so x /∈ Tβ.
We can show that the set is closed in a similar way. 2

Corollary 2.9 ω1–trees are not metrizable. In particular, Aronszajn trees

are not metrizable.

Proof. Suppose that T is an ω1–tree, i.e. ht(T ) = ω1 and |T (α)| ≤ ℵ0 for
all α < ω1. By the claim in Lemma 2.8, {α ∈ ω1 : T (α) ⊆ Tα \ Tα} contains
a club subset of ω1. Since T (α) 6= ∅ for each α ∈ ω1, T is not paracompact
by Lemma 2.5. 2

3 Construction of the tree.

In this section, we construct the tree mentioned in the beginning of this
paper.

Notation 3.1 • Λ = {α ∈ ω1 : α is a limit ordinal}

• Λsuc = {α ∈ Λ : α = β + ω for some β ∈ ω1}

• Λlim = Λ \ Λsuc

Definition 3.2 ♦∗ is the following statement: There exists a sequence 〈Aα :
α ∈ Λ〉 of subsets of P(ω1) such that:

(1) ∀α ∈ Λ (Aα ⊆ P(α)),

(2) ∀α ∈ Λ (Aα is countable), and

(3) ∀X ⊆ ω1 {α ∈ Λ : X ∩ α ∈ Aα} contains a club subset of ω1.

We use the following lemma to show the tree, which we will construct,
has no stationary antichain.
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Lemma 3.3 Suppose that T is a tree such that |Tα| ≤ |ℵ0|, ht(T ) ≤ ω1 and

T is ω–fair and that M is a maximal antichain of T ; then

{α ∈ ω1 : M ∩ Tα is a maximal antichain of Xα}

is a club subset of ω1.

Proof. A proof is similar to that of Lemma 2.7.6(b) in [3]. 2

Now, we construct the tree.

Theorem 3.4 Assuming ♦∗, there exists a tree T such that

(1) T is collectionwise Hausdorff,

(2) T is not metrizable,

(3) T has no uncountable chains, and

(4) T has no Aronszajn subtrees.

Proof. Fix a ♦∗–sequence {Aα ⊆ P(ω1) : α ∈ Λ}. Along with the
construction, we will enumerate T = {tξ : ξ < ω1} such that if tξ ∈ Tα and
tη ∈ Tβ \ Tα, then ξ < η. Observe that {α ∈ ω1 : {ξ ∈ ω1 : tξ ∈ Tα} = α} is
a club subset of ω1. For α ∈ Λ, we define

Fα = {{tξ : ξ ∈ A} : A ∈ Aα}.

Observe that for every subset U of T , {α ∈ ω1 : U ∩ Tα ∈ Fα} contains a
club subset of ω1 by the property of a ♦∗–sequence.

Fix a stationary and co–stationary subset S1 of Λlim, and let S2 = Λlim \
S1. We will construct a downward closed subtree T of <ω1ω1 by induction on
limit ordinals α with Tα+1 so that

(a) Tα+1 is downward closed,

(b) (∀x ∈ Tα+1)(x is non−decreasing),

(c) (∀α ∈ ω1)(Tα+1 is countable),

(d) (∀α ∈ S1)(Tα \ Tα = ∅),

(e) (∀α ∈ S2)(Tα \ Tα 6= ∅),

(f) (α ∈ S2 and x ∈ Tα \ Tα) =⇒ (dom(x) = α),

(g) (α ∈ Λsuc and x ∈ Tα) =⇒ (∃y ∈ Tα)(x < y and dom(y) = α), and
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(h) (α ∈ S2 and F ∈ Fα is a maximal antichain of Tα) =⇒
(∀y ∈ Tα with dom(y) = α)(∃x ∈ F )(x < y).

Now we start the construction. Let Tω+1 = {x ∈<ωω : x ≡ 0}. Suppose
that we have constructed Tξ+1 for all ξ ∈ Λ with ξ < α.

Case 1: α ∈ Λsuc.
Suppose that α = β + ω, where β ∈ Λ. Let

Tα+1 = Tβ+1∪ {y : y = x ∪ {〈ξ, β〉 : dom(x) ≤ ξ < γ}
for some x ∈ Tβ+1 and for some γ ≤ α}.

We have to make sure that we did not add new functions to Tβ+1; every new
function contains β in its range, so it does not belong to Tβ+1.

To show (g) is satisfied, fix an arbitrary x in Tα. If x ∈ Tβ+1, then let
y = x ∪ {〈ξ, β〉 : dom(x) ≤ ξ < α}, and y works. If x /∈ Tβ+1, then there
exist an element z ∈ Tβ+1 and an ordinal γ < α such that x = z ∪ {〈ξ, β〉 :
dom(z) ≤ ξ < γ}. Let y = z ∪ {〈ξ, β〉 : dom(z) ≤ ξ < α}; then y is as
required.

Case 2: α ∈ Λlim.
In this case, Tα is already defined because Tα =

⋃
{Tξ : ξ < α and ξ ∈ Λ}.

Subcase 2.1: α ∈ S1.
We simply let Tα+1 = Tα. It is easy to see that Tα+1 satisfies (a)–(h). (For
(d), notice that Tα ⊆ Tα+1 because Tα+1 is closed (Lemma 2.4).)

Subcase 2.2: α ∈ S2.
Let {Fn : n ∈ ω} enumerate {F ∈ Fα : F is a maximal antichain of Tα}.
Fix x ∈ Tα and an increasing sequence 〈βn : n ∈ ω〉 such that sup{βn : n ∈
ω} = α. We will define a chain {xn : n ∈ ω} in Tα and an increasing sequence
〈αn : n ∈ ω〉 such that αn ∈ Λsuc for all n ≥ 0 so that

• βn ≤ αn < α for all n ≥ 0.

• xn ∈ Tαn
,

• dom(xn) = αn, and

• x̂n ∩ Fl 6= ∅ for all l < n.

Take α0 ∈ Λsuc such that x ∈ Tα0
and α0 ≥ β0. Using the item (g), take

x0 ≥Tα
x such that x0 ∈ Tα0

and dom(x0) = α0. Suppose that we have picked
xn and αn satisfying the above.



3 CONSTRUCTION OF THE TREE. 10

If x̂n ∩ Fn = ∅, then pick y ∈ Fn so that xn <Tα
y. Take αn+1 > αn such

that y ∈ Tαn+1
. Using the item (g), pick xn+1 ∈ Tαn+1

such that y <Tα
xn+1

and dom(xn+1) = αn+1.
If x̂n ∩ Fn 6= ∅, then pick αn+1 > αn such that xn ∈ Tαn+1

, and using the
item (g) pick xn+1 ∈ Tαn+1

such that xn <Tα
xn+1 and dom(xn+1) = αn+1.

Now, we have obtained a chain {xn : n ∈ ω} in Tα. Let

yx =
⋃

{xn : n ∈ ω}.

We have dom(yx) =
⋃

n∈ω dom(xn) =
⋃

n∈ω αn = α and for all n ∈ ω,
ŷx ∩ Fn 6= ∅. Finally, let

Tα+1 = Tα ∪ {yx : x ∈ Tα}.

It is easy to see that Tα+1 satisfies (a)–(g). (For (f), observe that yx ∈ Tα \Tα

for all x ∈ Tα.) So let us check if Tα+1 satisfies (h). Suppose F ∈ Fα is a
maximal antichain of Tα. Pick an arbitrary y from Tα such that dom(y) = α;
then y = yx for some x ∈ Tα and ŷx ∩ F 6= ∅ and so there is an x′ < y such
that x′ ∈ F . This finishes the construction.

Now, we have to verify that T satisfies (1)–(4).

T is not metrizable because of the item (e) and Lemma 2.5. For (3) and
(4), first observe that T is ω–fair because of the item (c), and by the item
(d) and Lemma 2.8 these hold.

So it remains to show that T is collectionwise Hausdorff. For contradiction,
assume that T is not collectionwise Hausdorff. By Lemma 2.6, there exists
an antichain A in T such that

E := {α ∈ ω1 : A ∩ (Tα \ Tα) 6= ∅}

is a stationary subset of ω1. We may assume that E ⊆ Λlim. By the item
(d), this implies that E ⊆ S2. Take a maximal antichain M of T containing
A and let

C1 = {α ∈ ω1 : M ∩ Tα is a maximal antichain in Tα}.

By Lemma 3.3, C1 is a club subset of ω1. Let

C2 = {α ∈ ω1 : M ∩ Tα ∈ Fα}.
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C2 contains a club subset of ω1 by the property of a ♦∗–sequence. Pick α
from E ∩C1 ∩C2 and x from A∩ (Tα \ Tα); then dom(x) = α by (f). By the
item (h) and the fact that M ∩ Tα is a maximal antichain in Tα, there exists
an y in M ∩Tα such that y <T x, but this is a contradiction because x ∈ M .
This finishes the proof of the theorem. 2
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