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Abstract. We give restrictions on the cardinality of compact Hausdorff homoge-
neous spaces that do not use other cardinal invariants, but rather covering and sepa-
ration properties. In particular, we show that it is consistent that every hereditarily

normal homogeneous compactum is of cardinality c. We introduce property wD(κ),
intermediate between the properties of being weakly κ-collectionwise Hausdorff and
strongly κ-collectionwise Hausdorff, and show that if X is a compact Hausdorff ho-

mogeneous space in which every subspace has property wD(ℵ1), then X is countably
tight and hence of cardinality ≤ 2c. As a corollary, it is consistent that such a space
X is first countable and hence of cardinality c. A number of related results are shown

and open problems presented.

In this paper, “space” means “Hausdorff space” and “compactum” stands for “in-
finite compact (Hausdorff) space.” It is well known that every compactum without
isolated points is of cardinality ≥ c(= 2ℵ0).

At the end of [vM], Jan van Mill posed the following problem:

1.1. Problem. Is every T5 [that is, hereditarily normal] homogeneous compactum
of cardinality c?

In a July 2003 seminar at the Alfred Rényi Institute in Budapest, he conjectured
that the answer to his question was positive. In this paper, we show that it is
consistent that the answer to van Mill’s question is positive [Theorem 2.8]. We also
show it consistent [Theorem 3.2] that every homogeneous compactum that is hered-
itarily wD(ℵ1) is first countable and hence, by a famous theorem of Arhangel’skĭı,
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of cardinality c. This theorem says that |X| ≤ 2χ(X) for all compact Hausdorff
X, where χ(X), as usual, stands for the character of X. When combined with
the Čech-Pospǐsil theorem, this implies that every homogeneous compactum X is
exactly of cardinality 2χ(X).

1.2. Definition. Let κ be a cardinal number. A space X is weakly κ-collectionwise
Hausdorff [resp. satisfies property wD(κ)] if every closed discrete subspace D of
cardinality κ has a subset D0 of cardinality κ which can be expanded to a disjoint
[resp. discrete] collection of open sets Ud such that Ud ∩ D0 = {d} for all d ∈ D0.

We use “κ-cwH” as an abbreviation for “κ-collectionwise Hausdorff”: without the
modifier “weakly” this means that D0 can be taken to be D in the above definition:

1.3. Definition A space X is [strongly] κ-cwH if every closed discrete subspace D

of cardinality ≤ κ can be expanded to a disjoint [resp. discrete] collection of open
sets as in Definition 1.

In Cohen’s original model for the negation of the Continuum Hypothesis (CH),
and indeed in any model obtained by adding ℵ2 Cohen reals to a model of ZFC,
every locally compact normal space is ℵ1-cwH. This well-known fact can be shown
by applying the technique of proof of [W, Theorem 3] to [DTW, Theorem 1.4].

It is also well known and easy to prove that every normal κ-cwH space is strongly
κ-cwH; similarly, every normal, weakly κ-cwH space has property wD(κ). Therefore,
every T5, locally compact space is hereditary strongly ω1-cwH and hence heredi-
tarily wD(ℵ1) in any generic extension obtained by adding ℵ2 Cohen reals to an
arbitrary ground model. This fact figures prominently in the proof of Theorem 2.8
that yields a consistent Yes answer to Problem 1.1.

With one exception that we know of, the theorems in this paper represent the
first restrictions on the cardinality of homogeneous compacta that do not assume
restrictions on other well-known cardinal functions (character, cellularity, tightness,
etc.). The exception is that every monotonically normal homogeneous compactum
is first countable (and therefore of cardinality c). This has been part of the folklore
for some time, but we give a quick proof below (Theorem 3.6). Monotone normality
is a very strong property, and Problem 1.1 asks whether at least the weaker part of
this result can be extended to the much wider class of T5 homogeneous compacta.
Perhaps (see Problems 3.4 and 3.5 below) the stronger part can be extended also.

A dichotomy and a consistency result for Problem 1.1

We begin with a lemma which we hope to be of independent interest. Recall that
a (local) π-base for a point x of a space X is a family U of non-empty open sets
such that every neighborhood of x contains a member of U . The least cardinality
of a π-base for x is called the π-character of x in X and is denoted by πχ(x,X).
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2.1. Lemma. Let Y be a locally compact space. The set of points y which fail to
satisfy at least one of the following two properties is dense in Y .

(a) πχ(y, Y ) = ω.
(b) Every Gδ containing y has nonempty interior.

In particular, if Y has both points satisfying (a) and points satisfying (b), then
Y cannot be homogeneous.

Proof. If Y has a dense set of isolated points, then (a) fails for these and we are
done. [Some papers use the convention that πχ(y, Y ) = ω even if y is isolated, but
not this paper.] Otherwise, let A be the closure of the set of isolated points. It is
enough to show that the (locally compact) subspace Y \A has a dense set of points
where at least one of (a) or (b) fails. In other words, it only remains to prove our
Lemma for the case where Y has no isolated points, and we assume this from now
on.

Let U0 be any nonempty open subset of Y with compact closure. We define a
descending well-ordered family of such sets by induction. If α is an ordinal and Uα

has been defined, let Uα+1 be any nonempty open set whose closure is a proper
subset of Uα.

If α is a limit ordinal and Uξ has been defined for all ξ < α, then C =
⋂
{Uξ :

ξ < α} is nonempty because it is the intersection of the chain of compact sets
{Uξ : ξ < α}. If α is of countable cofinality, and y is a point of C satisfying (b),
then C, being a Gδ, has nonempty interior and we may let Uα be the interior of
C. If α is of uncountable cofinality and y is a point of C satisfying (a), then let
{Vn : n ∈ ω} be a countable π-base for y. Since α is of uncountable cofinality, there
must exist n such that Vn ⊂ Uξ for cofinally many ξ ∈ α, but then Vn ⊂ Uξ for all
ξ ∈ α because the Uξ’s are nested, hence Vn ⊂ C. So now we can let Uα = Vn and
continue the induction.

Eventually the chain stops at some limit ordinal α, i. e. the intersection C has
empty interior. But then all the points of C fail to satisfy (b) if α is of countable
cofinality and to satisfy (a) if α is of uncountable cofinality. Since U0 was arbitrary,
this completes the proof. �

2.2. Corollary. If Y is a locally compact space in which every point is non-isolated
and of countable π-character, then the union of the closed nowhere dense Gδ-subsets
of X is dense in X. �

By a theorem of Shapirovskĭı, every compact T5 space has a point of countable
π-character, so that (a) in Lemma 2.1 is automatically satisfied by some points
of any T5 compactum. This theorem of Shapirovskĭı is a corollary of his remark-
able theorem that a compactum cannot be mapped continuously onto [0, 1]ℵ1 iff
every subcompactum has a point of countable relative π-character. This gives us
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many classes of compacta with points of countable π-character, including the class
of countably tight compacta. Two other classes are given by the following two
theorems, which seem to be new:

2.3. Theorem. If X is a hereditarily weakly ω1-cwH compact space, then X cannot
be mapped continuously onto [0, 1]ℵ1 .

Proof. Suppose f : X → [0, 1]ℵ1 is a continuous onto function. Let F be a closed
subset of X such that the restriction of f to F is irreducible; that is, no proper
closed subset of F maps onto [0, 1]ℵ1 . Let Q be a countable dense subset of [0, 1]ℵ1 .
By irreducibility, a subset of F which meets each point-inverse f−1(q) (q ∈ Q) is
dense in F ; hence F is separable. By the hereditarily weakly ω1-cwH property, F

cannot have an uncountable discrete subspace; but [0, 1]ℵ1 does have one, and this
contradicts surjectivity of f . �

An alternative proof of Theorem 2.3 uses the fact that [0, 1]ℵ1 satisfies the count-
able chain condition, and that a closed irreducible map has the property that a pair
of disjoint nonempty open sets in the domain have images with nonempty interiors,
and these interiors are disjoint.

2.4. Theorem. If X is a compact space satisfying wD(ℵ0) hereditarily, then X

cannot be mapped continuously onto [0, 1]ℵ1 .

Proof. Let Y be the Tychonoff plank, (ω1 × ω + 1) ∪ (ω1 + 1 × ω), let S be a copy
of [0, 1]ℵ1 that contains Y , and let f : X → S be a continuous onto function. Let
Z = f−1Y and for each point 〈α, n〉 in ω1 × ω, let x(α, n) ∈ f−1{〈α, n〉}. Since
the preimage of (ω1 + 1 × {n}) is compact, there is a condensation point zn of
{x(α, n) : α ∈ ω1)}, and zn ∈ f−1{〈ω1, n〉}. Clearly {zn : n ∈ ω} is closed discrete
in Z.

Suppose A is an infinite subset of ω and {Un : n ∈ A} is a family of open sets
satisfying zn ∈ Un for all n ∈ A. For every n ∈ A, the closure of Un contains
the preimage of Cn × {n} for some club subset Cn of ω1. Fix α ∈

⋂
n∈A Cn and

let xn ∈ f−1{〈α, n〉} ∩ Un for all n ∈ A. Since the preimage of {α} × ω + 1 is a
compact subset of Z, there is an accumulation point of {xn : n ∈ A}, which shows
that {Un : n ∈ A} is not a discrete collection. �

2.5. Corollary. If X is a compact space that is either hereditarily weakly ω1-cwH
or hereditarily wD(ℵ0), then X has a dense set of points of countable π-character.
�

The condition on discrete subsets that appears in our next lemma is clearly
satisfied by any Lindelöf space. Further information on it will be given in and
following Theorem 4.1.

2.6. Lemma. Let X be a hereditarily wD(ℵ1) space, such that every discrete subset
of X of cardinality ℵ1 has a complete accumulation point. Let D be a discrete subset
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of cardinality ℵ1 and let H be a closed Gδ-subset of X containing all the complete
accumulation points of D. Then H has nonempty interior.

Proof. Obviously, D \H is countable. Let Y = X \ (D∩H)′, where (D∩H)′ stands
for the derived set of all limit points of D∩H. Since D is discrete, D∩H is a closed
discrete subset of Y of cardinality ℵ1. Let U be a discrete (in Y ) family of ℵ1 open
subsets of Y expanding ℵ1 points of D∩H. Since H is closed, (D∩H)′ ⊂ H and so
Y \ H = X \ H is a countable union of closed subsets Fn (n ∈ ω) of X. So all but
countably many members of U are subsets of H: otherwise, we could pick points
of uncountably many of them in some fixed set Fn and thus have an uncountable
closed discrete subset of Fn and hence of X. �

2.7. Theorem. If X is a homogeneous compact space satisfying wD(ℵ1) heredi-
tarily, then X is countably tight and hence of cardinality ≤ 2c.

Proof. If X is of uncountable tightness, then by the main theorem of [JSz], X has
a free ω1-sequence converging to some point y. A free ω1-sequence in a space X is a
family {xα : α < ω1} of points such that, for each α < ω1, the closure of {xξ : ξ < α}
does not meet the closure of {xη : η ≥ α}. It is easily seen that every free sequence is
a discrete subspace. To say that it converges to y is to say that every neighborhood
of y contains all but countably many of its points. Equivalently, y is the only
complete accumulation point of {xα : α < ω1}. Now, every Gδ containing y shrinks
to a closed Gδ that also contains y by regularity of X, and so, by Lemma 2, has
nonempty interior. Consequently, y satisfies condition (b) in Lemma 2.6. However,
this contradicts the homogeneity of X because of Corollary 2.5 and Lemma 2.1.

For the second conclusion, we use the theorem in [J2] that every compact space
of countable tightness has a point of character ≤ c. By homogeneity, this implies
every point is of character ≤ c, and so |X| ≤ 2c by the Arhangel’skĭı Theorem. �

We are now ready to give the consistent affirmative answer to Problem 1.1
promised in the introduction.

2.6. Theorem. If (at least) ℵ2 Cohen reals are added to any model V of ZFC, the
resulting extension W has the property that every homogeneous T5 compactum is
countably tight and of character ≤ ℵ1, hence of cardinality ≤ 2ℵ1 . In particular, if
(2ℵ1)V Cohen reals are added, then in the resulting extension every homogeneous,
countably tight compactum, hence every homogeneous T5 compactum is of cardinal-
ity c.

Proof. By the remarks following Definition 1.3, every homogeneous compact T5

space in W satisfies property wD(ℵ1) hereditarily, and hence is countably tight by
Theorem 2.7. Moreover, in [J2] it is shown that every compact space of countable
tightness has a point of character ≤ ℵ1 in an extension obtained by adding just ℵ1

Cohen reals to an arbitrary model of ZFC. [It is also conjectured there that this
may actually be true in ZFC.] But first adding ℵ2 Cohen reals and then adding
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ℵ1 is equivalent to adding ℵ2 Cohen reals all at once. Thus if one adds (at least)
ℵ2 Cohen reals then in the resulting extension every homogeneous compact space
of countable tightness is of character ≤ ℵ1, hence of cardinality ≤ 2ℵ1 by the
Arhangel’skĭı Theorem. Finally, if (2ℵ1)V Cohen reals are added, then the resulting
model of ZFC also satisfies c = 2ℵ1 . �

3. Obtaining first countability in some homogeneous compacta

Arhangel’skĭı has conjectured [A] that evey homogeneous, countably tight com-
pactum is of cardinality c. Theorem 2.8 proves the consistency of this, but the
conjecture is also a consequence of the Proper Forcing Axiom (PFA), which implies
that every countably tight compactum has a point of first countability [D1], [J3,
Theorem 3.3].

Our next theorem uses a different, much weaker axiom to get first countability
of homogeneous, hereditarily wD(ℵ1) compacta. For convenience, we adopt the
following terminology.

Axiom I: Every locally compact space of countable spread has a point of first
countability.

Axiom L: Every locally compact space of countable spread is hereditarily Lindelöf.

It makes no difference whether we leave out “locally” in either axiom, since
countable spread (viz., the property that every discrete subspace is countable), the
hereditary Lindelöf property, and the existence of a point of first countability are
obviously preserved on taking the one-point compactification. Going in the opposite
direction, one observes that in a locally compact space, a point has a countable
local base iff it is a Gδ, and every point of a locally compact space is contained in a
compact Gδ. Also, since every point is a Gδ in a regular hereditarily Lindelöf space,
Axiom L implies Axiom I.

A well-known old result of the third author is that Axiom L is true under MA(ω1)
[Sz], [R, 6.4.]. It is also true in various models obtained from a countable support
iteration of forcing with all ccc [or all proper] posets that do not destroy a certain
coherent Souslin tree and then forcing with the tree. However, we do not know if
Axiom I is strictly weaker than Axiom L.

Before giving the theorem using Axiom I, however, we need to prove the following
ZFC result.

3.1. Lemma. In a locally compact, hereditarily wD(ℵ1) space, the boundary of any
open Lindelöf subset has countable spread.

Proof. Let H be an open Lindelöf subset of a space X as described. Let D be a
discrete subspace of the boundary of H; since H is open, its boundary is H \ H.
Let D′ be the derived set of D; since D is discrete, D′ = D \D. Also, D′ is disjoint
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from H because H \ H is closed. Hence H is a subset of W = H \ D′, and D is
closed in the relative topology of W .

If D were uncountable, there would be an uncountable subset D0 of D with a
discrete-in-W open expansion {Ud : d ∈ D0}. But then {Ud ∩H : d ∈ D0} would be
an uncountable discrete-in-H collection of subsets of H, and this is a contradiction
since H is Lindelöf. Hence D is countable. �

3.2. Theorem. Assume Axiom I. Then every homogeneous, hereditarily wD(ℵ1)
compactum is first countable and hence of cardinality c.

Proof. Let X be a compactum as above. By homogeneity and Corollaries 2.2 and
2.5, every point in X is contained in a nowhere dense closed Gδ set B. The com-
plement of B is an open Lindelöf subspace whose boundary is B, and so B is of
countable spread by Lemma 2.6. Now we use Axiom I to conclude that B has a
point x which is a relative Gδ-subset of B. But since B is itself a Gδ-subset of X,
it follows that x is a Gδ-point of X and hence a point of first countability. Another
application of homogeneity gives us first countability of X. �

Although Axiom I does not hold in the models obtained by adding Cohen reals,
the following conjecture seems reasonable in the light of Theorems 2.8 and 3.2.

3.3. Conjecture. It is consistent that every homogeneous T5 compactum is first
countable.

Jan van Mill has observed that in any model of 2ℵ0 < 2ℵ1 , a Yes answer to
Problem 1.1 would imply that every T5 homogeneous compactum is first countable,
since every compact space of cardinality < 2ℵ1 has a point of first countability by
the Čech-Pospǐsil Theorem. Of course, the models of Theorem 2.8 that do give a
Yes answer to Problem 1.1 satisfy 2ℵ0 = 2ℵ1 . At the moment, the best candidate
for confirmation of our conjecture is one of the models whose construction involves
a coherent Souslin tree. Positive answers to both of the following questions in the
same model of set theory would also confirm the conjecture:

3.4. Problem. Is every homogeneous T5 compactum countably tight?

3.5. Problem. Is every homogeneous countably tight compactum first countable?

As we have seen, the PFA implies a positive answer to Problem 3.5, and the
answer to Problem 2 is positive in models from Theorem 2.8, but we would also like
to have it the other way around!

As indicated in the introduction, Conjecture 3.3 is provable in ZFC for mono-
tonically normal compacta.

Theorem 6. Every monotonically normal homogeneous compactum is first count-
able and hence of cardinality c. Moreover, it is hereditarily paracompact.

Proof. This is a quick corollary of the following theorem of Williams and Zhou
[WZ], [J3, 3.12]:
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Let P (p,X) denote min{κ : p is not a Pκ+ -point of X} (i.e., P (p,X) is the
smallest size of a family of neighbourhoods of p in X whose intersection is not
a neighbourhood of p). Then in a monotonically normal compact space X, the set
of all points p such that χ(p,X) = P (p,X) is dense in X.

Since a compact P-space is finite, P (p,X) is countable for all points of a compact
homogeneous monotonically normal space, and so the space is first countable.

For the hereditary paracompactness, just use the Balogh-Rudin theorem that a
monotonically normal space is hereditarily paracompact iff it contains no homeo-
morphic copy of a stationary subset of ω1 [BR], and the elementary fact that no
first countable compact space can contain such a copy. �

If we assume MA(ω1) + Axiom R, we can relax “monotonically normal” in Theo-
rem 3.6 to “hereditarily strongly ω1-cwH.” [Recall that every monotonically normal
space is hereditarily collectionwise normal.] Theorem 3.2 gives us first countabil-
ity since MA(ω1) implies Axiom I, and hereditary paracompactness follows from
Balogh’s theorem [B] that MA(ω1) + Axiom R implies every hereditarily strongly
ω1-cwH space is either hereditarily paracompact or contains a perfect preimage of
ω1.

The following question lies at the opposite extreme of generality. It is completely
open—we have no consistency results in either direction.

3.7. Problem. Is every homogeneous compactum either first countable or contin-
uously mappable onto [0, 1]ℵ1?

For homogeneous ccc (that is, countable cellularity) compacta the answer is Yes
if one assumes 2ℵ0 < 2ℵ1 . This is because |X| ≤ 2c(X)πχ(X) for homogeneous spaces
[A], and so any homogeneous ccc compactum of cardinality > c is also of uncount-
able π-character and hence continuously mappable onto [0, 1]ℵ1 by Shapirovskĭı’s
theorem. On the other hand, since |X| = 2χ(X) for every homogeneous compactum,
2ℵ0 < 2ℵ1 implies that every homogeneous compactum of cardinality c is first count-
able. This reasoning extends to higher cardinals, and results in such considerations
as the following: if, as some suspect, every homogeneous compactum is of cellu-

larity ≤ c, then 2c < 2c
+

implies that every homogeneous compactum is either of

character ≤ c or admits a continous map onto [0, 1]c
+

.

Problem 3.7 is closely related to the following general problem about compacta:

3.7′ Problem. Is it consistent that every compactum either has a point of first
countability or admits a continuous map onto [0, 1]ℵ1?

There are compacta satisfying neither condition in various models of set theory,
including those satisfying CH [F] and those satisfying ♣ or its weakening (t), which
holds whenever a single Cohen real is added [J1].
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Our next theorem features a use of the property that every open Lindelöf sub-
space has hereditarily Lindelöf boundary. This property is satisfied by every locally
compact space satisfying wD(ℵ1) in any model of ZFC where Axiom L holds, by
Lemma 3.1. It is already strong enough to imply first countability in any homo-
geneous compactum [Theorem 3.11]. We will make use of two lemmas, the first of
which is very easy, cf. [Ny] or [B].

3.8. Lemma. In a locally compact space, every point has an open Lindelöf (equiv-
alently: σ-compact) neighborhood. �

3.9. Lemma. Let X be a locally compact space such that every Lindelöf subset
has Lindelöf closure. Then any two disjoint closed subsets of X, one of which is
Lindelöf, can be put into disjoint open sets. Hence X has Property wD(ℵ0).

Proof. Let A and B be disjoint closed subsets of X. If A is Lindelöf, then Lemma
3.8 gives a countable cover U of A by open Lindelöf sets, none of which meets B.
Then U =

⋃
U is Lindelöf, and so A and B ∩U are disjoint closed Lindelöf subsets

of X and hence can be put into disjoint open subsets V and W of X. Then V and
W ∪ (X \ U) are disjoint open subsets of X containing A and B, respectively.

For the final conclusion, note that X is pseudonormal (that is, every pair of
disjoint closed subsets, one of which is countable, can be put into disjoint open sets)
and use the easy fact [vD, 12.1] that every pseudonormal space satisfies wD(ℵ0).
�

Before going on to Theorem 3.11, we note an interesting “stepping-down” con-
sequence of Lemmas 3.1 and 3.9 in the presence of Axiom L.

3.10. Corollary. [Axiom L] Let X be a locally compact space. If X is hereditarily
wD(ℵ1), then X is hereditarily wD(ℵ0).

Proof. First, note that the property of being wD(κ) is inherited by all subspaces if
it is inherited by all open subspaces. This is because, if Y is a subspace of X and
D is a closed discrete subspace of Y , then D is also closed discrete in the (open, in
X) subspace X \ D′, where D′ again stands for the derived set of D in X. So if
we define D0 and the sets Ud as in Definition 1, with X \D′ playing the role of X,
then the traces Ud ∩ Y will be a discrete collection of open subsets of Y expanding
D0 in Y , as desired.

Next, let Y be an open subspace of X. Since Y is locally compact, it follows from
Lemma 3.1 and Axiom L that every open subspace of Y has hereditarily Lindelöf
boundary, and hence that every Lindelöf subspace of Y has Lindelöf closure. Now
use Lemma 3.9 to conclude that Y has Property wD(ℵ0). �

Corollary 3.10 requires more than just ZFC: it is easy to modify Ostaszewski’s
space using ♦ to get a hereditarily separable locally compact locally countable
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space which is not wD(ℵ0); yet it is vacuously (hereditarily) wD(ℵ1). It is also not
possible to drop local compactness from Corollary 3.10. Let X be the space with
underlying set ω1 + 1 and in which all points except ω1 are isolated, while a set
containing ω1 is open iff its complement is nonstationary. Let Y be the subspace of
X ×ω+1 obtained by removing the corner point 〈ω1, ω〉. In Y , no infinite subset of
the countable closed discrete subspace E = {ω1}×ω can be expanded to a discrete
collection of open sets. Hence Y is not wD(ℵ0). On the other hand, if D is a closed
discrete subset of Y of cardinality ℵ1, the non-isolated points of D\E are contained
in ω1 × {ω}, and if there are uncountably many of them, there is a nonstationary
subset N of ω1 such that (N × {ω}) ∩ D is uncountable. Then (N × {ω}) ∩ D

can easily be expanded to a discrete collection of open sets. Since the non-isolated
points of Y form a closed discrete subspace, the wD(ℵ1) property is clearly inherited
by all subspaces of Y .

3.11. Theorem. Let K be a homogeneous compactum in which every open Lindelöf
subspace has hereditarily Lindelöf boundary. Then K is first countable.

Proof. Let p ∈ K and let X = K \ {p}. If X is Lindelöf then p is a Gδ-point in K,
hence a first countability point, and we are done. So we may assume that X is not
Lindelöf.

Next we show K satisfies wD(ℵ0) hereditarily. Indeed, the property that every
open Lindelöf subspace of K has hereditarily Lindelöf boundary is inherited by open
subspaces of K. It follows that if Y is an open subspace of K, then every Lindelöf
subspace of Y has Lindelöf closure; hence Y satisfies wD(ℵ0), and so every subspace
of K satisfies it (see the first paragraph in the proof of Corollary 3.10).

From Corollary 2.5 we get that K has a dense set of points of countable π-
character. Since p is non-isolated, X is noncompact and so contains a noncom-
pact, Lindelöf open subset X0, as can be easily shown by repeated applications of
Lemma 3.8. Continue inductively through the countable ordinals, defining a strictly
increasing chain of Lindelöf open subsets of X as follows. We get Xξ+1 once Xξ

is defined, by covering the boundary of Xξ with countably many open Lindelöf
subspaces of X. Note that Xξ+1 can be chosen to be strictly larger than c`X(Xξ);
this is where we use the assumption that X is not Lindelöf. At limit ordinals α let
Xα =

⋃
{Xξ : ξ < α}. By induction, Xξ is Lindelöf and has hereditarily Lindelöf

boundary for all countable ξ.

Having finished the induction, Xω1
=

⋃
{Xξ : ξ < ω1} is a non-Lindelöf open

subset of X. If Xω1
is clopen in X, then for every open neighbourhood U of p in

K the compact set Xω1
\ U is contained in Xα for some α < ω1. Consequently,

every Gδ-set containing p contains Xω1
\Xα for some α < ω1 and so has nonempty

interior. This means that p can play the role of y in Lemma 2.1 (b). Otherwise,
since X satisfies wD(ℵ0) hereditarily, any point on the boundary of Xω1

in X is
isolated in BdX(Xω1

) [Ny2, Lemma 1.6], and so can play the role of y in (b) similarly
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to p in the case where Xω1
is clopen in X. This, by Lemma 2.1, contradicts the

homogeneity of K and shows that X is indeed Lindelöf. �

Our next problem involves condition (b) in Lemma 2.1, which in a homogeneous
space is equivalent to every nonempty Gδ having nonempty interior. Spaces with
this latter property are often called pseudo-P spaces.

3.12. Problem. Is there a homogeneous pseudo-P compactum?

The Stone-Čech remainder of ω is a pseudo-P compactum, but is well known not
to be homogeneous. Jan van Mill has observed that any pseudo-P compactum of
weight ≤ ω1 has a dense set of P-points (just use W. Rudin’s argument that CH
implies βω − ω has P-points) and so an example for Problem 3.12 would have to
have weight > ω1.

Concluding remarks

Finally, here is some information about the hypothesis used in Lemma 2.6. It
shows that, at least consistently, the assumption that all discrete subspaces of size
ℵ1 have condensation points is strictly weaker than the same for all subspaces of
size ℵ1.

4.1. Theorem. The following are equivalent.

(1) There is an S-space.
(2) There is a regular locally countable uncountable space of countable spread.
(3) There is a regular space X in which every discrete subspace of cardinality

ℵ1 has a complete accumulation point, yet there is a subspace of cardinality
ℵ1 without a complete accumulation point.

Proof. (1) =⇒ (2) is well-known [cf. the proof of Theorem 3.1 in [R]], and
(2) =⇒ (3) is obvious. To see (3) =⇒ (1), take Y ⊂ X of size ℵ1 with
no complete accumulation point. Then Y must have countable spread and is not
Lindelöf, hence it contains an uncountable right separated subspace Z. But then Z

is an S-space [R, proof of 3.3.]. �

The condition that every subset of cardinality ℵ1 has a complete accumulation
point is known as C[ℵ1,ℵ1] and is equivalent to every open cover of cardinality
ℵ1 having a countable subcover. More generally, Saks [S1] defined a space to be
C[n,m] if every subset A satisfying n ≤ |A| ≤ m has a complete accumulation point.
Saks noted that the outline of [K, Exercise 5I] can easily be modified to show that
C[n,m] implies every open cover of cardinality ≤ m has a subcover of cardinality
< n. The converse is also true if m < ℵω as can be shown by a slight modification of
the proof that a space is initially m-compact iff every infinite subset of cardinality
≤ m has a complete accumulation point [S2, Theorem 2.2].
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We close by recalling a quirk of terminology. The expression, “finally compact
in the sense of complete accumulation points,” is usually taken to mean that every
infinite subset of regular cardinality has a complete accumulation point. This is
equivalent to the space being linearly Lindelöf [H].
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