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by Peter Nyikos

Abstract: In the last ten years, a number of axioms have been identified which
might be called “antidiamond” axioms and “anti-PFA” axioms. The antidiamond
ones featured in this talk are all compatible with 2ℵ0 < 2ℵ1 but have a strong
PFA-like flavor besides being implied by the PFA. The anti-PFA axioms are all
compatible with MA(ω1) and, with one possible exception, follow from V=L and
have a diamond-like flavor. Some are purely set-theoretic, others are unavoidably
topological. Among the applications of the antidiamond axioms are the consis-
tency of every normal, locally compact, linearly Lindelöf space being Lindelöf, and
several metrization theorems for manifolds. Contrasted with the latter is the con-
struction of a nonmetrizable hereditarily collectionwise normal 2-manifold from a
club-guessing axiom compatible with MA(ω1). This in turn is in contrast to the
PFA implying that every hereditarily collectionwise normal 2-manifold of dimension
> 1 is metrizable.

Set theoretic consistency results have been with us for a long time in the metriza-
tion theory of manifolds, beginning with Mary Ellen Rudin’s theorem that the Con-
tinuum Hypothesis (CH) implies the existence of a perfectly normal, nonmetrizable
manifold, [RZ] and her theorem that MA+¬CH implies all perfectly normal mani-
folds are metrizable.[R2] She also used ♦ to construct a perfectly normal, countably
compact nonmetrizable manifold, while I recently used the Proper Forcing Axiom
(PFA) to show the consistency of the statement that all normal, hereditarily strongly
cwH manifolds of dimension > 1 are metrizable [N3].

In this talk we give some results using “antidiamond” axioms with a PFA-like
flavor and “antiPFA axioms” with a diamond-like flavor to give theorems and ex-
amples that run against the current of the second pair of results just mentioned.
The “antidiamond” axioms are featured in the first section.

Section 1. Some antidiamond axioms with applications to manifolds

We begin with some purely topological axioms. I have not been able to find any
natural combinatorial axioms from which the first can be derived:

Axiom 1. The FCCC Dichotomy: Every first countable, countably compact Haus-
dorff space is either compact or contains a copy of ω1.

The FCCC Dichotomy is a pure dichotomy: if W is a copy of ω1 in a compact
Hausdorff space, then the closure of W is a copy of ω1 + 1, which is not first
countable. The FCCC Dichotomy was first shown consistent by Zoltan Balogh in
1987. A proof that it follows from the PFA appears in [D]. Its consistency with
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CH was shown in 1999 and published in [EN1]. The consistency of its negation
was shown by Ostaszewski in 1973 using CH +♣; see [R]. In 1979 I showed that
the weakening of ♣ to Axiom 3 [see below], which is even compatible with MA +¬
CH, is enough to produce a counterexample. This was written up in [F]. In this
paper we will show that the strictly weaker Axiom 5 is enough for this (Example
1, Section 3.) In Section 5 we will construct an entirely different counterexample
using Axiom 3, a 2-manifold.

Axiom 1 has been used to settle the ZFC-independence of a statement motivated
by a classic theorem:

Theorem. [Sneider, 1945] A compact space is metrizable if, and only if, it is Haus-
dorff and has a Gδ-diagonal; that is, the diagonal {(x, x) : x ∈ X} is a countable
intersection of open sets.

This theorem was extended to all regular countably compact spaces by J. Chaber
in 1975. One might naturally expect these two theorems to either stand or fall
together if “Gδ-diagonal” is weakened to “small diagonal”:

Definition. A space has a small diagonal if, whenever A is an uncountable subset
of X ×X that is disjoint from the diagonal ∆, there is a neighborhood U of ∆ such
that U \ A is uncountable.

But in fact, this is not the case. On the one hand, we know that CH implies
every compact Hausdorff space with a small diagonal is metrizable. We do not
know whether ZFC implies this as well; but, be that as it may, the corresponding
statement about regular countably compact spaces is independent not only of ZFC,
but also of CH. On the one hand, Gary Gruenhage has shown [G]:

Theorem. [CH + FCCC Dichotomy] Every countably compact regular space with
a small diagonal is metrizable.

On the other hand, Oleg Pavlov [DP] has constructed a counterexample assuming
♦+. His example is a perfect preimage of ω1. [A continuous function is called
perfect if it is closed and the preimage of each point is compact.]

Here is a pair of topological axioms which can be derived from a pair of combi-
natorial axioms given in Section 3.

Axiom 2 [2+]. The [Strong] LCπ Dichotomy: If X is locally compact and Haus-
dorff, and π : X → ω1 is continuous and onto, then at least one of the following is
true:

(1) There is a subspace W of X such that π � W is a perfect map onto a club.
(2)(2+) There is a closed discrete subspace D of X such that π(D) is stationary

[resp. a club].

I am being somewhat loose in calling this a dichotomy, since the alternatives are
not mutually exclusive.
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The LCπ Dichotomy was first shown consistent by Zoltán Balogh around 1982,
when he showed that it followed from MA+not-CH (in fact he got every locally
countable subspace to be the countable union of closed discrete subspaces of X)
unless X contained a perfect preimage of ω1. Its consistency with CH was shown
in 1997 and will appear in [EN2]. Ostaszewski’s space shows that its negation is
consistent with CH.

The strong LCπ dichotomy cannot be obtained by ccc forcing, and does not
follow from MA+not-CH, but it does follow from the PFA. It is consistent with
2ℵ0 < 2ℵ1 , but it is unknown whether it is consistent with CH.

Theorem 1.1. [2ℵ0 < 2ℵ1 + FCCC Dichotomy + Strong LCπ Dichotomy] Every
T5, countably compact manifold of dimension > 1 is metrizable.

Suppose M is a counterexample.

Step 1: By FCCC Dichotomy, there is a copy of ω1 in any countably compact,
nonmetrizable subspace of M .

Step 2: Use 2ℵ0 < 2ℵ1 to show M is ω-bounded, i.e., every countable subset has
compact closure.

Step 3: Write M as
⋃
{Mα : α < ω1} where each Mα is a metrizable submanifold

and Mα ⊂ Mβ whenever α < β, and Mβ =
⋃
{Mα : α < β} when β is a limit

ordinal.

Step 4: Let X =
⋃
{Mα \ Mα : α < ω1} and let π : X → ω1 be defined by

π(x) = α for all x ∈ Mα \ Mα. Then π is continuous onto.

Step 5: Remove a copy W0 of ω1 from M . This gives either an uncountable
closed discrete subspace D by (1) of Strong LCπ Dichotomy, or another copy W1

of ω1 in two steps using (2) and then FCCC Dichotomy.

Step 6a: If (1), get a ladder system space on a club and use 2ℵ0 < 2ℵ1 , which
implies [DS] that there is a piecewise monochromatic, non-uniformizable 2-coloring
of any ladder system on a club. These colorings are associated with a pair of closed
discrete subspaces of M \ W0 which cannot be put into disjoint open sets.

Step 6b: If (2), use Urysohn’s lemma and line up copies of ω1 to get a non-normal
subspace as in [N3]. The subspace can be an “NN-plank” as defined in [N2].

For 6b we can also rely on the highly useful lemma in [N1] about how a perfect
preimage of ω1 containing infintely many disjoint copies of ω1 can be neither T5 nor
hereditarily strongly cwH.

Theorem 1.2. [FCCC Dichotomy + LCπ Dichotomy] Every hereditarily strongly
cwH, countably compact manifold of dimension > 1 is metrizable.

This time, Step 2 can be done in ZFC, Step 5 needs only a stationary image
for D, and Step 6a uses the Pressing-Down Lemma. For Step 6b we repeat the
construction of a copy of ω1 infinitely many times, and use the lemma from [N1].
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The Rudin-Zenor perfectly normal manifold constructed using CH is an S-space
[RZ], so “countably compact” cannot be replaced with “ω1-compact” in either The-
orem 1 or Theorem 2: in both cases the axioms used are compatible with CH.
(2ℵ0 < 2ℵ1 even follows from it.) The best I have been able to do with ω1-compact
manifolds is:

Theorem 1.3. [PFA] Every ω1-compact hereditarily strongly cwH manifold of di-
mension > 1 is metrizable.

Section 2. Anti-PFA axioms that negate Axiom 1

All the “Anti-PFA” axioms with which we deal are preserved by ccc forcing, and
hence compatible with MA + ¬CH. But some have better preservation properties
than others. The following axiom is not preserved by countably closed forcing: it
is destroyed by adding ℵ2-many Cohen subsets of ω1.

Axiom 3. KH+: There is a base B for the club filter on ω1 such that B � α (=
{B ∩ α : B ∈ B}) is countable for all α ∈ ω1.

On the other hand, the following axiom is not even destroyed by any ω-proper
forcing [I]:
Axiom 4. There is a club-guessing ladder system on ω1. That is, there is a ladder
system {Lα : α ∈ Λ} such that for every club C ⊂ ω1, there is α such that Lα ⊂ C.

As in [EN2], I will often refer to Axiom 4 as ♣C . because ♣ is the axiom which
strengthens “every club” to “every uncountable”. Similarly, I let ♣S strengthen it
to the intermediate “every stationary.”

In Section 5, we will show that Axiom 4 is enough to show the existence of a
hereditarily collectionwise normal, countably compact 2-manifold. This manifold
shows that the weakening of FCCC Dichotomy by substituting “perfect preimage
of ω1” for “copy of ω1” does not work in Theorem 1 or Theorem 2. The long line
shows dim > 1 is needed.

Section 6 gives more information about Axioms 3 (KH+) and 4 (♣C), including
a short proof that the former implies the latter. In fact, as will be seen there, KH+

has many consequences much stronger than ♣C . Here we look at some other axioms
that progressively weaken ♣C , and show that the second weakest is already enough
to negate FCCC Dichotomy.

Axiom 5. [“Kunen’s Axiom”] There is a sequence of ladders {Lα : α ∈ Λ} such
that for every club C, there is a limit point α of C such that for almost every ξ in
Lα, there is an element of C between ξ and the next element of Lα.

If we apply ♣C (or Kunen’s Axiom) to the derived set C ′ of C, then there are
infinitely many elements of C between ξ and the next element of C. Hence ♣C

implies Kunen’s Axiom even if we interpret “between” strictly.
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Conjecture. Kunen’s Axiom does not imply ♣C .

Kunen’s Axiom can be obtained by the following forcing, beginning with any
ground model; but if we begin with a model the PFA, then I conjecture that the
following forcing is not enough to get ♣C .

Example 1. Let U be a Q-point ultrafilter; that is, given any finite-to-one function
f : ω → ω, there is A ∈ U such that f � A is one-to-one. Let P be “the second half
of Mathias forcing” applied to U . That is:

P = {([p],Ap)|[p] ∈ [ω]<ω, and Ap ∈ [U ]<ω}

p < q ⇐⇒ [p] ⊂ [q],Ap ⊂ Aq and [q] \ [p] ⊂
⋂
Ap.

Claim. Forcing with P gives a model of Kunen’s Axiom.

The following axiom appears in the joint paper of Gruenhage and Moore in Open
Problems in Topology II:

Axiom 6. f: There is a family of continuous functions {fα : α ∈ Λ}, fα → ω such
that, for each club C ⊂ ω1, there is α such that fα � C ∩ α is surjective.

This axiom is implied by Kunen’s Axiom: with Lα listed in order as ξn(n ∈ ω)
let xn(n ∈ ω) list ω2, and let fα take the interval (ξn, ξn+1 to π1(xn). Besides the
forcing in Example 1, f can be produced by adding either a Cohen or random real
to any ground model. It is well known that if the ground model satisfies PFA, then
the forcing extension does not satisfy ♣C , and I conjecture that it also does not
satisfy Kunen’s Axiom.

It is easy to see that f implies the following axiom: just reduce fα modulo 2 to
get gα in:

Axiom 7. There is a family of continuous functions {gα : α ∈ Λ}, gα → {0, 1}
such that, for each club C ⊂ ω1, there is α such that gα � C ∩ α is not eventually
constant.

Theorem 2.1. The following axioms are equivalent.

(1) Axiom 1
(2) There is a banded perfect 2-1 preimage of ω1 without a copy of ω1.
(3) There is a ladder system such that for each club C there is a ladder Lα for

which there are infinitely many pairs of successive members c, c′ of C such
that Lα meets the interval [c, c′) in an odd number of elements.

”Banded” means each point x has a clopen nbhd which does not contain the
other member of the fiber containing x, but which contains every fiber π←{ξ} that
it meets whenever ξ < π(x).
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If we strengthen ”an odd number” to ”exactly one” in (3), the resulting axiom
follows from ♣C ; I do not know whether it follows from Kunen’s Axiom or f, nor
whether the reverse implications hold.

The following example shows how (1) implies (2):

Example 2. Let X = ω1 × {0, 1}, let π : X → {0, 1} be the projection map, and
define basic nbhds of each point of X as follows. For each α we define a pair of
complementary subsets B(α, 0) and B(α, 1) of [0, α], declaring them to be (cl)open,
letting a (clopen) base at 〈α, i〉 be the collection of all sets of the form

{〈α, i〉} ∪ ([(β, α) × {0, 1}] ∩ B(α, i)).

For nonlimit α, we let B(α, 1) = {〈α, 1〉}, so that B(α, 0) be the complement of
B(α, 1) in [0, α] × {0, 1}. For limit α we define:

B(α, i) = {〈α, i〉} ∪ (g−1
α {i} × {0, 1}) for i ∈ {0, 1}.

where gα is as in Axiom 7.

With the resulting topology, X is countably compact (in fact, it is ω-bounded:
every countable subset has compact closure), noncompact, and locally countable,
hence first countable. Clearly, X is banded, and it does not contain a copy of ω1.
Indeed, every uncountable closed subset meets the fibers over a club C, because π
is a closed map; then we can apply Axiom 7 to find a stationary set of α such that
C ∩ π−1[0, α) meets both B(α, 0) and B(α, 1) over a cofinal subset of α. But no
copy of ω1 can behave like this.

Corollary. Axiom 7 negates the FCCC Dichotomy (Axiom 1).

Problem 1. Is Axiom 7 strictly weaker than Axiom 6?

Section 3. More antidiamond axioms and a topological application

In this section we give some purely combinatorial axioms that imply Axioms 2
and 2+ and:

Axiom 8. The LC Trichotomy: If X is locally compact and Hausdorff, then at
least one of the following is true:

(1) X is the countable union of ω-bounded subspaces.
(2) X has an uncountable closed discrete subspace.
(3) X has a countable subset with non-Lindelöf closure.

Obviously, (1) is incompatible with either (2) or (3), but there are easy exam-
ples of X satisfying both (2) and (3); so I am speaking loosely here again. The
power of this axiom is evident from Theorem 3.1 below, which gives a consistent
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Yes answer, modulo large cardinals, to the following problem of Arhangel’skĭı and
Buzyakova [AB]:

Problem 2: Is every normal, locally compact, linearly Lindelöf space Lindelöf?

If “locally compact” is omitted, we have one of the most basic unsolved problems
in general topology, for which we do not even have any consistent answers.

Definition. A space X is linearly Lindelöf if every open cover that is totally ordered
by ⊂ has a countable subcover. A space X is pseudocompact if every continuous
real-valued function on X is bounded. A space X is countably metacompact if every
countable open cover has a point-finite open refinement.

Here are some basic facts about these concepts; the first two have very easy
proofs.

• Every countably compact T1 space is countably metacompact, and so is every
T1 space that is the countable union of closed, countably compact subspaces.

• Every countably compact space is pseudocompact; more generally, so is every
space with a dense countably compact (or pseudocompact) subspace.

• Every normal, pseudocompact space is countably compact [E, p. 206].
• Every countably metacompact, linearly Lindelöf space is Lindelöf [H].
The following appears in [EN2].

Theorem 3.1. [Axiom 8 + c < ℵω] Every locally compact, normal, linearly Lindelöf
space is Lindelöf.

Proof. Alternative (2) in Axiom 6 cannot hold in a linearly Lindelöf space: if D
is an uncountable closed discrete subspace of a space X, let {dξ : ξ < ω1} list ℵ1

points of D, let E = X \ {dξ : ξ < ω1} and let Uα = E ∪{dξ : ξ < α} for all α < ω1.
Then {Uα : α < ω1} is an open cover with no countable subcover.

Alternative (3) cannot hold in a regular linearly Lindelöf space if c < ℵω. For
then, the closure of any countable subset has a base of cardinality less than ℵω, and
in a linearly Lindelöf space, every open cover of cardinality < ℵω has a countable
subcover [H]. Clearly, every closed subspace of a linearly Lindelöf space is linearly
Lindelöf, so the closure is Lindelöf.

So now we turn to alternative (1). Let X be a linearly Lindelöf space which is
the union of countably many ω-bounded subspaces Xn. The closure Xn is pseu-
docompact since Xn is a dense countably compact subspace. If X is normal, so is
each Xn. Hence X =

⋃
n Xn is the countable union of closed countably compact

subspaces, and is thus countably metacompact. It now follows that X is Lindelöf.
�

Now we give some purely combinatorial axioms from which all our topological
axioms except Axiom 1 can be derived. They use the following concepts:
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Definition. An ideal J of subsets of a set X is countable-covering if for each
Q ∈ [X]ω, the ideal J � Q is countably generated.

In other words, for each countable subset Q of X, there is a countable subcol-
lection {JQ

n : n ∈ ω} of J such that every member J of J that is a subset of Q
satisfies J ⊂ JQ

n for some n.

Definition. Given an ideal J of subsets of a set S, a subset A of S is orthogonal
to J if A ∩ J is finite for each J ∈ J . The ω-orthocomplement of J is the ideal
{I : |I| ≤ ω, I is orthogonal to J } and will be denoted J ⊥.

Axiom 9. For every countable-covering ideal J on a set X, either

(i) X is the union of countably many sets {Bn : n ∈ ω} such that every countable
subset of each Bn is in J , or

(ii) there is an uncountable subset A of X such that every countable subset of A
is in J ⊥.

Theorem 3.2. Axiom 9 implies Axiom 8.

Axiom 9 follows from what is called (∗) in [T], which in turn is a consequence of
the PFA and is also compatible with CH. It has considerable large-cardinal strength,
whereas the following variations on it are ZFC-equiconsistent. When {i, j} ⊂ {1, 2}
then Cij is also compatible with CH.

Axioms. CC11 is the axiom that for each countable-covering ideal J on a station-
ary subset S of ω1, either:

(i) there is an uncountable A ⊂ S such that [A]ω ⊂ J ; or

(ii) there is an uncountable B ⊂ S such that [B]ω ⊂ J⊥.

Axioms CC12, CC21 and CC22 are defined by replacing “uncountable” with
“stationary” in (ii), (i), and both, respectively. By strengthening “stationary” to
“club” and replacing S by ω1, we get a pair of axioms that are compatible with
2ℵ0 < 2ℵ1 :
Axioms. CC13 [resp. CC23] is the axiom that for each countable-covering ideal J
on ω1, either:

(i) there is an uncountable [resp. stationary] A such that [A]ω ⊂ J ; or

(ii) there is a club B ⊂ ω1 such that [B]ω ⊂ J⊥.

Problem 3. Is CC13 or CC23 compatible with CH?

Theorem 3.3. (a) CC11 =⇒ ¬♣.

(b) CC12 =⇒ ¬♣S.

(c) CC13 =⇒ ¬♣C .

Proof. Let J be the ideal generated by the sets Sα. This is countable-covering:
if sup Q = α, then J � Q is generated by {Sξ ∩ Q : ξ ≤ α} ∪ [Q]<ω. Now, it is
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impossible for there to be a set of order type ≥ ω2 in J , so alternative (i) fails
in CC1n. But alternative (ii) gives an uncountable [resp. stationary] [resp. club]
subset of ω1 which meets each ladder Sα in a finite set, very strongly negating the
respective variants of ♣. �

The following is shown in [EN2].

Theorem. Axiom CC12 [resp. CC13] implies Axiom 2 [resp. 2+].

Section 4. Principal T -bundles: some ZFC results

The 2-manifold which will be constructed using Axiom 4 (♣C) is formed by
adding a single point to a principal T -bundle over the long ray L+, where T is the
so-called “torus group,” the group of complex numbers of absolute value 1. For L+

we take {α+ r : α ∈ ω1, r ∈ (0, 1]} with the lexicographic “connect-the-dots” order:
α + r ≤ β + s ⇐⇒ α < β or (α = β ∧ r < s).

To emphasize the geometry of the situation, we use the alternative description
of T as the group of angles θ (0 ≤ θ < 2π) with the obvious addition modulo 2π.
A principal T -bundle X over the long ray is locally like R × T ; in fact, there is a
projection π : X → L+ and homeomorphisms fα : R × T → π−1(0, α + 1) such
that π-fibers are preserved, i.e., f(π−1

1 {r} = π−1{p} for a unique p ∈ L+. [Here
π1 : R × T → R is the projection.] We call a subset of X unbounded if its image
under π is unbounded.

Notation. We let Xp = π←{p} for each point p of L+. [Xp is referred to as the
fiber over p.] We let x + θ represent the unique point y in Xπ(x) that is θ radians
from x in the positive direction. This notation also gives the action of T on X.

Principal T -bundles have the property that convergent sequences preserve angu-
lar separation. In fact, if xn → x and yn = xn + θn, then θn → θ iff 〈yn〉 converges
to x+θ. Because of this, it is convenient to treat each fiber Xp as an isometric copy
of T , with d(x, y) equal to the angular separation between x and y. Moreover, the
homeomorphisms fα can be chosen so that their restrictions to the various rings
{r} × T are isomorphisms to the images Xp.

Combining these features gives us a convenient way of defining a local base at
any point x. Fix a choice of fα : R × T → π←(0, α + 1) for each α ∈ ω1, and for
p = α + r (α ∈ ω1, r ∈ (0, 1)) let fp = fα. For each point x there is an arc Ax

that contains x and meets each fiber Xp in π←(0, π(x)+1) exactly once. Once whe
choose Ax for some x ∈ Xp, we can let

Ax+θ = {y ∈ X : ∃z ∈ Ax (y = z + θ)}

for all θ ∈ [0, 2π). So we can define a local base at x by taking the members B of
a local base at π(x) and taking the intersections of the sets π←B with the strips of
width 1/n (n ∈ Z

+) centered on Ax.
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For the rest of this section, X will be principal T -bundle over L+, beginning with
the following easy lemma.

Lemma 1. If F is a closed unbounded subset of X, then π→(F )∩ω1 is a club, and
F ∩ Xp is compact for all p ∈ L+. �

Definition. Let p ∈ L+ and F ⊂ X. A gap in F ∩ Xp is a pair x, x + θ (0 <
θ ≤ 2π) of (not necessarily distinct) elements of F ∩ Xp such that x + φ /∈ F ∩
Xp whenever 0 < φ < θ. The number θ is called the width of the gap {x, x + θ}.

In this definition, x + 2π = x: a gap of width 2π is the case F ∩ Xp = {x}.

Lemma 2. Let F be a closed unbounded subset of X. For each α ∈ π→F ∩ ω1 let

h(α) = max({θ : there is a gap of width θ in F ∩ Xα}).

Then h attains its minimum r0 on a club subset C of ω1.

[As usual, max(∅) = 0]

Lemma 3. Let F and C be as in Lemma 2. If r0 > 0 let g(α) be the number of
gaps of maximum width in F ∩ Xα, for each α ∈ C. Then g(α) is constant on a
club subset C of ω1.

Theorem 4.1. If F is a closed unbounded subset of X, then there is a club C ⊂ ω1

such that either:

(1) Xα ⊂ F for all α ∈ C or
(2) There exists n ∈ Z

+ and a closed unbounded F0 ⊂ F such that |F0∩Xα| = n
for all α in C.

Definition. The order of X is ∞ if (1) of Theorem 4 holds for all closed unbounded
subsets F of X, otherwise it is the least n for which there is a closed unbounded F
meeting a club-indexed set of Xα in exactly n points.

Obviously, the trivial bundle L+ × T is of order 1. More generally:

Theorem 4.2. The order of X is 1 iff X contains a copy of ω1.

Corollary. The FCCC Dichotomy (Axiom 1) implies every X is of order 1.

Theorem 4.3. If X is of order ∞, then X is totally normal and hereditarily cwn.
Otherwise X is neither T5 nor hereditarily strongly cwH.

Section 5. Club-guessing gives a hereditarily cwn nonmetrizable mani-
fold

In this section it will be shown how the club-guessing axiom ♣C can be used
to construct a principal T -bundle X of infinite order. The construction can be
modified to produce X of any desired order n ∈ Z

+, again from ♣C .

Here is the key concept guiding the construction.
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Definition. Let α > β ∈ ω1, p ∈ L+, θ ∈ (0, 2π). We say α jolts β at p by θ if for
one (hence all) x ∈ Xα the following holds: if y is the unique point of Xβ in Ax,
then the unique point of Xp in Ay is θ radians above the unique point of Xp in Ax.
If S is a subset of (0, β] we say α jolts β on S by θ if there exists p ∈ S such that
α jolts β at p by θ.

Let Λ2 stand for the derived set of Λ, i.e., the set of limits of countable limit
ordinals. Let {Lα : α ∈ Λ} be a club-guessing ladder system, with the extra
properties (adopted to make the description move smoothly) that Lω2 = {ω ·(n+1) :
n ∈ ω} and that Lα consists of successor ordinals whenever α ∈ Λ \ Λ2, i.e.,
whenever α is of the form β + ω. Our goal is to construct X in such a way that the
following induction hypothesis holds:

(1) If α ∈ Λ2 and 〈βn〉n∈ω is a sequence of limit ordinals converging to α,
then for each n there is a choice of ξn ∈ Lβn

such that ξn converges to α and α jolts
βn by 1 at ξn.

Our underlying set will be simply L+×T , but the topology will be very different
from the product topology, except on (0, ω2) × T where the two agree, and Aω·n is
(0, ω · n + 1) × {0}). But ω2 jolts ω · (n + 1) by 1 at the first member of Lω·(n+1)

that is greater than ω · n.
The simplest way to do this, and the most adaptable to orders other than ∞

is the following: Aω2 agrees with (0, ω2) × {0} except between one unit before and
one unit after the points at which these jolts take place; in these intervals of length
2, Ax continuously falls away in the negative direction from Aω·(n+1) until it is 1
radian below it at the specified jolting point. Then it returns to join the graph of
Aω·(n+1) one unit later.

If we let σβ(n) stands for the n + 1st point in the ladder Lβ , then clearly the
following is satisfied for β = ω2:

(2) If γ ∈ Λ, β ∈ Λ2, σβ(k) < γ ≤ σβ(k + 1),
then β jolts γ on (σβ(k), γ).

After this, we assume that when we reach each later α ∈ Λ2, then each earlier β
satisfied (2), and we will define Aα so that (2) continues to hold for α in place of
β. Then it is easy to see that (1) is satisfied.

Theorem 5.1. If (1) holds then X is of order ∞.

Section 6. More about Axiom 3 (♣C) and Axiom 4 (KH+)

The construction in the preceding section is a simplification of my original con-
struction, which used KH+ and a more complicated technique. KH+ is still looking
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for an essential application, so to speak, but it is so elegant that it seems only a mat-
ter of time before a construction is discovered in which it, and it alone, is needed.
Up until now it has mainly been used as an ingredient in applications of ♦+ where
♦∗ is inadequate for the arguments used. In fact:

Theorem 6.1. ♦+ ⇐⇒ ♦∗ + KH+.

Proof. Let 〈Sα : α ∈ ω1〉 witness ♦+. In other words, Sα is a countable collection
of subsets of α such that for each subset A of ω1, there is a club CA such that for
all α ∈ CA, A ∩ α and CA ∩ α are both in Sα. [♦∗ leaves out the condition that
CA ∩ A ∈ Sα]

If F is a club we let KF = F ∩ CF . Then B = {KF : F is a club} is a base
for the club filter on ω1, such that B � a is countable for each α. In fact, if we let
Tα = {A ∩ B : A,B ∈ Sα}, let Vα = Tα when α is a limit ordinal, and let

Vα+1 = Tα+1 ∪ {A ∪ {α} : A ∈ Tα} and Wα =
⋃

{Vβ : β ≤ α}

then Wα is obviously countable, and B � α ⊂ Wα for all α. Indeed, if α ∈ KF ,
then clearly KF ∩ α ∈ Tα, otherwise KF ∩ α ∈ Vβ+1 where β = max(KF ∩ α) and
β + 1 ≤ α. [The sup is a max since KF ∩ α is closed in α.]

Conversely, if {Sα : α ∈ ω1} witnesses ♦∗ and B witnesses KH+, then {Sα ∪B �

α : α ∈ ω1} witnesses ♦+. Indeed, for each A ∈ ω1 let CA be as in ♦∗ and let
KA ∈ B be a subset of CA; then K ∩ α ∈ B � α for all α, and A ∩ α ∈ Sα for all
α ∈ KA; so KA can be put for CA in ♦+. �

Similarly, we have ♦++ =⇒ KH++, which is KH+ with the added condition
that there is a stationary set E of limit ordinals α such that Uα is a filterbase, where
Uα = {A ∈ B � α : A is unbounded in α}.

To get this, let 〈Sα : α ∈ ω1〉 above also witness ♦++ and let B be as before. Let
S be a stationary set of limit ordinals α such that the unbounded members of Sα

form a filterbase. Then S ⊂ E, because (KF ∩α) ∈ Tα is unbounded in α whenever
α ∈ S and F and CF are unbounded in α.

Both KH+ and KH++ are preserved by ccc forcing, because every club subset
of ω1 in the forcing extension contains one in the ground model. Hence both axioms
are compatible with MA + c = ℵα for any regular ℵα.

It is easy to show that KH++ implies the club-guessing axiom ♣C ; but KH+ is
already adequate for this:

Theorem 6.2. KH+ =⇒ ♣C .

Proof. First, note that ♣C obviously implies the following axiom:

Axiom 4′. There is a family L = {Ln
α : α ∈ Λ, n ∈ ω} such that each Ln

α is a ladder
at α and, for every club C ⊂ ω1, there are α and n such that Ln

α ⊂ C.
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Conversely, if L witnesses Axiom 4′, one of the families Ln = {Ln
α : α ∈ Λ, n ∈ ω}

must witness ♣C . Were this not so, we could pick clubs Cn so that no Ln
α ⊂ Cn and

then C =
⋂∞

n=0 Cn would be a counterexample to L witnessing Axiom 4′.

To finish the proof, let B be a base for the club filter as in KH+ and, for each
limit α, let {Cn

α : n ∈ ω} list the members of B � α that are cofinal in α, and let
Ln

α be a cofinal subset of Cn
α of order type ω. Now if C is a club, let B ∈ B be a

subset of C. If α is in the derived set B′ of B, then B ∩ α = Cn
α for some n, and

Ln
α ⊂ B ⊂ C. �

It is clear from the preceding proof that KH+ implies the following stengthening
of Axiom 4′:

♣∗C : There is a family {Ln
α : α ∈ ω1, n ∈ ω} such that each Ln

α is a cofinal subset
of α of order type ω, and such that for each club C ⊂ ω1 there is a club K(C) such
that ∃n ∈ ω(Ln

α ⊂ C)} for all α ∈ K(C).

In fact, the proof of Theorem 6.2 can easily be modified to show something even
stronger:

Axiom 3+. There is a family {Cn
α : α ∈ ω1, n ∈ ω} such that each Cn

α is a club
subset of α of the same order type as α, and such that for each club C ⊂ ω1 there
is a club K(C) such that ∃n ∈ ω(Cn

α ⊂ C)} for all α ∈ K(C).

This axiom is destroyed by adding ω2 Cohen subsets of ω1, which is α-proper
for all α < ω1. In contrast, Axiom 4 (♣C) cannot be destroyed by any ω-proper
forcing [I]. This makes it compatible with not only the LCπ dichotomy (Axiom 2)
and Axiom 9, but also with the weakening of the FCCC dichotomy (Axiom 1) which
substitutes “perfect preimage of ω1” for “copy of ω1”. The combination of these
three axioms can be produced using forcing that is α-proper for all countable α and
also does not add reals. This substitution is enough to take care of steps 1 through
4 of the sequence of proofs for Theorem 1 and Theorem 2, as well as Theorem 4.

At the opposite extreme, the following axiom, though even weaker than Axiom
7, is known to be negated by the PFA. I do not know whether it is also negated by
FCCC Dichotomy (Axiom 1).

Axiom 10. There is a family of functions {gα : α ∈ Λ}, gα → {0, 1} such that
g−1

α {1} is open for all α and, for each club C ⊂ ω1, there is α such that gα � C ∩ α
is not eventually constant.
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Lindelöfness,” Comment. Math. Univ. Carolinae 39, 1 (1998) 159–166.

[D] Alan Dow, “Set theory in topology,” pp. 167–197 in: Recent progress in general
topology (Prague, 1991), North-Holland, Amsterdam, 1992.



14

[DP] Alan Dow and Oleg Pavlov, “More about spaces with a small diagonal,” Fund.
Math. 191 (2006), no. 1, 67–80.

[DS] K. Devlin and S. Shelah, “A weak version of ♦ which follows from 2ℵ0 < 2ℵ1 ,”
Israel J. Math. 29 (1978) 239–247.

[E] R. Engelking, General Topology, Heldermann-Verlag, Berlin, 1989.

[EN1] Todd Eisworth and P. Nyikos, “First countable, countably compact spaces
and the continuum hypothesis,” Transactions AMS 357 (2005), 4269-4299.

[EN2] Todd Eisworth and P. Nyikos, “Antidiamond principles and topological ap-
plications,” submitted to Transactions AMS. Preliminary draft at

http://www.math.sc.edu/̃ nyikos/preprints.html

[F] D.H. Fremlin, “Perfect pre-images of ωi and the PFA,” Topology and its Appli-
cations 29 (1988), no. 2, 151–166.

[G] G. Gruenhage, “Spaces having a small diagonal,” Topology Appl. 122 (2002),
no. 1-2, 183–200.

[H] N. Howes, “A note on transfinite sequences,” Fund. Math. 106 (1980) 213–216.

[I] Tetsuya Ishiu, “α-properness and Axiom A,” Fund. Math. 186 (2005), no. 1,
25–37.
[N1] P. Nyikos, “Crowding of functions, para-saturation of ideals, and topological
applications,” Topology Proceedings 28 (1) (2004) 241-266.

[N2] P. Nyikos, “Applications of some strong set-theoretic axioms to locally compact
T5 and hereditarily scwH spaces,” Fund. Math. 176 (1) (2003) 25–45.

[N3] P. Nyikos, Correction to: “Complete normality and metrization theory of
manifolds,” Topology Appl. 123 (2002), no. 1, 181–192.

[R1] M.E. Rudin, Lectures on Set Theoretic Topology, CBMS Regional Conference
Series no. 23, Amer. Math. Soc., Providence, RI, 1975.

[R2] M.E. Rudin, “The undecidability of the existence of a perfectly normal non-
metrizable manifold,” Houston J. Math. 5 (1979), no. 2, 249–252.

[RZ] M.E. Rudin and P.L. Zenor, “A perfectly normal nonmetrizable manifold,”
Houston J. Math. 2 (1976), no. 1, 129–134.”
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