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The main problem in this article is one of my all-time favorites. To drum up
interest in it, I announced at the 1986 Prague Topological Symposium (Toposym)
that I was offering a US$500 prize for a solution during the following ten years [9].
There was essentially no progress on the problem all during those ten years, and
so at the 1996 Toposym I raised the award to US$1000 during the following ten
years. Those ten years have almost passed with no progress on the problem at
all to the best of my knowledge, and I am hereby removing all time limits on the
$1000 award and am contemplating raising it. Here is the problem that is the
focus of all this largesse:

Problem 1. Does ZFC imply the existence of a separable, first countable, count- 1001 ?

ably compact, noncompact Hausdorff (T2) space?

A mild put-down of general topology one hears from time to time is that there
are too many adjectives in a typical problem or theorem. For me, however, one of
the charms of general topology is that there are so many theorems and problems
one can understand with no more than a typical undergraduate textbook in general
topology as a resource. The adjectives used here definitely fall under that heading;
the concepts are like second nature to many of us, and I have little mental pictures
that I associate to each one to help keep arguments straight.

I will soon cut down on the number of adjectives in the alternative wording
below, but the ones in the original wording are all implicitly there. The usual
topology on ω1 satisfies everything except separability. The Novak–Teresaka space
described in Vaughan’s article [15] satisfies everything except first countability. If
one refines the cofinite topology on ω1 by making initial segments open, then the
resulting space satisfies everything except T2 and is T1. The remaining two prop-
erties are obviously necessary also to have an open problem. Also, the question
mentions ZFC because there is a multitude of consistent examples of spaces as in
Problem 1; see Sections 1 and 2. In fact, Problem 1 is one of a small but growing
number of topological problems for which a negative answer is known to entail
(2ω =)c ≥ ℵ3, yet c = ℵ3 has not been ruled out. See Section 4.

2000 Mathematics Subject Classification. 54A25, 54A35, 54D20, 54D45, 54G20.
Key words and phrases. countably compact, first countable, separable, ω-bounded, locally

compact, locally countable, good, splendid, Chang Conjecture variant, fine, amenable, Kurepa

family.

1



2 PETER NYIKOS

For reasons having nothing to do with the aforementioned put-down, it is con-
venient to introduce the following concepts:

Definition. A space X is ω-bounded if every countable subset has compact clo-
sure, and strongly ω-bounded if every σ-compact subset has compact closure.

Also, after this paragraph, space will mean T2-space. In fact, it could almost
as easily mean T3-space because of the well-known fact that T2 implies T3 for
first countable, countably compact spaces [1, 2]. (However, this doesn’t work with
“locally countable” in place of “first countable,” as shown by an example of mine,
mentioned in Vaughan’s article [15] and done in detail in [14].) I could also have
gone quite far in the opposite direction: an easy proof by contrapositive shows
that every first countable space in which convergent sequences have unique limits
is T2. With this convention, we give the negative version of Problem 1 thus:

Problem 1′. Is it consistent that every first countable, countably compact space
is ω-bounded?

Unlike with Problem 1, we have no consistency results either way for the fol-
lowing problem:

Problem 2. Is there a first countable, ω-bounded space that is not strongly ω-? 1002

bounded?

The following ZFC example shows that first countability cannot be dropped
from this problem.

Example. Let p be a weak P-point in ω∗ = βω \ ω that is not a P-point. Then
ω∗ \ {p} is locally compact, ω-bounded, and not strongly ω-bounded.

1. Consistent good examples for Problem 1

The best-known consistent examples for Problem 1 are the separable uncount-
able good spaces that are also discussed in the articles by Juhász [5] and Vaughan [15].

Definition. A space is good if it is countably compact, locally countable, and T3.
A space is splendid if it is good and ω-bounded.

Clearly, a good space is noncompact iff it is uncountable, and so a good space
is splendid iff every countable subset has countable closure. It follows that a ZFC
example of good space that is not splendid would solve Problem 1. We do not
know whether the added generality in Problem 1 is necessary— in other words,
part (a) of the following problem is unsolved; so is part (b):

Problem 3. Is it consistent that there is a countably compact first countable? 1003–1004

space that is not ω-bounded and yet (a) every good space is splendid, or (b) every
locally compact, countably compact first countable space is ω-bounded?

Clearly, every good space is locally compact. In [11] I gave a general construc-
tion of separable good spaces that are not splendid, referring to such spaces as
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Ostaszewski–van Douwen spaces. This is the Ostaszewski construction by induc-
tion explained in detail in Vaughan’s article [15], with one modification stemming
from the fact that we do not care whether the spaces are r-compact for some
ultrafilter r.

At the αth step (α < c) we have a locally compact, locally countable noncom-
pact space (α, Tα) with ω as a dense set of isolated points. Having earlier listed
all sequences s on c in a c-sequence, we take the first sequence sβ without a clus-
ter point; if there is none, then (α, Tα) is a good space. Otherwise, the crucial
question is whether (α, Tα) is a wD space:

Definition. A space X is wD if for every infinite closed discrete subspace D there
is an infinite E ⊂ D for which there is a discrete family of open sets Ue such that
Ue ∩ E = {e} for all e ∈ E.

If (α, Tα) is a wD space, then we select an infinite E as above, and choose Ue

to be a compact (hence countable) open neighborhood of e, cutting down E if
necessary so that when we make

⋃
e∈E Ue ∪ {α} the one-point compactification of⋃

e∈E Ue and add α to (α, Tα), the resulting space (α + 1, Tα+1) remains noncom-
pact. Once α ≥ ω1 this reason for cutting down E becomes obsolete (although we
may have other reasons for cutting it down, see below) because (α, Tα) is auto-
matically noncompact, being uncountable and locally countable. If we can define
(α, Tα) for all α < c then we have a good space at the end, because every sequence
has been given a cluster point. In the article by Vaughan [15], various models are
given where the construction ends in a good space, either by continuing all the
way to c or stopping earlier with all sequences having cluster points. In particular,
in any model where b = c, the construction can (if so desired) continue to stage
c [3, Theorem 13.4]. In some models we have no choice, such as models where
p = c; see [4] where it is shown that every T3 separable, countably compact space
of Lindelöf number < p is compact. In others we do have a choice (such as models
where p = ω1, see below).

If at some point (α, Tα) is not a wD space, and we do not yet have a good
space, then we have to scrap it and try again. It cannot be extended to a space
for Problem 1 because of the following fact:

Theorem 1.1 ([11, Theorem 1.3]). Every subspace of a first countable, countably

compact space is a wD space.

Moreover, in a certain sense, we have to modify various choices of Ue and/or
the set to which E is cut down and/or the order in which sβ is listed: as explained
in [11], every separable good noncompact space admits a construction such as we
have gone through just now.

This is not to say that there might not be other ways of constructing the
same space. In [10] there is a construction which begins with a splendid space of
cardinality c and repeatedly tears chunks from it, attaching the chunks to a copy
of ω which will be dense in the intermediate spaces. As explained in [11], however,
the same obstacle of an intermediate non-wD space might be encountered before
we have a countably compact space on our hands. There is the added incovenience



4 PETER NYIKOS

that in some models obtained using enormously large cardinals, all splendid spaces
are of cardinality less than c; see Section 3.

A different alternative construction is in models of p = ω1, which is equiva-
lent [3] to t = ω1, i.e., there is a decreasing mod-finite ω1-tower on ω. This is
a family {Aα : α ∈ ω1} of infinite subsets of ω such that Aα ⊂∗ Aβ whenever
α > β, and such that no infinite subset ⊂∗ Aα for all α < ω1. Given such a fam-
ily, one constructs a Franklin–Rajagopalan (FR) space as explained in Vaughan’s
article [15], a countably compact space with ω as a dense set of isolated points
and set of non-isolated points homeomorphic to ω1. Like all FR-spaces it is locally
compact, and so it is a good space. As usual, it is defined “all in one go” in [15] but
it could also be constructed by the Ostaszewski technique and provides us with an
example where the construction ends before stage c in any model of t = ω1 < c.

Yet another approach to constructing good spaces is in the last section of [11]:
construct good spaces in ground models or intermediate models with a view to
them being preserved in forcing extensions. Unfortunately, I know of no progress
here since [11] was written; the results sketched there have not even been published
yet.

2. Other consistent constructions for Problem 1

In this section we summarize constructions of separable, countably compact,
first countable, noncompact spaces that are not good. None to date has given us
examples in any model where there are good examples for Problem 1.

Example ([11, p.139]). Modify the Ostaszewski construction to begin with 2ω(=
the Cantor set) ×ω, to serve as a dense subspace for the rest of the inductive
construction. At stage α we could take advantage of the fact that the union of
the Ue-analogues is homeomorphic to 2ω × ω and to compactify it by identifying
it with an open subspace of a copy Cα of the Cantor set, the rest of Cα being
disjoint from the space we have constructed thus far. The special case where there
is only point in the rest of Cα is especially close to the Ostaszewski construction,
allowing for [ω, α) to be the rest of the space at stage α.

Example ([8, Example 3.11]). Begin with an open ball in R
n(n ≥ 2) and recur-

sively add copies of [0, 1) in a way that makes the spaces we build into n-manifolds
with the original open ball as a dense subspace.

CH and a few forcing models are enough to give us countably compact non-
compact manifolds (hence locally compact in addition to being first countable),
but this seems too restrictive a method of constructing spaces for Problem 1. The
following problem from [11], for example, is still unsolved.

Problem 4. Is it consistent for there to be a countably compact manifold of? 1005

weight > ω1?

Lacking a Yes answer, we are stymied in all models of p > ω1, while p = ω1 is
already enough to give us a good FR-space (see above). Section 6 of [11] details
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the main hurdles to any solution of Problem 4. The key problem is that wD is no
longer good enough to continue the construction if it is not yet countably compact
at stage α; one needs for there to be a subsequence of sα contained in a closed
copy of the closed ball minus a single point, and there are ZFC examples of weight
ω1 where there is no such subsequence.

Example ([11, Section 5]). A countably compact, first countable linearly ordered
space Y is attached to ω so that ω is a dense set of isolated points. If t > ω1 then
Y is densely linearly ordered and nowhere locally compact.

Making the whole space countably compact relies on the existence of numer-
ous tight (ω1, c

∗)-gaps and (c, ω∗

1)-gaps. Some progress has been made in this
direction—see the solution to Problem 10 of [11] in the Topology Atlas—but the
models involved have “good” solutions to Problem 1 in them, and so Problem 3
remains open.

3. Arbitrarily large first countable, locally compact, countably

compact spaces

In this section we turn to some related problems which may involve solutions
to Problem 1. The following problem was featured in [9]:

Problem 5. Can there be an upper bound on the cardinalities of locally compact, 1006 ?

first countable, countably compact spaces?

Without “locally compact” this would have an easy answer: take any regu-
lar cardinal and remove all its points of first countability. Problem 5 was origi-
nally motivated by Arhangelskii’s famous solution to Alexandroff’s old problem of
whether there is an upper bound on the cardinalities of first countable, compact
spaces. Arhangel’skii showed that c is the upper bound. Both Problem 5 and
Problem 6 below are generalizations of Alexandroff’s problem. Problem 5 is also
a generalization of the second part of Problem 1 in Juhász’s article [5], which asks
the same question (in negated form) of good spaces.

Problem 6. Can there be an upper bound on the cardinalities of locally compact, 1007 ?

first countable, ω-bounded spaces?

As far as we know, it may be consistent that c is the upper bound in Problem 5
or Problem 6 as well; compare the first part of Problem 1 in Juhász’s article. In
any case, a positive solution even to Problem 6 would require the use of some very
large cardinals.

Back when I first started thinking about Problem 5, I had not yet heard of the
joint work of Juhász, Nagy and Weiss [6] which produced arbitrarily large splendid
spaces, which are more than enough for a consistent No answer to Problem 5. We
now know that their construction works under e.g., Covering(V, K); for details see
the article by Juhasz [5]. Thus it is consistent with c being anything reasonable
and requires large cardinals for its negation.

On the other hand, we also know [7] [5] that the Chang Conjecture variant
(ℵω+1,ℵω) → (ℵ1,ℵ0) destroys all splendid spaces of size ≥ ℵω. This variant,
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called the CCV below, has been shown consistent assuming a 2-huge cardinal.
This use of the CCV has not been extended to a solution of Problem 6. The best
we have so far is:

Theorem 3.1 ([7]). If the CCV holds, then every locally compact, locally heredi-

tarily Lindelöf, ω-bounded space is of Lindelöf degree < ℵω and hence of cardinality

<max{ℵω, c+}

For convenience I will temporarily adopt the following expressions:

Definition. A space is amenable if it is locally compact, locally hereditarily Lin-
delöf and countably compact and fine if it is locally compact, locally hereditarily
Lindelöf and ω-bounded.

Clearly, every splendid space is fine and every good space is amenable. A
corollary of Theorem 3.1 is that the CCV implies every amenable space of Lindelöf
degree > ℵω contains a separable, countably compact noncompact subspace. This
suggests that a ZFC construction of an amenable space of Lindelöf degree ≥ ℵω+1

(in particular, a good space of cardinality ≥ ℵω+1) would solve Problem 1. But
it is conceivable that there may be one construction that works assuming the
CCV, and another that works if the CCV fails, and which produces an ω-bounded
space in some models. This may not be the end of the story, however. Every
amenable space that is not ω-bounded contains a separable, noncompact closed
subspace of cardinality ≤ c. So if forcing is enough to destroy all such spaces, it
seems plausible that a poset of modest size would be enough to do the trick. But
the CCV is not destroyed by forcing by a set of cardinality lower than the first
uncountable measurable cardinal. So it may not be a major step from the ZFC
construction of an amenable space to an affirmative solution to Problem 1, or at
least to a proof that large cardinals are needed to get a negative solution.

However, there is a far more sensational possibility: the hypothetical ZFC con-
struction may actually be of a fine (perhaps even splendid) space, thereby showing
that the CCV is inconsistent and hence so is the existence of 2-huge cardinals. Such
a discovery would set off a major flurry of activity in large cardinal theory, as set
theorists search for a natural lower bound for cardinals that are in jeopardy, so to
speak.

On the other hand, the time may be ripe for lowering the large cardinal needed
for the nonexistence of arbitrarily large fine (or at least splendid) spaces. A great
deal has happened since [7] was published, including the discovery of Woodin
cardinals and the equiconsistency of the Axiom of Determinacy (AD) with that
of infinitely many Woodin cardinals. Recall that the consistency of AD was once
thought to call for cardinals far larger than even 2-huge cardinals, and now it
is known to call for something less than even a supercompact cardinal. If the
consistency of nonexistence of arbitrarily large amenable spaces could be lowered
this much, it would make their set-theoretic independence secure in the opinion
of most set theorists.

A special case of fine, implicit in our next theorem [12], might give impetus to
this quest. It uses the concept of a Kurepa family—a family K of denumerable
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sets which is uncluttered in the following way: for each countable A ⊂
⋃
K the

family K � A = {A ∩ K : K ∈ K} is countable. A Kurepa family is called cofinal

if it is ⊂-cofinal in [
⋃

K]ω.

Theorem 3.2. Let κ be an infinite cardinal. The following are equivalent.

(a) There is a cofinal Kurepa family of cardinality κ.

(b) There is a locally metrizable, ω-bounded 0-dimensional space of weight κ.

The proof uses Stone Duality and the fact that a compact 0-dimensional space
is metrizable iff it has at most countably many clopen sets.

Problem 7. Can 0-dimensionality be dropped from Theorem 3.2? 1008 ?

In Juhasz’s article [5] the problem is posed whether (a) is equivalent to there
being a splendid space of cardinality κ. Note that the spaces described in (b) are
intermediate between splendid and fine spaces. The simple structure of cofinal
Kurepa families suggests that a lowering of consistency strength as above may be
within reach. The following problem may be especially tractable:

Problem 8. Is there a cofinal Kurepa family on R? 1009 ?

4. Towards negative answers

In Section 1 we saw that there are good spaces that are not ω-bounded if
either t = ω1 or b = c. This, together with the Pigeonhole Principle applied to
the well known fact [3] that t ≤ b, implies that there are good spaces if either
c = ω1 or c = ω2. This means that a negative answer to Problem 1 cannot be
obtained by iterated forcing with countable supports: because this very popular
and sophisticated method of producing models of set theory makes c ≤ ω2. The
main alternative, finite support forcing, can lead to models of c ≥ ω3, but only if
a tail of the iteration consists of ccc posets. One drawback is that ccc posets are
a rather restrictive class. The technique of mixed supports does allow for some
non-ccc posets while still leading to models of c ≥ ω3, but we still have no good
mixed-support candidates for negative answers to Problem 1. Another drawback
of ccc forcing with finite supports is that Cohen reals are added at each limit
stage, and these produce ω1-towers, all of which need to be destroyed if we want
a counterexample to Problem 1. They can be destroyed without making b = c

or even b = d: Section 7 of [11] gives one simple way, but with some choices of
ground model the final model still has good spaces that are not ω-bounded, and
we still do not know whether all choices give good spaces.

On the other hand, models of c = ω2 have not been eliminated as candidates
for negative answers to Problem 4, nor to the following problem:

Problem 9. Is there a scattered, countably compact T3 space that can be con- 1010 ?

tinuously mapped onto [0, 1]?
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While b = c is enough to construct “good” examples for this problem [3, The-
orem 13.4], no example at all has been constructed just assuming t = ω1 and we
do not know whether c = ω2 is enough to construct one.

For countably compact Tychonoff spaces, admitting a continuous function onto
[0, 1] is equivalent to having a non-scattered Stone-Čech compactification, and this
is of interest in the geometry of Banach spaces of continuous functions [13]. Any
example for Problem 9 contains a separable subspace that is also an example (just
take the closure of any countable subspace whose image is the set of rational points
in [0, 1]). Since no compact scattered space can be mapped onto [0, 1], no example
is ω-bounded.

All the (consistent) examples for Problem 9 thus far constructed are first count-
able, in fact good, and I conjecture that Problem 9 is reducible to the locally
countable, hence good case, making it a special case of Problem 1. A minimality
argument involving the Cantor-Bendixson derivatives of a scattered space shows
that if there is an example for Problem 9, it has a subspace Y with the same
properties in which each point has a nbhd which does not admit of a continuous
map onto [0, 1]. Such a nbhd meets at most countably many fibers π−1(r), since
otherwise it would have a copy of the Cantor set in its image, and therefore it
could be mapped onto [0, 1]. If Y has a point all of whose nbhds are uncountable
[in other words, if Y is not a good space] then every nbhd of that point must meet
some fiber π−1(r) in an uncountable subset; moreover, π−1(r) is of Lindelöf degree
c because there are c disjoint crowded countable subsets of [0, 1] with r in their
closure.

In contrast, it is very easy to construct a separable, locally countable, scattered,
countably compact (T2) space that can be mapped continuously onto [0, 1], using
the technique of [14] which adds points to compactify countable discrete subspaces
and uses the resulting copies of ω + 1 to define a weak base for the topology. This
highlights the importance of first countability in Problem 1 and of the T3 sepa-
ration axiom in Problem 9. It appears that the natural techniques for producing
separable, locally countable, countably compact spaces either tie up the whole
space into one compact (and countable) package, or else they tie up countable
subsets as loosely as possible. The intermediate situation, where a fairly tight but
noncompact tying-up is required, is where the challenging problems lie.
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