1. (26 points) Short answers; no proof required.
 a. If a square matrix M can be partitioned into submatrices $M = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$ in which A and D are square, what is the determinant of M in terms of the determinants of the submatrices?
 b. Assume you have a 3×3 matrix. Give the elementary matrix corresponding to the row operation cR_2; do the same for the row operation $cR_1 + R_3$ (this changes row 3 but leaves row 1 unchanged).
 c. Let $\beta = \{e_1, e_2\}$ be the standard ordered basis for \mathbb{R}^2 and γ be the ordered basis given by $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Give the matrix that gives γ in terms of β; and give the matrix that gives β in terms of γ.
 d. Define similar matrices. How is this important for defining the determinant of a linear operator on a finite dimensional space?
 e. A system $AX = 0$ of m linear equations in n unknowns x_1, \ldots, x_n always has the trivial solution $x_1 = x_2 = \cdots = x_n = 0$. What condition on A will guarantee that there exist non-trivial solutions?

2. (14 points) Let T be a linear operator on a finite dimensional vector space V whose characteristic polynomial splits (that is, factors into a product of linear factors, possibly repeated). Let W be a nontrivial T-invariant subspace. Prove that W contains at least one eigenvector for T.

3. (16 points) Let A be an upper triangular matrix $n \times n$ matrix, and suppose A has distinct eigenvalues $\lambda_1, \ldots, \lambda_t$ with corresponding algebraic multiplicities k_1, \ldots, k_t.
 a. Compute the characteristic polynomial χ_A from the definition, and show that it splits.
 b. How are the diagonal entries of A, namely the a_{ii}’s, related to the eigenvalues of A?
 c. Prove that the trace of A, defined as $\sum_{i=1}^{n} a_{ii}$, is equal to $\sum_{i=1}^{t} k_i \lambda_i$, and that $\sum_{i=1}^{t} k_i = n$. How is $\text{tr}(A)$ related to one of the coefficients of χ_A?

4. (16 points) A linear operator T on $V = \mathbb{R}^4$ has characteristic polynomial $x^4 - 1$. Determine whether T is diagonalizable or not. Determine whether T is invertible or not, and if so, give T^{-1} in terms of non-negative powers of T. How would your answers to these questions change if $V = \mathbb{C}^4$ (as a vector space over \mathbb{C}) instead?
5. (14 points) Suppose V is an n-dimensional vector space and the non-zero linear operator T satisfies $T^\ell = 0$ for some $\ell > 0$. What conclusions can you draw about the minimal polynomial $p_T(x)$, the characteristic polynomial $\chi_T(x)$, and the operator T^n? Explain.

If W is a subspace of V, recall that $W^\circ = \{ f \in V^* \mid f(w) = 0 \text{ for all } w \in W \}$. In this problem T^* represents the dual map on V^* if T is a linear operator on V, not the adjoint.

6. (14 points) Let V be a finite dimensional vector space and T be a linear operator on V. Suppose W is a T-invariant subspace of V. Prove that W° is T^*-invariant.