General instructions. Show your work. If you use major results quote them by name. Compute integrals in the easiest way that you can find; if your computation is turning out to be very complicated, think if a different approach might be possible. There are 120 points.

Stokes’ Theorem. Let \(S \) be a bounded, piecewise regular, oriented surface in \(\mathbb{R}^3 \) and suppose that \(C = \partial S \) consists of finitely many piecewise smooth simple closed curves, oriented consistently with the orientation of \(S \). Suppose that \(\mathbf{F} \) is a \(C^1 \) vector field defined on a domain that includes \(S \). Then

\[
\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_C \mathbf{F} \cdot \mathbf{n} dS = \int_C \mathbf{F} \cdot ds.
\]

Recall that Green’s Theorem is a special case that applies when \(S \) lies in the plane and \(\mathbf{n} = \mathbf{k} \).

1. (9 points) Assume \(\mathbf{F} \) is a \(C^1 \) vector field in all of \(\mathbb{R}^3 \). Give three properties of \(\mathbf{F} \) if it happens to have the form \(\nabla f \).

2. (12 points) a. Show how to subdivide the following region \(D \) in the plane so that Green’s Theorem can be applied. Show how to orient \(\partial D \) so that the orienting normal vector is \(-\mathbf{k}\).

b. For the vector field \(\mathbf{F} \) shown below, give oriented paths \(C_1 \), \(C_2 \), and \(C_3 \) so that \(\int_{C_i} \mathbf{F} \cdot ds \) is positive, zero, and negative respectively.
3. (12 points) Let \(\Phi: D \to S \) be given by \((x, y, z) = \Phi(u, v) = (uv^2, u^3, v) \) on \(D = [0,1] \times [0,1] \) (the unit square).
 a. Compute \(dS \) (vector) so that it (or \(\hat{n} \)) points upward.

 b. Compute \(dS \) (scalar).

4. (20 points) Let \(\mathbf{F} = (0, y/(y^2 + z^2), z/(y^2 + z^2)) \) and \(C \) be given by \(x = 0 \), \(y = 3 \cos t \), \(z = 2 \sin t \), \(0 \leq t \leq \pi/2 \). Compute the work done by \(\mathbf{F} \), i.e., \(\int_C \mathbf{F} \cdot ds \).
5. (26 points) Compute \(\iiint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} \) for \(\mathbf{F} = (3z^2 + yz, -y^2, x) \), and \(S \) the portion of the surface \(z = 10 - (x^2 + y^2) \) that lies above the plane \(z = 1 \) and is oriented so that \(\mathbf{n} \) points upward and away from the origin.

6. (15 points) Let \(\mathbf{F} = (z, 0, -x) \) and \(C \) be the line segment from \((1, 0, 2)\) to \((3,1,1)\). Compute \(\int_C \mathbf{F} \cdot d\mathbf{s} \).
7. (26 points) Compute the flux of \(\mathbf{F} \), i.e., \(\iint_S \mathbf{F} \cdot d\mathbf{S} \), through the closed cylinder \(S \) given by \(y = -1, \ x^2 + z^2 = 25 \), \(y = 2 \) and oriented by outward pointing normal vectors, where \(\mathbf{F} = (x, -y, z) \).