MATH 241 Spring, 2010 Quiz \#9 Name: \qquad
For full credit you must show sufficient work that the method of obtaining your answer is clear.

1. Suppose P lies on the contour $f(x, y)=10$ and Q lie on the contour $f(x, y)=6$. Suppose C is a smooth curve from P to Q. Compute $\int_{C} \vec{\nabla} f \cdot d \mathbf{r}$.
2. Determine whether each of the following regions in the $x y$-plane is a simply connected region or not.
a. $\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4\right\}$ (an "annulus" or ring)
b. $\quad\{(x, y) \mid x<0 \quad$ if $y=0\}$ (the plane with the origin and positive x-axis removed)
3. (6 points) A vector field \mathbf{F} is shown below with three oriented curves. For each curve C_{1}, C_{2}, C_{3} determine whether the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is positive, negative, or zero. No explanation is required.
4. Let $\mathbf{G}=\langle M, N\rangle=\left\langle y^{2}+2 x y, x^{2}+2 x y+\frac{1}{1+y^{2}}\right\rangle$, P be the point $(-1,2)$, and Q be the point $(3,1)$.
a. What is the domain of \mathbf{G} ?
b. Explain why the integral $\int_{P}^{Q} \mathbf{G} \cdot d \mathbf{r}$ is independent of path.
c. Compute a potential function $g(x, y)$ for \mathbf{G}.
d. Evaluate by $\int_{P}^{Q} \mathbf{G} \cdot d \mathbf{r}$.
