MATH 241 Spring, 2010 Quiz #9 Name:_____ For full credit you must show sufficient work that the method of obtaining your answer is clear.

1. Suppose *P* lies on the contour f(x, y) = 10 and *Q* lie on the contour f(x, y) = 6. Suppose *C* is a smooth curve from *P* to *Q*. Compute $\int_C \vec{\nabla} f \cdot d\mathbf{r}$.

- 2. Determine whether each of the following regions in the xy-plane is a simply connected region or not.
 - a. $\{(x,y) \mid 1 \le x^2 + y^2 \le 4\}$ (an "annulus" or ring)

b. $\{(x,y) \mid x < 0 \text{ if } y = 0\}$ (the plane with the origin and positive x-axis removed)

3. (6 points) A vector field \mathbf{F} is shown below with three oriented curves. For each curve C_1, C_2, C_3 determine whether the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero. No explanation is required.

- 4. Let $\mathbf{G} = \langle M, N \rangle = \langle y^2 + 2xy, x^2 + 2xy + \frac{1}{1+y^2} \rangle$, P be the point (-1, 2), and Q be the point (3, 1). a. What is the domain of \mathbf{G} ?
 - b. Explain why the integral $\int_P^Q \mathbf{G} \cdot d\mathbf{r}$ is independent of path.

c. Compute a potential function g(x,y) for \mathbf{G} .

d. Evaluate by $\int_P^Q \mathbf{G} \cdot d\mathbf{r}$.