MATH 241 Spring, 2010 Exam \#3 Name:

\qquad
For full credit you must show sufficient work that the method of obtaining your answer is clear. There are 100 points. Some reference formulas: $r=\rho \sin \phi$, $z=\rho \cos \phi, x=r \cos \theta, y=r \sin \theta$.

1. (15 points) Re-express the integral $\int_{0}^{1} \int_{3 y}^{3} \cos \left(x^{2}\right) d x d y$ with the order of integration reversed, and compute the easier version.
2. (10 points) A vector field \mathbf{F} is illustrated below, with a path C made up of C_{1}, C_{2}, C_{3} and C_{4} in this order. Determine if $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is negative, positive, or zero. Does \mathbf{F} have the "independence of path" property in the region shown? Explain, briefly.
3. (15 points) SET UP completely (i.e., give the limits of integration determined by D and an explicit form of $d V$, with everything in a consistent order), but do NOT compute, a triple integral for the volume of the region D bounded by the $x y$-plane, the plane $z=x+2$, and inside the cylinder $x^{2}+4 y^{2}=4$.
4. (10 points) SET UP, but do NOT compute, the triple integral in spherical coordinates that gives the volume inside the sphere $x^{2}+y^{2}+z^{2}=25$, and outside the double cone $z= \pm r$ (i.e., $z^{2}=x^{2}+y^{2}$).
5. (25 points) Compute $\oint_{C} \mathbf{G} \cdot d \mathbf{r}$ for $\mathbf{G}=\left\langle 3 x y^{2},-3 x^{2} y\right\rangle$, where C is given by the circular arc of $x^{2}+y^{2}=1$ clockwise from $(0,1)$ to $(1,0)$, then the segment from $(1,0)$ to $(2,0)$, then the circular arc of $x^{2}+y^{2}=4$ counterclockwise from $(2,0)$ to $(0,2)$, and finally the segment from $(0,2)$ back to $(0,1)$. (Hint: use a major result and then use polar coordinates.)
6. (25 points) Let $\mathbf{F}=\left\langle y e^{x y}, x e^{x y}\right\rangle$ and C be the path given by $x=1-2 t$, $y=-1-t$ for $0 \leq t \leq 1$.
a. What is the domain of \mathbf{F} ? At what point P does C begin and at what point Q does it end?
b. Is the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ is independent of path? Briefly explain.
c. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. This can be done by straightforward direct calculation, or if you can justify that there is a potential function $\varphi(x, y)$ for \mathbf{F}, then compute it and use it.
