MATH 241 Spring, 2010 Exam \#2 Name:

\qquad
For full credit you must show sufficient work that the method of obtaining your answer is clear. There are 100 points.

1. (15 points) Suppose $z=f(x, y)$ and you have the following information: $f(1,-2)=5, f_{x}(1,-2)=-3, f_{y}(1,-2)=1$.
a. Estimate $f(0.9,-2.5)$ as accurately as possible using this information.
b. Give an equation for the tangent plane to $z=f(x, y)$ at the point $(1,-2,5)$.
2. (13 points) a. Match each contour diagram with its surface. Assume that adjacent contours in each diagram represent equal changes in the value of z. I- \qquad , II- \qquad , III- \qquad , IV- \qquad , V- \qquad .
b. How can you be certain that (I) is NOT the contour diagram of a plane? (Hint: if $z=a x+b y+c$, with a, b, and c constants, what are $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$?)
3. (35 points) Suppose $w=h(x, y, z)=z^{2}+\ln (1+x y), x=s^{3} t, y=s^{2} \sin (s t)$, and $z=4-t^{2}$.
a. Compute $\operatorname{grad} h=\vec{\nabla} h$ in terms of x, y and z.
b. Compute the directional derivative $D_{\hat{\mathbf{u}}} h(P)$ at the point $P(1,3,-1 / 2)$ in the direction of $\mathbf{a}=\langle 2,2,-1\rangle$.
c. Give the maximum value for any directional derivative of h at P.
d. Which level surface for w (or h) is the point $Q(1,1,-1)$ on? Give an equation for the tangent plane to this level surface at Q.
e. Compute $\frac{\partial w}{\partial s}$ in terms of x, y, z, s, and t, using the multivariable chain rule.
4. (25 points) Let $f(x, y)=x y^{2}-6 x^{2}-3 y^{2}$.
a. Find all relative (local) maximum, minimum and saddle points (and say which is which) that lie inside the circle $x^{2}+y^{2}=64$. You may use the $D=f_{x x} f_{y y}-f_{x y}^{2}$.
b. SET UP the Lagrange multiplier equations (there are three of them) to find the maximum and minimum values of $f(x, y)$ along the boundary $x^{2}+y^{2}=64$. DO NOT solve.
5. (12 points) The diagram shows level curves for the height of a surface $z=f(x, y)$ above (or below) the $x y$-plane.
a. If a small, smooth bead is gently placed on the surface over each point P , Q, and R, sketch the path it will roll, until it exits the scene (or state that it does not roll anywhere).
b. If the heavy curve represents a constraint $g(x, y)=0$, explain why neither the absolute maximum nor minimum value of $z=f(x, y)$ on or inside the curve is found at R. Mark the point(s) S where these values might be found according to the method of Lagrange multipliers.
c. Box in a small portion of the diagram where it appears that the magnitude of the gradient vector of f is the largest. In which direction does it point?
