MATH 241 Spring, 2010 Exam #1 Name:_

For full credit you must show sufficient work that the method of obtaining your answer is clear.

- 1. (30 points) Let P be the point (-2, 1, 6); let $\mathbf{v} = \langle 4, -1, -5 \rangle = 4\mathbf{\hat{i}} \mathbf{\hat{j}} 5\mathbf{\hat{k}}$ and $\mathbf{w} = \langle 2, 1, -1 \rangle$.
 - a. Find the terminal point Q of \mathbf{v} if the initial point is P.
 - b. Compute the orthogonal projection of \mathbf{v} on \mathbf{w} (that is, $\mathbf{a} = \text{proj}_{\mathbf{w}} \mathbf{v}$, the component of \mathbf{v} in the direction of \mathbf{w}). Then compute the component of \mathbf{v} that is orthogonal to \mathbf{w} ; call this vector \mathbf{b} . Finally, verify that \mathbf{a} is orthogonal to \mathbf{b} .

c. Give an equation for a plane whose normal vector is perpendicular to both \mathbf{v} and \mathbf{w} , and which contains the point P.

- 2. (20 points) A line L_1 passes through the points (-3, -1, 3) and (1, 1, -1). A line L_2 has equations $\frac{x+3}{-1} = \frac{y-4}{2} = \frac{z-3}{1}$.
 - a. Get a direction vector \mathbf{v} for L_1 and then write the parametric equations for this line. Give a third point that is on L_1 .

b. Is the point (-2, 2, 4) on L_2 ? How can you tell?

c. These two lines DO intersect. Find the point of intersection.

3. (20 points) Give equations for **a** line L through the point P (1, 0, -2) that is **parallel** to the plane S: 3x - y + 2z = 5. Then find the distance from P to S.

4. (5 points) On the curve illustrated below, let κ_A and κ_B represent the curvatures at the points A and B, and let ρ_A and ρ_B represent the respective radii of curvature. Where is the curvature larger? Where is the radius of curvature larger? Show the osculating circles. Also show the unit normal vector **N** at C.

- 5. (25 points) A particle moves so that $\mathbf{r}(t) = \langle 2\cos t, 2\sin t, t \rangle$ for $0 \le t \le 2\pi$.
 - a. Compute the velocity vector $\mathbf{v}(t) = \mathbf{r}'(t)$, the acceleration vector $\mathbf{a}(t) = \mathbf{r}'(t)$
 - $\mathbf{r}''(t)$, the speed $\frac{ds}{dt} = ||\mathbf{v}(t)||$, and the unit tangent vector $\mathbf{T}(t)$.

b. Compute the arclength s of the path from time $\tau = 0$ to $\tau = t$. How far has the particle traveled over the whole interval from 0 to 2π ?

c. (Bonus) Recall that $\mathbf{a}(t) = a_T \mathbf{T}(t) + a_N \mathbf{N}(t)$, where $a_T = \frac{d^2 s}{dt^2} = \frac{d}{dt} (\frac{ds}{dt})$, $a_N = \kappa (\frac{ds}{dt})^2$. Compute the curvature κ from one of the formulas $||\mathbf{T}'(t)||/||\mathbf{r}'(t)||$, or $||\mathbf{r}'(t) \times \mathbf{r}''(t)||/||\mathbf{r}'(t)||^3$, or by using $||\mathbf{a}(t)||^2 = a_T^2 + a_N^2$.