MATH 241 Spring, 2010 Exam \#1 Name: \qquad
For full credit you must show sufficient work that the method of obtaining your answer is clear.

1. (30 points) Let P be the point $(-2,1,6)$; let $\mathbf{v}=\langle 4,-1,-5\rangle=4 \hat{\mathbf{i}}-\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$ and $\mathbf{w}=\langle 2,1,-1\rangle$.
a. Find the terminal point Q of \mathbf{v} if the initial point is P .
b. Compute the orthogonal projection of \mathbf{v} on \mathbf{w} (that is, $\mathbf{a}=\operatorname{proj}_{\mathbf{w}} \mathbf{v}$, the component of \mathbf{v} in the direction of $\mathbf{w})$. Then compute the component of \mathbf{v} that is orthogonal to \mathbf{w}; call this vector \mathbf{b}. Finally, verify that \mathbf{a} is orthogonal to \mathbf{b}.
c. Give an equation for a plane whose normal vector is perpendicular to both \mathbf{v} and \mathbf{w}, and which contains the point P .
2. (20 points) A line L_{1} passes through the points $(-3,-1,3)$ and $(1,1,-1)$. A line L_{2} has equations $\frac{x+3}{-1}=\frac{y-4}{2}=\frac{z-3}{1}$.
a. Get a direction vector \mathbf{v} for L_{1} and then write the parametric equations for this line. Give a third point that is on L_{1}.
b. Is the point $(-2,2,4)$ on L_{2} ? How can you tell?
c. These two lines DO intersect. Find the point of intersection.
3. (20 points) Give equations for a line L through the point $\mathrm{P}(1,0,-2)$ that is parallel to the plane $\mathrm{S}: 3 x-y+2 z=5$. Then find the distance from P to S .
4. (5 points) On the curve illustrated below, let κ_{A} and κ_{B} represent the curvatures at the points A and B , and let ρ_{A} and ρ_{B} represent the respective radii of curvature. Where is the curvature larger? Where is the radius of curvature larger? Show the osculating circles. Also show the unit normal vector N at C.
5. (25 points) A particle moves so that $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, t\rangle$ for $0 \leq t \leq 2 \pi$.
a. Compute the velocity vector $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$, the acceleration vector $\mathbf{a}(t)=$ $\mathbf{r}^{\prime \prime}(t)$, the speed $\frac{d s}{d t}=\|\mathbf{v}(t)\|$, and the unit tangent vector $\mathbf{T}(t)$.
b. Compute the arclength s of the path from time $\tau=0$ to $\tau=t$. How far has the particle traveled over the whole interval from 0 to 2π ?
c. (Bonus) Recall that $\mathbf{a}(t)=a_{T} \mathbf{T}(t)+a_{N} \mathbf{N}(t)$, where $a_{T}=\frac{d^{2} s}{d t^{2}}=\frac{d}{d t}\left(\frac{d s}{d t}\right)$, $a_{N}=\kappa\left(\frac{d s}{d t}\right)^{2}$. Compute the curvature κ from one of the formulas $\left\|\mathbf{T}^{\prime}(t)\right\| /\left\|\mathbf{r}^{\prime}(t)\right\|$, or $\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\| /\left\|\mathbf{r}^{\prime}(t)\right\|^{3}$, or by using $\|\mathbf{a}(t)\|^{2}=$ $a_{T}^{2}+a_{N}^{2}$.
