Show your work for full credit. Calculators are allowed.

1. (10 points) Compute the partial derivatives $g_{x x}, g_{x y}$, and $g_{y y}$ for $g(x, y)=e^{-x y}$.
2. (15 points) Let $f(r, s, t)=r^{3} s-s^{2} t^{2}$ and $\mathbf{a}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$.
a. Compute the directional derivative of f in the direction of \mathbf{a} at the point $Q(-2,1,3)$.
b. What is the maximum value of any directional derivative of f at Q ?
c. If, further, $r=y \sin x, s=\arctan (x y)$, and $t=\ln \left(x^{2}+y^{2}\right)$, compute $\frac{\partial f}{\partial x}$.
3. (10 points) Let $A=\left[\begin{array}{cc}-1 & 1 \\ 2 & 0\end{array}\right]$. Show how A transforms the unit square $\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$. What is the area of the transformed region? Is the transformation orientation-preserving or orientation-reversing? Show computations or give explanation!
4. (15 points) Let $w=4 x^{2}+3 y^{2}-12 z$ and P be the point $(1,-1,1 / 2)$.
a. Sketch the level surfaces (and clearly label which is which!) $w=-12, w=0$, and $w=36$.
b. The point P is on what level surface for w ? Give an equation for the tangent plane to that surface at the point P.
5. (12 points) Suppose $u=f(x-c t)$, where c is a positive constant, and f is a differentiable function.
a. Show that $u_{t t}=c^{2} u_{x x}$, that is, $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
b. The graph $y=f(x)$ is shown below. Sketch the trace of the graph of u for each of $t=-1,1,2$; label which graph is which. Then sketch the graph of u as a function of x and t for $-2 c \leq x \leq 3 c$ and $-1 \leq t \leq 2$.
6. (13 points) Let $g(x, y)=x^{3}+y^{3}-6 x y$. Find all critical points for g and indicate whether each is a local max, local min, or saddle point.
7. (12 points) The temperature on a circular disk $\left\{(x, y) \mid 0 \leq x^{2}+y^{2} \leq 1\right\}$ is $T=2 x^{2}+y^{2}-y$. Find the hottest and coldest spots on the disk.
8. (13 points) The formula $1 / R=1 / R_{1}+1 / R_{2}$ determines the combined resistance R when resistors of resistance R_{1} and R_{2} are combined in parallel.
a. Suppose $R_{1}=100$ and $R_{2}=25$, each with a possible error in measurement of 0.5 . Use differentials, or the microscope approximation, to determine the maximum possible error in the computation of R.
b. In general what is the percent error in R if there is a 2% error in the measurement of R_{1}, a 5% error in the measurement of R_{2}, and $R_{1}=4 R_{2}$?
