1. (10 points) Compute the partial derivatives g_{xx}, g_{xy}, and g_{yy} for $g(x, y) = e^{-xy}$.

2. (15 points) Let $f(r, s, t) = r^3s - s^2t^2$ and $a = i - 2j + 2k$.
 a. Compute the directional derivative of f in the direction of a at the point $Q(-2, 1, 3)$.
 b. What is the maximum value of any directional derivative of f at Q?
 c. If, further, $r = y \sin x$, $s = \arctan(xy)$, and $t = \ln(x^2 + y^2)$, compute $\frac{\partial f}{\partial x}$.
3. (10 points) Let \(A = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix} \). Show how \(A \) transforms the unit square \(\{(x, y) | 0 \leq x \leq 1, \ 0 \leq y \leq 1\} \). What is the area of the transformed region? Is the transformation orientation-preserving or orientation-reversing? Show computations or give explanation!

4. (15 points) Let \(w = 4x^2 + 3y^2 - 12z \) and \(P \) be the point \((1, -1, 1/2) \).
 a. Sketch the level surfaces (and clearly label which is which!) \(w = -12 \), \(w = 0 \), and \(w = 36 \).
 b. The point \(P \) is on what level surface for \(w \)? Give an equation for the tangent plane to that surface at the point \(P \).
5. (12 points) Suppose \(u = f(x - ct) \), where \(c \) is a positive constant, and \(f \) is a differentiable function.

 a. Show that \(u_{tt} = c^2 u_{xx} \), that is, \(\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \).

 b. The graph \(y = f(x) \) is shown below. Sketch the trace of the graph of \(u \) for each of \(t = -1, 1, 2 \); label which graph is which. Then sketch the graph of \(u \) as a function of \(x \) and \(t \) for \(-2c \leq x \leq 3c \) and \(-1 \leq t \leq 2\).
6. (13 points) Let \(g(x, y) = x^3 + y^3 - 6xy \). Find all critical points for \(g \) and indicate whether each is a local max, local min, or saddle point.

7. (12 points) The temperature on a circular disk \(\{(x, y) \mid 0 \leq x^2 + y^2 \leq 1 \} \) is \(T = 2x^2 + y^2 - y \). Find the hottest and coldest spots on the disk.
8. (13 points) The formula $1/R = 1/R_1 + 1/R_2$ determines the combined resistance R when resistors of resistance R_1 and R_2 are combined in parallel.

a. Suppose $R_1 = 100$ and $R_2 = 25$, each with a possible error in measurement of 0.5. Use differentials, or the microscope approximation, to determine the maximum possible error in the computation of R.

b. In general what is the percent error in R if there is a 2% error in the measurement of R_1, a 5% error in the measurement of R_2, and $R_1 = 4R_2$?