1. (22 points) Let $v = 4i + 2j - k$, $w = 3i - 2j - 3k$, and P be the point $(-1, 5, 2)$.
 a. Compute $2v - w$.
 b. If $w = \overrightarrow{PQ}$, compute the coordinates of the point Q.
 c. Compute a unit vector in the opposite direction to v.
 d. Compute the cosine of the angle between v and w.
 e. Compute $\text{pr}_w v$, the vector projection of v along w.
 f. Give parametric equations for the line that passes through the point P and that has direction given by v.
 g. Give an equation for the plane whose normal vector is perpendicular to both v and w, and which contains the point P.
2. (10 points) A line ℓ_1 passes through the points $(2, 0, 5)$ and $(1, 3, 1)$. A line ℓ_2 has parametric equations $x = 1 + t$, $y = 5 + t$, $z = -4 - 6t$.
 a. Find parametric equations for ℓ_1.
 b. Find the point of intersection of the two lines. (Suggestion: use symmetric equations for one of the lines.)

3. (6 points) Find equations for a line L that is parallel to the plane $2x + 4y - z = 5$, but does not lie in this plane.

4. (8 points) Compute f_r and f_s for $f(r, s) = r^3 \ln(r^6 + s^2)$.
5. (14 points) A particle moves so that \(\mathbf{r}(t) = (5t, 3\cos t, 3\sin t) \).
 a. Compute the velocity, the speed, and the distance traveled from \(t = 0 \) to \(t = 2\pi \).
 b. Describe the path of the motion from \(t = 0 \) to \(t = 2\pi \).

6. (8 points) Sketch the surface \(x^2 + y^2 - 4z^2 = 16 \). Show at least three different traces.

7. (4 points) Sketch the surface \(4x^2 + 8z = 0 \).
8. (10 points) The density ρ (in g/cm3) of carbon dioxide gas is directly proportional to the pressure P (in atmospheres) and inversely proportional to the temperature T (in degrees Kelvin).
 a. Write an equation for ρ in terms of P and T, and compute the proportionality constant if $\rho = .002$ at $T = 273^\circ$ K and $P = 1.018$.

 b. Compute $\frac{\partial \rho}{\partial P}$ and $\frac{\partial \rho}{\partial T}$.

9. (10 points) The table of values below gives heat index I in terms of sample values of temperature T and relative humidity h.

 a. Is I a linear function of h and T? If yes, produce the formula; if no, explain why not.

 b. Estimate I if $T = 88$ and $h = 40$.

 c. Estimate I if $T = 88$ and $h = 44$.
10. (8 points) Give the number of the contour diagram that corresponds to each of the labeled 3D graphs.

A ___________ B ___________ C ___________ D ___________