1. (33 points) EPA inspectors have taken a sample of murky lake water and placed it in a tube. They shine a light of known intensity at one end of the tube and place a light sensor at various depths down the tube. The depth D is measured in cm and the intensity I is measured as a fraction of full power; here are the results:

<table>
<thead>
<tr>
<th>D</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>.912</td>
<td>.560</td>
<td>.344</td>
<td>.211</td>
<td>.130</td>
</tr>
</tbody>
</table>

a. What is the average rate of change of I from $D = 1$ to $D = 4$?

b. Demonstrate clearly that I can not be a linear function of D.

c. Assume that I is a discrete exponential function of D (due to different sediments at different depths). Give a formula for I as a function of D. You must use, in one way or another, all the values given in the table.

d. Predict the value of I for $D = 3.5$ cm to three decimal places.
2. (10 points) Using the graph of \(r = f(p) \), given below, which variable is the dependent variable?

Determine the average rate of change (to two decimal places) from \(p = 0 \) to \(p = 3 \) and from \(p = 4 \) to \(p = 6 \). At which value of \(p \) is \(f(p) \) the greatest?

3. (15 points) The amount of caffeine in a cup of coffee at time \(t \) is \(A(t) = A_0e^{rt} \), where \(A_0 \) is the initial amount. The half-life of caffeine in the body is about 4 hours. What is the “decay rate” \(r \) of the caffeine in the body? How long will it take for the level to fall by 75% of the original amount (hint: what per cent will remain)?

4. (8 points) The carrying capacity \(M \) is the maximum number of squirrels that can live on the Horseshoe successfully. The growth rate \(G \) of the population of squirrels on the Horseshoe is proportional to the product of the number of squirrels \(N \) and the difference between \(N \) and the carrying capacity \(M \). Write the formula that gives \(G \) in terms of \(M \) and the present population \(N \).
5. (12 points) Assume s is a linear function of t, with the following values.

<table>
<thead>
<tr>
<th>s</th>
<th>10</th>
<th>6</th>
<th>0</th>
<th>-6</th>
<th>-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

a. Which is the **independent** variable?

b. The slope is $m =$

c. Fill in the missing values, and find the formula for s as a function of t.

d. Write t as a linear function of s.

6. (15 points) A company that makes ceiling fans has fixed costs of $9000 for a certain product line and variable costs of $50 per fan. The company plans to sell these fans for $80 each. Let q represent the number of fans. Give formulas for the cost function $C(q)$ and the revenue function $R(q)$. What is the break-even point in terms of number of fans?
7. (7 points) The table below gives the concentration $C(t)$ of carbon dioxide (CO$_2$) in parts per million (ppm) in the atmosphere since 1960. Determine and fill in an appropriate scale for t. Use your calculator’s curve-fitting or regression package to find the best exponential fit for this data, and give the formula. Then use the formula or your graph to estimate the amount of CO$_2$ in the atmosphere the year 2000.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C(t)$</td>
<td>316.8</td>
<td>319.9</td>
<td>325.3</td>
<td>331.0</td>
<td>338.5</td>
<td>345.7</td>
</tr>
</tbody>
</table>