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Pl otti ng Functi ons and Expressions
B Try 1t! (p. 79)
[Repl ot the function v described in Exanple 4-1 with a vertical

B Try 1t! (p. 81)
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[B Sol ution

C>restart;
C>vl :=sin( theta) ;

> v2 := theta -> cos(2*theta) / 2 ;

vl:=sin(0)
1
v2::e—>£cos(29)

L Here is the plot fromthe text, i.e
(> plot( [ vl, v2(theta) ], theta = -2*Pi 2*Pi,

., Wwhen the first argunent

range that

[ Repeat Exanple 4-2 with the first argunment specified as a set of functions.

is alist

Chapter 4: Plotting and Anal yzi ng Engi neeri ng Functi ons and

begi ns at

if

0.
Hi nt
[ Consult the on-line help for plot for the necessary optional argunents,
| L needed.
Sol ution
[ >restart;
r>v :=2 + sin(theta) * cos(2*theta)/2;
1
v:=2+£sin(6)cos(29)
E There are a variety of possible solutions, including
r>plot( v, theta = -2*Pi 2*Pi, 0..2.5);
"//\\\ “1 / \ \
/a\ ~ |\ A a / \“\
/ \ / \ 2t / \ \
N N VARV
\/ 1.5 \,/
1,,
0.5
s 5 ) 0 4
theta
C>oplot( v, theta = -2*Pi 2*Pi, views[ -2*Pi..2*Pi, 0..2.5] );
C>plot( v, theta = -2*Pi 2*Pi, 'v’'=0..2.5);
Not e
The single quotes ('') are needed around the v in the third argunment to
prevent Maple from expanding the nane v to the value that has been assigned
to it.
L C>



> col or=[ RED, BLUE], styl e=[ PO NT, LI NE] );

-6 -/4 -2 0 2 6
o B theta °
- -0.% ©

S 4 T
Eand the plot obtained when the first argunent is a set
r>plot( { vl, v2(theta) }, theta = -2*Pi 2*Pi,
> col or=[ RED, BLUE], styl e=[ PO NT, LI NE] );

The point of this exercise is that the color and style of the functions in the
second plot may not be determ ned by the order of appearance of the functions in
the set. The elenments of a set are not ordered (there is no "first" elenment of a
set). Sonetines the plot will appear one way, in others the color and style wll
L be reversed. Try this in a lab setting and |let the students see this firsthand.
C >

B Try It! (p. 84)
Use display and
[graphs of v, v,

the insequence=true option to create an ani mation that shows the
and v, as a sequence of three franes.

[B Sol ution
C>restart; with( plots ):
r>v :=2 + sin(theta) * cos(2*theta)/2;

1
V= 2+£sin(e) cos(20)

1
\%
<
[ERY
1l

sin( theta ) ;

L vl:=sin(0)
;= theta -> cos(2*theta) / 2 ;

1
v2:=0 - Ecos(ze)
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C The three plots can be created as in Exanple 4-3 (p. 81)
> Pl :=plot( v, theta = -2*Pi .. 2*Pi ):
{> P2 := plot( vl, theta = 0 .. 2*Pi, col or=CGREEN, style=PO NT ):
> P3 := plot( v2(theta), theta = -Pi .. 0, color=BLUE, linestyle=2):

C The aninmation is created using

C>display( [ P1, P2, P3 ], insequence=true );

L Follow the directions in the text (p. 83) to navigate the ani mation.
C>

B what 1?2 (p. 92)
What if the project constraints call for a nore discrimnating optical filter than
the one with F=20? This nmeans that the filter nust have a narrower bandw dth. What
does this inply regarding the bands of frequencies that are transmitted? Wuld the
finesse of the new filter be larger or smaller than F=20? What is the relative change
inthe reflectivity corresponding to a doubling of the finesse?

[Bl Sol ution

r Fromthe information in the Fundanentals section of the Application, it is stated

that a narrower bandw dth of frequencies is transnmitted when the filter’s finesse

increases. In particular, the new filter woul d be expected to have a finesse

| arger than 20.

C>restart;

The relative change in the reflectivity when the finesse doubl es can be deterni ned

both for F=20 and in general.

> finesse := F=Pi*sqrt(R)/(1-R);

Suppose the original finesse is F=F, There are two values of R which satisfy the
finesse equation
> Rorig := solve( subs( F=F0, finesse ), R);

1 T(=Ti++/ TC + 4 FEQ?) 1 (== TC + 4 FO?)
+= —FO+=

-FO
) FO 2 FO
Rorig := - =
FO FO
Bef ore both of these solutions are accepted, recall that the reflectivity is
between 0 and 1. Upon closer inspection it is seen that only one of these
solutions satisfies this constraint.
r > subs( F0=20, [Rorig] );
> eval f(");

1 1
%——n(—m € +1600), 1 - — m(-T- T12+1600)E
800 800

[.8547736446, 1.169900366]
C Thus, the reflectivity corresponding to the original finesse is

> Rorig := normal ( Rorig[1l] );
o 1 2F0% + 18— 1ia/ TC + 4 FO?
orig =~
2 FO*

r>
When the finesse is doubled, F=2F, the corresponding reflectivity can be found

exactly as before:

[ > Rdoub := solve( subs( F=2*F0, finesse ), R);
1 Tt(=Tt+4/ 0 + 16 FO?) 1 Tt(~Tt-+/ 7€ + 16 F0?)

+- -2F0+-

FO 1 4 FO

2 FO

-2F0

1

Rdoub := -~

2 FO
r > subs( F0=20, [Rdoub] );

> eval f(");
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1 1
%l—szoon(—n+4/n2+6400), l—%n(—n— T[2+6400)%

L [.9244838992, 1.081684604]
r > Rdoub := nornal ( Rdoub[1] );

1 8F0? + 1€ — 114/ T¢ + 16 FO?
Rdoub::é 5

FO

>
The ratio of the reflectivities is, for a general finesse,

> ratio := Rdoub/Rori g;
_18F0°+1¢ -4/ 1€ + 16 FO?

ratio :=
L 4 2F0?+ 18 - T4/ T + 4 FO?
and, in particular, when F=20,
> subs( F0=20, ratio );
>evalf( " );

1T 1T

1

13200 + 1 = 11/ ¢ + 6400
4 800+ 17 - 114/ T + 1600

L 1.081554052

[ Thus, when the finesse doubles fromF=20 to F=40, the reflectivity increases by

L slightly nore than 8%

>

The general expression for the change in reflectivity is rather conplicated. From
a graph, it is seen that the relative change in the reflectivity is a decreasing
function of the finesse.

> plot( ratio-1, FO0=1..100,

> title='Rel ative Change in Reflectivity when Finesse is Doubled );

Relative Change in Reflectivity when Finesse is Doubled

T

L L C>
B 4.2 More Plotting Commands

B Try 1t! (p. 93)

[Nbdify the plot of the ellipse to include the major and minor axes as dashed |ines
with different colors.

[B Hi nt

| [ You may Wi sh to use inplicitplot to draw one or both of the |ine segnents.)
[Bl Sol ution

‘ C>restart; with(plots):
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C The ellipse in question is
> ELLI PSE

t= (X-1)N2/ 472 + (y+2) N2/ 272

1;

ELLIPSE ! 1)? ! 2)%=1
= (x=1)+ - (y+2)° =
16( ) 4(y )

[The plot of the ellipse is obtained as shown in the text -

is assigned to a nane.

C>ELL :=inplicitplot( ELLIPSE, x = -3 .. 5, y =-4 .. 0):
Not e
| [ Note the use of instead of ; when assigning a plot to a nane.
>
C The major axis is a horizontal line, which is easily plotted
C>MJ :=plot( -2, x=-3..5, color= green, linestyle=3):
r The minor axis is a vertical line, which is not so easily plotted. There are a
nunber of ways to plot a vertical line. Following the hint, you are likely to
L cone up with sonething |ike
C>MN:=inmplicitplot( x=1, x=-3..5, y=-4..0, color=pink, linestyle=4):
r > display( { ELL, MAJ, MN },
> title="Ellipse: center (1,-2), axes: 4 (hor) and 2 (ver)"‘,
> scal i ng=CONSTRAI NED ) ;
Ellipse: center (1,-2), axes. 4 (hor) and 2 (ver)
X
3 -2 1 1 2 3 4 5
_— —of o T
7 ~
/ : \
/
/ \
e v o |
\\ /
\ //
3
el
\\\\7 ////
-
C>

[l Alternate Sol ution

except that the plot

[An alternate solution is to create a line plot

the m nor axis.

Thi s approach could | ook |ike

bet ween the two endpoints of

C>MN2

:= plot(

[[1,-4],

(1,011,

col or=pink ):

>

> scal i ng=CONST

L L LC>

B Try 1t! (p. 94)

To solve this problem
the ratio of
When x i s proportional

> display( { ELL, MAJ, MN2 },
{ title="ElIipse:

center
RAINED ) ;

(17'2)7
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axes:

refer to Application 4. The transmi ssion function,
light which passes through a filter to that which enters the filter.

to the frequency of the light and F is the finesse,

4 (hor) and 2 (ver)‘,

T, gives

t he



1
trannsi ssion function is T=

. Use i l[icitplot to plot the points (X,
%ngin(nx)E " P P P (
1+
T

F) where T(x,F):E Use this plot to conpute the FWHM for F=20 and to confirmthat
L a higher finesse corresponds to nore discrinmnating filters.
[B Sol ution

[ >restart;

wi th(plots):
L The transmi ssion function is

T> T o= 1/ (1+(2*F*sin(Pi *x)/ Pi ) ~2);

T:= L
' FZsin(Ttx)?
144————
us
The points (x F) where exactly half of the incident light is transmitted can be
L plotted using inplicitplot as follows:
r>inplicitplot( T=1/2, x=0.9..1.1, F=10.. 30,
> title="Bandwi dth of Filter (low BW"' );
Bandwidth of Filter (low BW)
30+ | \
s/ \\
/ \
R0t ‘e’f‘ \
/ \\\\
15} \\\
/ \
/

SN

0.98 1
X

For a given finesse, F, the FM\HMis the (horizontal) distance between the two
points on the preceding graph. Since this distance decreases as the finesse

i ncreases, the bandwi dth of a filter decreases as the finesse increases.

The points (0.9747,19.82) and (1.025,19.91) are good approximtions to points on

the graph with a finesse of 20. Thus, when F=20,
L 1.025 - 0.9747 = 0. 053.
L LLC>

B Try 1t! (p. 95)

It is natural to assune that the problemw th the plot
resol ved by plotting nore points.

the FWHM i s approxi matel y

in Exanple 4-7 can be
Investigate this by using the nunpoints= option
to determ ne the m ni mum nunber of points necessary to have the curve plotted as a
single piece. Is any other detail |ost when this occurs?

Hints

H L

It might be helpful to |ook at the plot of the individual
{ done either by specifying style=PO NT as an opti onal

poi nts.

This can be
argunent (see
?plot,options) or interactively via the icons in the context bar.
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= 2.

Sol ution
C>restart;

with(plots):

[

points are plotted.

r>inmplicitplot( x*"2 =y*2 * (1-vy),

X

| [ The default nunber of points in the plot is 49.

-sqrt(2)

sqrt(2),

nunpoi nt s=87,

> axes=BOXED, nunpoi nts=86, title="Inplicit
Implicit Plot (two pieces)

0.6 J

0.4 /

0.2 \4/

y 01

-0.2

-0.4

-0.6

-0.8

i ‘ ‘ ‘ ‘

-1 -0.5 g 0.5

r> implicitplot( x*2 =y”2 * (1 -y ), x =-sqrt(2)

Implicit Plot (one piece)

sart(2),
title="Inplicit

/

\
\
\
\ /,
\\ /
\
\ /
\

> axes=BOXED,
s
0.5
y Of
-0.5
1
o>

B Try It! (p. 98)

{bandw’dth of a filter

[B Sol ution
‘ C>restart; with(plots):
C
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The following plots indicate that the two pi eces become one when at

y=-1 ..
Pl ot (two pieces)’

y=-1 ..
Pl ot (one piece)*

| east 87

1,

1,
)

Create a 3 x 3 array of plots that confirns the earlier observation that the
decreases as the finesse increases.
is labeled and that the same scaling is used in each plot.

Be sure that each plot



C The transm ssion function is defined as in Try It! (p. 94):
r>T:= 1 (1+(2*F*sin(Pi *x)/ Pi )"2);

T: !
' F2sin(Ttx)?
1+4—mX
L e
C Nine plots for nine different finesse values can be created by
r> P11 := plot( subs( F=10, T ), x=0.9..1.1, 0..1, title="F=10', axes=NONE ):
> P12 := plot( subs( F=15, T ), x=0.9..1.1, 0..1, title="F=15", axes=NONE ):
> P13 := plot( subs( F=18, T ), x=0.9..1.1, 0..1, title="F=18", axes=NONE ):
> P21 := plot( subs( F=19, T ), x=0.9..1.1, 0..1, title="F=19', axes=NONE ):
> P22 := plot( subs( F=20, T ), x=0.9..1.1, 0..1, title="F=20', axes=NONE ):
> P23 := plot( subs( F=21, T ), x=0.9..1.1, 0..1, title="F=21'", axes=NONE ):
> P31 := plot( subs( F=22, T ), x=0.9..1.1, 0..1, title="F=22"', axes=NONE ):
> P32 := plot( subs( F=25, T ), x=0.9..1.1, 0..1, title="F=25", axes=NONE ):
L > P33 := plot( subs( F=30, T ), x=0.9..1.1, 0..1, title="F=30", axes=NONE ):

L The conposite display can be created with
r > display( array(l1..3,1..3, [[Pl1, P12, P13],[P21, P22, P23],[P31, P32, P33]] ) );

F=10 F=15 F=18
A / \ / \\
\ ,/m\ ,A
F=22 F=25 F=30

N\ N\
/\ A \

A A a
) a al
VA AYAN

[The (expected) narrowi ng of the bandwi dth at hal f-maxi mumis apparent fromthese
pl ots.
L L=

4.3 Three-Di nensional Plots

[B Try 1t! (p. 100)
Interesting views related to this exanple include the cross-sections with
tenperature vs. tine (orientation=[0,90]) and tenperature vs. position (
orientation=[90,90]) and the contour lines in the time vs. position (
orientation=[90,0], style=CONTOUR) cross-section. Create each of these three
plots. Use display and array to display the three plots side-by-side.
[B Sol ution
C>restart; with(plots):
L The tenperature in the bar is given by
(> Theta : = 12*sin(Pi *x/2)*exp(-t/2);
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=12 sin% nx%e('lm)

C The plot in the book shows the default view
r> plot3d( Theta, x=0..1, t=0..6, axes=BOXED,
> | abel s=[*position‘, 'time', tenp'],
> title="Heat in a Rod' );

Heat in a Rod

1 0.2

0.4
tine 0. gPosition

5 0.8

C>

[The three specified views of this function are created and di spl ayed
i ndi vidual | y

P1 := plot3d( Theta, x=0..1, t=0..6, axes=BOXED,

\%

> | abel s=[‘position',‘tine', tenp'],
> orientation=[ 0,90] ):
> P1,
12,
\
1of

J

0 1 2 3 4 5 6
time

r> P2 := plot3d( Theta, x=0..1, t=0..6, axes=BOXED,
| abel s=[‘position‘,‘time', ‘tenp'],

> orientation=[90, 90] ):

> P2;
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r> P3 := plot3d( Theta, x=0..1, t=0..6, axes=BOXED,
| abel s=[‘position‘,‘time', ‘tenp'],

> orientation=[90,0], style=CONTOUR ):
> P3;
1 0.8 Olbpositigru 0.2 0
) 0
— f/// /]
- /|
- T ' 1
: ) Yo
e /// / 2
3tinme
4
5
16

Note - minor inprovenent/correction
L [The time axes in the second and third graphs are reversed from standard

conventions. To reverse this, change 6 from90 to -90.
r > display( array(1..3,[P1,P2,P3]) );

12 - 1




Note - bug in side-by-side display of 3D plots
It appears that there is a bug in the Maple code for displaying 3D plots. The
options and style settings used to create the contour plot are not respected
when the three plots are displayed side-by-side. This problem appears to
still exist in Release 5.
L L>
[B Try I1t! (p. 101)
Find the on-line help for contourplot3d; then use contourplot3d to produce a
second contour plot of the function u defined above. Determine where u has its
| argest and snal | est val ues.
Sol ution
C>restart; with(plots):
L The function and the contour plot displayed in the book are
C>u:=10 * x * exp(-x"2-y"2):
C>contourplot( u, x =-2 .. 2, y=-2..2, grid = [49,49], axes=BOXED,
r> title='Contour Plot’ );

Contour Plot

/ / \
[ / \
| [ 1
yor | I
VAN
\ - y |
\ \ //
o
-2
1.5 1 0.5 0 0.5 1 1.5
X
C>

T Wiile it is possible to sinmply change contourplot to contourplot3d, it is nore
appropriate to include the specific orientation fromwhich the extrema can be

L identified.
r> contourplot3d( u, x =-2 .. 2, y =-2.. 2, grid = [49,49], axes=BOXED,
> title='Contour Plot‘, orientation=[-90,90] );
Contour Plot

4,,

2,,

R

4 S

4 S

2 1 0 1 2
X




E 4

B Try It! (p. 104)

[ Reconsider the transmission function T introduced in the second Try It! in Section
4-2. Oiginally, animtion was used to display this function using two-di mensional
plots. Use plot3d (and, possibly, display) to create a three-dinmensional plot of

Fromthis plot it is apparent that the naxi num occurs near x=.75 and the mi ni mum
occurs near x=-.75. The correspondi ng y coordi nates can be estimated fromthe
original 2D plot or by creating a second 3D plot with, e.g., orientation=[0,90].
In either case, the y-coordinate for both extrema is O.

C >

1
z=T(x,F) and of the plane zzgin the same plot. How does this picture relate to

the individual frames of the animation? Does the ani mation contain i nformation
that is not (directly) available in the three-dinensional plot, or vice versa?

[B Sol ution

Correction
L [V\hile the transmission function is introduced in Try It! (p. 94), animation
is not used until Problem4 (p. 114).
C>restart; with(plots):
[The requested plot could be created using a single plot3d conmand, but separate
commands are used to specify the specific options for the different surfaces

r> Pl := plot3d( 1/ (1+(2*F/ Pi)"2*sin(Pi*x)"2), x=0.75..1.25, F=10..50,
> gri d=[ 50, 40], shadi ng=ZHUE ):
> P2 := plot3d( 1/2, x=0.75..1.25, F=10..50, color=orange ):
> display( { P1, P2}, title="3D view of bandwi dth', axes=BOXED );

3D view of bandwidth

r While the 3D view of these functions prevents us fromextracting specific data
values fromthe plot, it does give us a better view of the overall situation.
For instance, in addition to a decrease in the FWHM the nmaxi nrum transni ssi on

L decreases as the finesse increases.

L L=

.4 Wrking with Discrete Data

[B Try It! (p. 105)

[The five points in Exanple 4-9 are the vertices of a pentagon. Mddify the solution
to Exanple 4-9 to create a plot of this pentagon.

=
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L C

C

C

|

[Bl Sol ution

> restart; with(plots):
The collection of points is
> PTS :=[0,0], [1,1], [2,1], [2,0], [1,-1];

PTS:=[0,0],[1,1],[2,1],[2,0],[1,-1]
To draw t he pentagon whose vertices are these five points, it is necessary to i)
change froma point plot to a line plot and ii) connect the |last and first
points. Since line plots are Maple’s default, this is acheived by sinply
omtting the style= option fromthe command in the text. To connect the last and
first points, it suffices to append the first point as a sixth entry in the |ist
of points.

r>plot( [ PTS, PTS[1] ], title="Five Points, Connected' );

Five Points, Connected

>

[B Try 1t! (p. 108)

Repeat the previous steps to find the best quadratic fit to the sane set of data.
Pl ot the data points, the best linear fit, and the best quadratic fit all on the
same set of axes.

[B Sol ution

> restart; with(plots): with(stats):
To begin, recall the data points and linear fit found in Exanple 4-10.
> X :=[ 10, 15, 17, 19 ];

X:=[10, 15, 17, 19]
> Y .

[ 3, 4, 5 61;

Y:=[3,4,5, 6]
PTS := zip( (x,¥)->[x,y], X, Y );

PTS:=[[10, 3],[15,4],[17,5],[19, 6]]

\%

> P :=plot( PTS, x=0..20, y=0..8, style=PO NT, color=BLUE ):
> SL :=fit[leastsquare[ {x,y}, y=nmx+b, {mb} 1 1 ([ X Y] );
58 79
SLi=y=_X-T_
179 179
> Pl :=plot( rhs(SL), x=0 .. 20 ):

The quadratic fit and its plot are found in the same manner - once the
second-order termand the correspondi ng coefficient are added to the argunents
of the fit command.

> QU :=fit[leastsquare[ [x,y], y=atb*x+c*x"2, {a,b,c} 1 1 ([ X Y1);

37054 7583 417
= - X+
6679 13358 13358

QU:=y

> P2 :=plot( rhs(QJ, x=0..20 ):
To conclude, here is the plot containing the data points and best |inear and
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quadratic fits. (In this case it is easy to distinguish the two curves; in other
L cases it will be advisable to use different colors and/or line styles.)
r>display( { P, P1, P2},

> title='Data Points and Best Linear and Quadratic Fits' );

Data Points and Best Linear and Quadratic Fits

8

y 4

L
B Try 1t! (p. 112)

a a
Repeat the data-fitting conmputations |looking for fits of the form B:F+b and B:E

a
and B:F+bF+c. How do these conpare with the best reciprocal fit?

Sol ution

L >restart; with(plots): with(stats):

[ The basic setup is that introduced in Exanples 4-11 -- 4-13.

r>Flist :=[ 5, 10.1, 15.01, 20.19, 30.01, 40.11, 49.93 ]:

> Blist :=[ 1.096-0.9016, 1.049-0.9502, 1.033-0.966, 1.023-0.9745,
1.016-0.9818, 1.012-0.9867, 1.01-0.9891 ]:

> PTS := zip( (x,y) ->[x,y], Flist, Blist );

PTS:=[[5,.1944],[10.1,.0988], [ 15.01, .067], [ 20.19, .0485], [ 30.01, .0342], [ 40.11, .0253], [ 49.93, .0209]]
C>P:=plot( PTS, style=PONT, I|abels=['Finesse', ‘FWAM ], col or=RED ):
r>recipfit := stats[fit,|eastsquare[ {F,B}, B=a/F], {a} ] ( [Flist,Blist] );

.9811193933
F

recipfit:=B=

> Pl := plot( rhs(recipfit), F=5..50 ):

>

The three |l east-square fits are obtained with separate calls to the fit conmmand.
> fitl ;= stats[fit,|leastsquare][ [F,B], B=a/F+b], {a,b} ] ([Flist,Blist]);

[ R |

i .9665390551
fitl := B=f+ .001738250480
r>fit2 := stats[fit,|leastsquare[ [F,B], B=a/F*2], {a} ] ([Flist,Blist]);
. 5.351005872
fit=B=——""—"F7—
L F
r>fit3 := stats[fit,|eastsquare[ [F,B], B=alF+b*F+c], {a,b,c} ] ([Flist,Blist]);
i .9583832987
fit3:=B= - .00003915437855 F +.003266015047

Note that the first and third fits are good approxi mations to the best
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reciprocal fit found in Exanple 4-13. It is somewhat nore difficult to conpare
L the second fit. For this we turn to graphical evidence:
[> P2 := plot( [rhs(fitl), rhs(fit2), rhs(fit3)], F=5..50,
> col or =[ GREEN, BLUE, YELLOWN, linestyle=[1,3,5]):
r>display( { P, P1, P2}, title="Bandwi dth vs. Finesse - Three Fits' );

Bandwidth vs. Finesse - Three Fits

0.15 1\

0. 0%

- This pl ot shows that the inverse square approxi mation is not a good
approxi mation to the FWHM data. On the other hand, it is quite difficult to
di stingui sh between the other three | east-square fits to this data. To determ ne

which - if any - of these fits is appropriate requires additional synbolic
L anal ysi s.
I N T
Probl ens (pp. 114 - 116)
Probl em 1
Pl ot the follow ng functions on the specified domains. Select optional argunents
{so that the final plot clearly illustrates the interesting features of the
function. Be certain to include labels and a title.
(a)
— o x-29) g ~ (x-2?) 2 , .
f(x)=¢ sin(ttx) and g(x)=¢€ sin(rtx)” for the first two periods of the
trigononetric terns
(b)
L [ Plot u(x,y)=xsin(y)-ycos(x) for 0 <= x, y <= 47
(c)
X2 -y
Pl ot F(u,v)= 5 for -1<=x, y<=1
X+ P
Not e
| | [ Look at the contour lines. What is the interesting point for this function?
= (d)
sin(8) 1-cog(6)
Plot vi(8)=—"_=" and vy(0)=—— = for l8|<5m .
Sol ution
|
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C>restart;
L (a) The trigononetric part of each function has period 2.
r>plot( [ exp(-(x-2)"2) * sin(Pi*x), exp(-(x-2)"2) * sin(Pi*x)"2 ],
x=0..4, title="'Problem la' );
Problem 1a

. , A\

_—
-

b) This is a straight-forward 3D pl ot
x=0..4*Pi, y=0..4*Pi,

11T

pl ot 3d( x*sin(y)- y*cos(x),
title="Problem 1b* );
Problem 1b

vV V—>V

or explicitly as an argunent to

)

c) The contour lines can be added via the GUJ,
x=-1..1, y=-1..1, style=CONTCUR,
title="Problem lc’

>

(

the pl ot3d comrand.

> plot3d( (x"2-yr2)/(x"2+y"2),
axes=BOXED,

orientation=[-90,0],

C
[
{ .
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Problem 1c
1 -0.5 0 0.5 1
‘ 11
10.5
0y
v,
g ~0.5
/ / / // -1
- Note that all contour lines are straight |lines through the origin. Well, none of
the contour lines actually includes the point (0,0). In general, contour |ines
for different |evel curves cannot cross. (In this case, the originis not in the
dormai n of the function. The fact that different linmt are obtained al ong
different lines nmeans that this function is discontinuous at the origin and that
this discontinuity cannot be "renoved" by giving the special value at the
L origin.)
C >
L (d) There is nothing fancy about this one.
[ > plot( [ sin(x)/x, (1l-cos(x))/x ], x=-5*Pi..5*Pi,
> title="Problem 1d' );
L L>

Probl em 2

Is the origin (0,0)

Descri be the closed curve defined inplicitly by

4X%+24/3xy+2y? +104/3 x+ 10y =5,

i nside the region bounded by this curve?

[B Sol ution

C>restart; with(plots):

> x=-5..2, y=-6..4, title='Problem?2' );
Problem 2
ST T
“/
\ \
\ X
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can be determned via standard cal culus techniques (details onmitted).
C >

Probl em 3
{ Determi ne, both graphically and analytically, the percent error in the

L [This curve is an ellipse whose interior includes the origin. The foci and radii

reflectivity that is needed to ensure that the finesse is controlled to within
(plus or mnus) 3% of 50.
[Bl Sol ution
[ >restart;
C Recall (p. 88) that the finesse is defined to be
r>F :=Pi*sqrt(R/(1-R;
R

1-R
 To obtain a graphical answer to this problem a plot (which is not shown here)
can be used to determine that the reflectivity will be between 0.9 and 1. Then,
to facilitate the error analysis, draw the target level (F=50) together with
L "error bars" at 3% (F=485 and F=515).
r>plot( [F, 48.5,50,51.5], R=0.9..1, 'F =45..55,
> col or =[ BLACK, BLUE, RED, BLUE] ,
> title="Finesse vs. Reflectivity ( F=50 +- 3%)"' );

Finesse vs. Reflectivity ( F=50 +- 3%)

541

48+

46}

0.9 0.92 0.94 0.96 0.98 1

Fromthis graph, the finesse is 50 when the reflectivity is approximtely
0.9392, F=48.5 when R=0.9374, and F=51.5 when R=0.94009.

>

The nunerical solution is based on the use of fsolve to find approxinate
solutions to the sane three equations:

> R50 := fsolve( F=50, R);

L R50 :=.9391110692
r> R485 := fsolve( F=48.5, R);
L R485 :
r> R515 := fsolve( F=51.5, R);

L R515 :=.9408304421
Note that the nunerical and graphical data agree to three decimal digits.

1 M r

9372888368

The conversion of these results into percent can be done just as you would on a
L cal cul at or
r > 100*abs( R515 - R50 )/ R50;

L 1830851490
r > 100*abs( R485 - R50 )/ R50;

L .1940380068
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[In sunmary, the reflectivity nust be controlled to within 0.2%to achieve a 3%
error in the finesse (when F=50).

L C>
[Bl Problem 4
The ratio of |ight which passes through a filter to that which enters the filter
1
is T=—— where x is proportional to the frequency of the light and Fis
4 F* sin(Ttx)
1+————
g
the finesse.
H (a)
[ Plot the transnmitted light for a filter with a finesse F=20 and for 0.9 <= x <=
1.1.

Note that the transmission is greatest when x=1in this plot. Mre generally,

T=1 whenever x is an integer. The bandwidth of a filter is typically determ ned
by its full width at half nmaxi mum (FWHM . That is, the maxi mum transni ssion

1
coefficient is 1 (100% when x=1 and half of the signal is transnitted (ng)

when x=0.974 and agai n when x=1.03; the difference between these "frequencies"
| Lis the FWHM for F=20.

(b)

[ Use the animate command to determine whether larger or snaller values of F are

needed to produce a filter with a narrower bandw dth. To sinplify the
identification of the frequencies used to conpute the FWHM al so plot the

1
hori zontal |ines T:E in each frame of the aninmation.

[Bl Sol ution
C>restart; with(plots):
[ (a) We are told that the transnission coefficient ( T ) depends on the frequency
L( x) and finesse ( F) in the followi ng way
r>T:= 1/ (1+4*F 2/ Pi "2*si n(Pi *x)"2);
1
T:=

F? sin(Ttx)?
1+4—"7—

¢

[ When the finesse is F=20, the transmnission coefficient is
> T20 := subs( F=20, T );
T20 =

sin(Trx)?
1+1600————

L g
r>plot( T20, x=0.9 .. 1.1, title='Transmtted Light (F=20)' );
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Transmitted Light (F=20)

a\

12N

_—

0.90.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
X

C>
C (b)
r>animte( { T, 1/2}, x =0.9 .. 1.1, F =10 .. 50,
> title='Transmtted Light (10 <= F <= 50)‘ );
Transmitted Light (10 <= F <= 50)
l,,
0.8§
0.6
0.4
0.3
00.90.92 0.94 0.96 0.98 ;(. 1.02 1.04 1.06 1.08 1.1
Not e
The animate command will not accept a list of functions to be plotted. Wen
{m)re than one function is to be included in the display, they nmust be
specified as a set.
L This clearly illustrates that the FWHM decreases as the finesse increases.
L L C>
Probl em 5
(a)

[ Beginning with the optical filter transm ssion function T(x,F) given in problem
4, use Maple to synbolically solve for the bandwidth (B) in terns of finesse (F

|l L). Does B change frompeak to peak in this exanple?

(b)

[ Repeat (a) for the high-finesse case by replacing sin(rmx) by mx in T(x,F). Wat

advant ages are obtained from maki ng this approxi mati on? How small does x need to

L be to ensure the errors arising fromthis approxi mation are not too |arge.

Hi nt

B L [ Use a plot.

(c)

Plot B vs. F on the same graph using your results from(a) and (b). Over what

range of F does the approxinmation incorporated in (b) have an error of less than
1%
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(d)
[ Plot Tvs. x for 0<x<3 for 0.5<F<50 using the animate function. Do you see a
problemw th the bandwi dth definition for |ow F?

[B Hint
L L [ night be nore useful to | ook at the animation with decreasing val ues of F.
[B Sol ution

C>restart; with(plots):
C(a) As in Problem4, the transmi ssion coefficient is
r> Tex := 1/ (1+4*Fr2/ Pi "2*si n(Pi *x)"2);
1
F? sin(Ttx)?
g

[The sol ve conmand can be used to find the frequenci es when the transm ssion
coefficient is half of its maxi num val ue

> HWex := solve( Tex=1/2,x );
arcsing. — arcsing. —
F F

Mex := )=
s s
As expected, Maple finds two solutions. The difference between these sol utions
[ is the FWAHM
> Bex := abs( HWex[1]-Hwex[2] );

Tex:=
1+4

b) When the transmi ssion coefficient is approxi mated by replaci ng sin(rtx) by mx,
Tap : = subs( sin(Pi*x)=Pi*x, Tex );

1T
vV —~ Vv

Tap:=—"_—
1+4F*%

new expressions for the frequencies at which half of the signal is transmtted
are obtained
r > Hvap := solve( Tap=1/2, x );

CIn this case the FWHM i s
r > Bap := abs( HVap[1]-HVap[2] );

Bap:=m

This result is confirmation of the results found in Exanples 4-11, 4-12, and
4-13 and Try It! (p. 112) in which the best |east squares fit to the FWHMis

1
found to be very close to E However, renenber that this result is obtained

using an approximation to the transm ssion coefficient. The "exact" FWHMis the
expression found in part (a) of this problem

The investigation of the approximation introduced in this part of the problem
can be conducted in any number of ways. However, to see exactly how the
frequency ( x) affects this approximtion it nakes nost sense to | ook at the
L functions mx and sin(1x).

r>plot( [ Pi*x, sin(Pi*x) ], x=0..0.5,

> title='Conparison of Pi*x and sin(Pi*x)‘ );
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1

Comparison of Pi*x and sin(Pi*x)

o' 0.1 02 0.3 0.4 0.5

- While additional information would need to be provi ded before saying exactly
when this approximation is "good", it is reasonable to say that the functions

are esssentially indistinguishable for 0 <= x <= 0.1 and show si gni fi cant

L differences for x > 0.25.

C>

[(c) The plot of the two expressions for the full-width at hal f naxi nrum bandw dth
is

r>plot( [ Bex, Bap ], F =1 .. 50, color=[RED, BLUE],
> style=[LINE, PO NT], title="Exact and Approx Bandw dth' );

Exact and Approx Bandwidth

1.2
|
1»‘\
0.4
|
ol
8
0.6 |
0.4
A
3
0.2 \\
\\——,,,’
0 10 20 30 40 50

F

The rel ative error between the exact and approxi nate bandwidth is

> err := abs( (Bap - Bex) / Bex );
%n%
arcsin
I ®2FH

1
-2
L IF|

s
er==T
2 ) %n
arcsing —
F

Wiile this expression is rather conplicated, it is not difficult to plot.

tolerance is included to facilitate the interpretation of the graph.
>plot( [ err, 0.01], F=5.. 10,

> title="Approximation Error in FWHM );

The 1%
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Approximation Error in FWHM

0.016 \
\

Fromthis plot, it is seen that the two expressions for the bandwi dth agree to
within 1% when F > 6. 44.

>

(d) The requested animation is

> animate( {Tex,1/2}, x=0..3, F=1/2..5);

11 T

1’\/\/\/
0.8
0.6
0.4
0.2
0 0.5 1 1.5 2 2.5 3

X

 For | ow values of the finesse the transm ssion coefficient always exceeds half

of the maxi mum In these situations the full-width at half maxi mumis not

defi ned.

(The specific cutoff for the finesse is not easily deternmined fromthe

anim ation. How could you determ ne the smallest finesse for which the FWHM

L bandwi dth is defined?)

L L L=

Probl em 6

rIn Exanple 4-11 we (correctly) guessed that there is a reciprocal relationship
between the finesse and bandwi dth of a filter. A log-log plot can be used to

obtain simlar information about a set of data. The basic idea is that if F=B
for some constant a, then log(F)=alog(B). That is, the graph of log(B) vs. log(F) will
be a straight line with slope a.

Confirmthe results of Exanple 4-13 by creating a log-log plot of the data points
used in that exanple.

Sol uti on
Correction

| [ The reciprocal fit is first mentioned in Exanple 4-12.
C>restart; with(plots):
L Here is the data introduced in Exanple 4-11.
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Flist [ 5, 10.1, 15.01, 20.19, 30.01, 40.11, 49.93 ]:

Bl i st [ 1.096-0.9016, 1.049-0.9502, 1.033-0.966, 1.023-0.9745,
1.016-0.9818, 1.012-0.9867, 1.01-0.9891 ]:

PTS := zip( (f,b) ->[f,b], Flist, Blist );

PTS:=[[5,.1944], [ 10.1, .0988], [ 15.01, .067], [ 20.19, .0485], [ 30.01, .0342], [ 40.11, .0253], [ 49.93, .0209] ]

>

A log-log plot is created using the |oglogplot command fromthe plots package.
The basic usage is

> | ogl ogplot( PTS, title="log(B) vs. log(F)"' );

log(B) vs. log(F)

L O |
\ VvV Vv

. 2000000006

. 1000000004

7000000000e-11

4000000000e-11

2000000000e-%

7. 10. 20. 40.

Before we say that this |line appears to have slope close to -1, are you sure the
sanme scaling is used for both axes? Three ways in which this can be enforced are
i) toclick onthe 1:1 icon in the context bar, ii) to add the optional argument
scal i ng=CONSTRAI NED to the | ogl ogpl ot command, and iii) to specify a viewin

whi ch the range for each axis displays the same nunber of magnitudes of val ues.
The |l ast two options can be inplenented using the follow ng commands (plots

L omtted)

[ > | ogl ogpl ot ( PTS, axes=BOXED, scal i ng=CONSTRAI NED,

> title="log(B) vs. log(F)"' );

> | ogl ogpl ot ( PTS, axes=BOXED, view=[1..100,0.01..1],

> title="log(B) vs. log(F)*‘ );

Regardl ess of the nethod used, it is quite apparent that the slope of the
{Iog-log plot is close to -1. That is, that the FWHM bandwi dth and fi nesse are

i nversely proportional.
L L C>
[B Problem7
Performa | east-squares fit of the wind tunnel and CFD data in Application 3
(Chapter 3). Graph the data points, the lift-to-drag function found in Step 4, and
the best-fit solution. How do these fits conpare with the estinmate found in Step 4
of the five-step solution? Wat are the drag coefficients and thrust requirenments

when C =0.5060?
Sol ution

Note: Problems 7 and 12

L [This problemis related to Problem12. In fact, it is advisable to solve
Probl em 12 before solving this problem

C>restart; with(stats):
L The wind tunnel and CFD data for Application 3 are found on p. 61.
r>Cw :=[ 0.01, 0.13, 0.21, 0.40, 0.65 ];
> CDwt [ 0.0155, 0.0165, 0.0181, 0.0249, 0.0380 ];
ClLwt :=[.01, .13, .21, .40, .65]

CDwt :=[.0155, .0165, .0181, .0249, .0380]
[ 0.00, 0.11, 0.25, 0.38, 0.51, 0.66, 0.80 ];
[ 0.0157, 0.0163, 0.0187, 0.0228, 0.0293, 0.0389, 0.0501 ];

ClLcfd:=[0, .11, .25, .38, .51, .66, .80]

CDcfd :=[.0157, .0163, .0187, .0228, .0293, .0389, .0501]

r > ClLcfd :
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[

f

The specific lift-to-drag function found in Step 4 of that application was

found, on p. 65, in the followi ng manner
> liftdrag := CD = CDO + al pha*CL"2;

liftdrag := CD = CDO + o CL?
> eql := subs( [ CL=0.40, CD=0.0249 ], liftdrag );
> eq2 := subs( [ CL=0.65, CD=0.0380 ], liftdrag );

egl :=.0249 = CDO + .1600 a

eg2 :=.0380=CDO + .4225 a
> LDcoef := solve( { eql, eq2 }, { CDO, alpha } );

LDcoef :={ o =.04990476190, CDO = .01691523810}

> LtoD : = eval f( subs( LDcoef, liftdrag ), 3 );

LtoD := CD =.0169 + .0499 CL 2
>

2
The | east-squares fits look for functions of the form CD:CDO+°‘CL- For the w nd

tunnel data, the resulting relationship is
> Ltobwt := fit[leastsquare[ {CD, CL}, liftdrag,
> ([ Chwt, Clwt ] );

LtoDwt := CD = .01574954267 + .05321983634 CL*
The corresponding best fit for the CFD data is
> LtoDcfd := fit[leastsquare[ {CD, CL}, liftdrag,
> ( [ CDcfd, CLcfd ] );

LtoDcfd := CD = .01542412816 + .05392107985 CL?

{CDO, al pha} ] ]

{CDO, al pha} ] ]

>

observe that all three approximate lift-to-drag functions are quite simlar. To
conpare these fits with the data, a conposite plot containing the data and the
three functions is created. (See also Problem 12.)

> PTSwt := zip( (x,y)->[x,y], CLwt, CDwm ):
> PTScfd := zip( (x,y)->[%x,y], CLcfd, CDhcfd ):
> plot( [ PTSwt, PTScfd, rhs(LtoD), rhs(LtoDwt), rhs(LtoDcfd) ], CL =0 .. 1,

col or =[ BLACK, ORANGE, RED, BLUE, GREEN] ,

styl e=[ PO NT, PO NT, LI NE, LI NE, LI NE],
linestyle=[0,0,1,3,5],

title='Lift-to-Drag Data and Fitted Functions' );

Lift-to-Drag Data and Fitted Functions

V V VYV

0.8 1

This plot shows that each of the approxi mati ons does a good job of fitting the
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data but that the two | east-squares fits do a better job of approximting the
data over the entire range of C_ val ues.

>

The specific coefficients of drag produced when C =.5060 are

> subs( CL=0.5060, LtoD);

CD =.02967619640

CD =.02937573669
> subs( CL=0.5060, LtoDcfd );

CD =.02922986576

Once again, all three results are fairly close.

>

To determine the thrust for each approxi mati on requires some additional

paraneter definitions from Application 3 (pp. 63 - 65).

> PARAM : = eval f( [ w = 500000, b = 200, AR = 10, M= 0.84, gammul = 1.4, p0 =
14.696*12"2, delta = 0.2360, rho0 = 0.002377, sigma = 0.3106 ], 3 ):

L
C
[
[
sSups =0. s X
[> bs( CL=0.5060, LtoDwt )
|
C
E

> VARS := [ weight=w, V = Ma, S = b"2/AR, rho=sigma*rho0 ]:

> Vsound : = subs( [p=delta*p0, rho=signma*rho0], a=sqrt(p/rho*gammal) ):
L > VARS : = subs( Vsound, VARS ):
r > drag := rho*v"2*S*CD 2:

> bal ance2 : = thrust=drag;

1
balance? := thrust =P V2 SCD

Now, at long last, the thrust estimates for the original approxi mation and the
| east-square approxi mati on based on the wind tunnel and CFD data are
> subs( VARS, PARAM LtoD, CL=0.5060, bal ance2 );

thrust = 29334.09567
> subs( VARS, PARAM LtoDwt, CL=0.5060, bal ance2 );

thrust = 29037.09959
> subs( VARS, PARAM LtoDcfd, CL=0.5060, bal ance2 );

L thrust = 28892.91023
[The agreenent between these results provides confidence in our original
esti nat e.
L L C>
Probl em 8
[ Use contourplot (or contourplot3d) to plot |evel curves of the follow ng two equations

r 1
E"_lﬂéﬂlzz(lﬂ)2

a2 _lg_i
(u-1) +§/ xE=

Pl ot |ines having constant r=0, 0.5, 1, 2, 5, 10 in the u-v plane. Do the sane for
i nes having constant x=0, +0.5, -0.5, +1, -1, +2, -2, +5, -5, +10, and -10. This
type of plot, called a Snmith chart, is used by engineers to describe nore
conplicated rel ati onshi ps between various quantities in mcrowave engi neering. For
exanpl e, they may describe a transformati on between reflection coefficient and
nornal i zed i npedance in a coaxial cable being used as a transnission |line by
L el ectrical engineers analyzing a comunication channel.
Sol uti on
C>restart; with(plots):
C The two equations of interest in this problemare

> E1l = (u-r/(14r))"2 + vr2 = 1/ (1+r)"2;

> E2 1= (u-1)"2+(v-1/x)"2 = 1/ x"2;

r 1
E1.:E4—1+r§+\/2:(1+r)2
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E2::(u—1)2+%/-%§:%

T W aren’'t really interested in "contour |lines" of the above functions. Rather,
we need to plot the inplicitly defined functions that are obtai ned when the
specified values of r and x are substituted into these equations. This could be
achieved with the use of inplicitplot, but contourplot seens the nore reasonable

L choi ce.

r>R:=solve( E1, r );

solve( E2, x );

> X
WP-1+V
R::——2
22U+ +V+1
NP S
L L 2u+iP VPl
r>Cl :=contourplot( R wu=-1..1, v=-1..1, col or=BLACK,
> contours=[0,1/2,1,2,5,10] ):
> C2 := contourplot( X, u=-1..1, v=-1..1, col or=RED,
> contours=[0,1/2,-1/2,1,-1,2,-2,5,-5,10,-10] ):
> display( {C1,C2}, title="Snmith Chart (Problem7)‘, axes=NONE );

Smith Chart (Problem 7)

[The quality of this plot can be inproved by including the optional argument
grid=[50,50] in each contourplot command.

L L C>

Probl em 9

{The textplot (and textplot3d) commands (fromthe plots package) can be used to

insert labels in a two- or three-dinensional plot. Find the online help for these
conmands, then use themto identify the two curves plotted in Exanple 4-2.
[B Sol ution
C>restart; with(plots):
L The two functions and the original plot fromExanple 4-2 (p. 80) are
> vl :=sin( theta)
> v2 :=theta -> cos(2*theta) / 2 ;

vl:=4in(0)
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1
V2:=0 - 5003(26)

>P:=plot( [ vl, v2(theta) ], theta = -2*Pi .. 2*Pi,
> col or=[ RED, BLUE], styl e=[ PO NT, LI NE] ):
> P
o 1+ S
: l 0. : :
6 4 -2 0 6
- - theta ©
- O) ) -
0000‘}; o4l oovo
C>

r Fromthe online help for textplot, it is learned that the foll owi ng commands can
be used to | abel the individual functions in the plot. (The coordinates of the
messages were determined using the GU.)

r>T1l :=textplot( [6.1,0.5, ‘vli=sin(theta)‘], align={ABOVE, LEFT} ):

> T2 :=textplot( [2.2,0.8, v2=cos(2*theta)/2‘], align={ABOVE, RI GHT} ):

> display( {P,T1, T2}, title="Exanple 4-2 - with text |abels );

Example 4-2 - with text labels

= 1+ =
- - o -
© © < “v2=cos(2*theta)/2
- - -
- - °
- - -
vl=sin(theta
° ° 0. ° ° ( )
- - - -
- o
6 4 -2 0 2 6
- ° theta °
< < < <
° - -
° =0.5 °
- - ° -
< 3 < o
- - °
- ° - -
- ° - -
s 1N L

L

Probl em 10

Consi der any periodic function of time fwith period T, returning once each cycle
to any selected tine reference. In other words, f(t+T)=f(t), where T is called the
period of the periodic function. This period is the mninumtine it takes the
function to duplicate itself. Such a function may be represented by a group of
purely sinusoidal functions, consisting of a fundanental frequency and its

har noni cs. Fourier analysis allows us to find the ‘‘weighted ’ coefficients of
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each of the sinusoidal ternms in such a way that, after adding themtogether, they

2Tt
approxi mate the original periodic function. For exanple, let 6= —_ where tis the

time and Tis the period; 6 is in radians. Define

) = (-1)*cos((2k-1)8)
1 = 2k-1
on_l(e):E+ - for n=1,2,....

Gaph, in one plot, the functions f, f;, and f; for at |east two periods. Then plot
f,s on a separate plot. Wat periodic function is being represented by this group of

L sinusoi dal functions?

Sol ution

C>restart; with(plots):

 The sequence of functions can be defined in a nunber of different ways. Be
careful about how the index is inplemented. In the following definition the

upper limt of the summation is nodified so that f can be obtained via, e.g.,
subs( n=m f ) when mis an odd integer.
r>f =12 + 2/Pi*Sun((-1)~k*cos((2*k-1)*theta)/(2*k-1), k=1..(n+1)/2);
1/2n+1/2 (-l)kCOS((Zk—l) e)
2k-1

k=1

1
fi="+2
2 I

Thus, the functions corresponding to f,, f;, and f; can be plotted with the single
comrand

> plot( [ seq( f, n=[1,3,5] ) ], theta=0..4*Pi,

> title="Plot of f[1], f[3], and f[5]"' );

Plot of f[1], f[3], and [5]

KX XX

/ \ / \
\ / \
/ \ / \

o/ . :
% 2 4 et\het/a/ 8 10 %2\

Note that the explicit use of subs is nbre cunbersone - and becones nore so as
t he nunmber of functions to be plotted increases.
>

11 r

The plot of the single function f,; is sinpler, but is useful in our attenpt to
L understand the approxi mation properties of this sequence of functions.

r>f25 := subs( n=25, f );

13

(-1)*cos((2k-1)B)
- 2k-1

1 k=
fo5:=—-+2
2

I
r>plot( f25, theta=0..4*Pi, title='Plot of f[25]"' );
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Plot of f[25]
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C>
T Fromthis plot it appears that these functions are sonehow related to the "unit
step function". That is, the periodic function with period T=2mthat is zero

T T 31 ) 3n
for B < E one for E < 0 < 7 then zero again for 7 < B0 <21 (Cbserve that

defining the function for a single interval of length 2m defines the function
for the entire real line.) Adifferent view of this fact can be seen in an
L ani mated di splay of the functions as the index increases.
r>index :=[ seq( 2*n+l, n=1..10 ) ];
index:=[3,5,7,9,11, 13, 15, 17, 19, 21]
> display( [ seq( plot( f, theta=0..4*Pi ), n=index ) ],
> i nsequence=true );

/\ \ /N

/
, \ N\ / \
0 J 2 4 5 het 3\/ 8 10 \ ¥

Not e
The oscillations that occur at the "junps" in the function are due to the
{ oscillatory nature of the Fourier series. This phenonenon is called the
"G bbs effect”.

L L C>
[B Problem 11

Pl ot the functions y=tan(x) and y=x on a single graph. Be sure to choose the donain
so that the graph contains the first five positive values of x for which tan(x)=x

Use the interface to identify the first five positive values of x for which tan(x)=x
Conpare these results with the values found in Exanple 3-17.

[B Sol ution
\ [>restart:
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C The graph can be obtained by the foll owi ng comrand.

r>plot( [ tan(x), x ], x=0..25, y=0..25,
> col or =[ RED, BLUE], di scont =true,
> title='Gaphs of y=tan(x) and y=x‘' );
Graphs of y=tan(x) and y=x
257
207
15+
' |
10+
o I
sl | | | \ \ | | \
N Y R N B
| / / / / | |
/ / / / / / / )
/ / / /
0 5 10 15 20 25
X
Not e
L [Ooserve that, for all intents and purposes, this plot is identical to the one
on p. 71 of the text.

>
[The approxi mate |l ocation of the first five positive intersections of these two

functions are: 4.55, 7.74, 10.93, 14.12, and 17.26.
Not e
L The specific value you obtain will be sonewhat dependent on your specific
{ system However, the values all agree with the solutions found in Exanple
L L 3-17 to at least two significant digits.
Probl em 12
{Create, in one plot, a graph of the CFD data from Application 3 (Chapter 3) and

the quadratic function relating the coefficients of lift and drag that is given in
Step 4.
Sol ution
Note: Problems 7 and 12
L [This problemis related to part of Problem7. In fact, it is advisable to
sol ve this probl em before solving Problem 7.
C>restart; with(plots):
L The CFD data is obtained fromp. 61.
r > CLkcefd :=[ 0.00, 0.11, 0.25, 0.38, 0.51, 0.66, 0.80 ]:
> CDhcfd := [ 0.0157, 0.0163, 0.0187, 0.0228, 0.0293, 0.0389, 0.0501 ]:
> PTScfd := zip( (x,y)->[x,y], CLcfd, CDcfd );
PTscfd :=[[0, .0157], [ .11, .0163], [ .25, .0187], [ .38, .0228], [ .51, .0293], [ .66, .0389], [ .80, .0501]]

>
The original (two-point) quadratic fit is found on pp. 65 -- 66
> liftdrag := CD = CDO + al pha*CL"2;
liftdrag := CD = CDO + o CL?
> eql := subs( [ CL=0.40, CD=0.0249 ], liftdrag );
> eq2 := subs( [ CL=0.65, CD=0.0380 ], liftdrag );
eql :=.0249 = CDO + .1600 a
eg2 :=.0380 = CDO + .4225 a
r > LDcoef := solve( { eql, eq2 }, { CDO, alpha } );
LDcoef :={ CDO =.01691523810, a = .04990476190}

Page 31

[ |




!

LtoD := CD =.0169 + .0499 CL?
>

[> LtoD : = eval f( subs( LDcoef, liftdrag ), 3 );
C
L These two pieces of information can be displayed in the follow ng way

> plot( [ PTScfd, rhs(LtoD) ], CL =0 .. 1,
> styl e=[ PO NT, LI NE] ,
> col or =[ BLACK, RED] ,
> title="'CFD Data and Quadratic Approximation to Lift-to-Drag Function® );
CFD Data and Quadratic Approximation to Lift-to-Drag Function
0. 06~
0. 05 °
0. 04
0.03- <
///
0.08 o —
0 0.2 0.4 0.6 0.8 1
CL
Lo
Probl em 13
(a)
The curve x*=y?*(1-y) was plotted as an inplicitly defined function and
paranetrically in Section 4-2. The points with t:ﬁ and t=—/2 correspond to the
two endpoints of the curve. Find the value(s) of the paraneter t when the curve
passes through the origin.
(b)

[ Use aninate to show how the curve is traced out as t increases from —ﬁ to ﬁ
Sol ution
C>restart; with(plots):
[(a) The paranetric representation of this function introduced in Section 4-2 (p.
96) is
r>EQ: :=[ y=1-t"2, x=t*(1-t"2) ];
EQS:=[y=1-t} x=t(1-1t%)]
To determ ne the paraneter values when the curve passes through the origin,
sinmply substitute x=0 and y=0 into the equations and solve for the paraneter
value. (Note that the syntax for solve requires that the equations be converted
into a set.)
> sol ve( convert( subs(x=0,y=0, EQS), set ), t );
L {t=1},{t=-1}
T Two solutions are returned by solve. It is sinple to verify that these are
correct (and not rmuch nore difficult to see that these are the only possible
val ues for which the curve passes through the origin).
>
(b) The "natural" solution would be sonething |ike
> PARAM : = subs( EQS, [Xx,y,t=-sqrt(2) .. T1 );
PARAM =[t(1-t°),1-t’ t=—/2 .. T]
> ani mate( PARAM T=-sqrt(2)..sqrt(2) );
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 However, this does not work. The problemis that all ranges nust be real
constants (and not paraneters). This makes the solution of this problem nuch
nmore conpl i cat ed.

As a first attenpt, use the signumfunction to "cut off" the functions when the
L curve paraneter (t) exceeds the animation paraneter (T).
r > PARAMR : = [ PARAM 1] *si gnun(t<T),

> PARAM 2] *si gnun(t <T),

> t=-sqrt(2) .. sqrt(2) 1;

| PARAM2 := [t (1~ %) signum(t < T), (1 - ) signum(t < T), t=—/2 ..1/2]
Not e: signum and sign

L For this usage, the sign function could be used in place of the signum
[ function. In general, signumis for expressions and sign for polynom als.
L Now, the natural ani mate command | eads produces an ani mati on.

> ani mat e( PARAMR2, T=-sqrt(2)..sqrt(2), col or=RED,
[> title="Animation with extra artifact’ );
 The only problemw th this solution is that the |last point on the curve is
al ways connected back to the origin. This effect nay be useful in some
ci rcunstances, but let’'s see if it can be elim nated.
>
The extra artifact produced by the previous approach can be avoi ded by defining
the parametric curve so that it evaluates to FAIL whenever the animation
par anet er exceeds the curve parameter. This can be acconplished using the

L piecewi se conmmand.
> PARAMB : = [ piecew se( t<T, PARAM 1], FAIL),

1 1T

> pi ecewi se( t<T, PARAM 2], FAIL),
> t=-sqrt(2) .. sqrt(2) 1;
t(1-1%) t<T ,1-t t<T %
PARAM3 := ==/2 .4/2
L RAMS3 % FAIL otherwise'{ FAIL otherwise’t [ \/7
[> ani mate( PARAMB, T=-sqrt(2)..sqrt(2), col or=RED,
> title="Animation - Final!* );
C >
Not e

L [AII plots are omtted fromthis presentation as they are animtions for which
L the first frame is essentially enpty.

Probl em 14

Verify that the gradient and normal fields for V=4/x+y*+4 are orthogonal by

superinposing the plots of the two vector fields on top of one another. (Use

different colors to distinguish the two vector fields.)

[B Sol ution

C>restart; with(plots):

[The definitions of the vector field together with its gradient and normal fields
can be defined in the text (pp. 96 -- 97).

>V :=sqrt( x"2+y"2+4 );

L Vi=a/ X +yP +4

r>gradv :=[ diff(Vv,x), diff(V,y) I;

av X J E
gradV := ;
L E\/x2+y2+4 «/x2+y2+4

r>mnornmV := [ gradVv[2], -gradV[1] ];

y X
normv := =
X+y +4 «/xz+y2+4E

[Chly a few nminor changes have been nade to the optional argunents, otherw se
these are the same commands that were used in the discussion in the text.
r>G:=fieldplot( gradV, x=-2..2, y=-2..2, grid=[8,8], color=RED ):

> N:=fieldplot( nornV, x=-2..2, y=-2..2, grid=[8,8], color=BLUE ):
> display([] G N, title=*Gadient and Normal Fields are Othogonal ‘);
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Gradient and Normal Fields are Orthogonal

fields particularly easy to see

[ The use of the sanme grid in both plots nmakes the orthogonality of these vector
>
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