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Foreword

This manual is for any instructor who is using Maple and Linear Algebra and Its Applications for the
first time. It will greatly simplify your task of combining Maple with the text, because it is written by
a colleague who has already tried out the materials with considerable success. This manual carefully
describes everything you need to know about planning and conducting the course.

The author, Professor Douglas Meade, has more than a decade of Maple experience in both
research and teaching. He has been working with the text and the accompanying Maple materials
since 1998, and he has used the text in two different linear algebra courses, one with a weekly
computer lab. Based on his classroom experience, Professor Meade has modified and refined the
projects in this manual, to more closely fit the current presentations in the text. The original authors
of the projects were Professors Jane Day, of San Jose State University, and Renate McLaughlin, of
the University of Michigan-Flint. I am grateful for Professor Meade’s contributions to the course,
and I am confident that you and your students will appreciate his work.

David C. Lay
Department of Mathematics
University of Maryland
College Park, MD 20741

E-mail: lay@math.umd.edu
Homepage: http://www.math.umd.edu/~lay/

lay@math.umd.edu
http://www.math.umd.edu/~lay/
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Introduction

This Instructor’s Maple Manual provides a wide variety of information, support, and supplemental
materials for an instructor teaching a first course in linear algebra from Linear Algebra and Its
Applications using the Maple computer algebra system.

In addition to general suggestions for incorporating Maple into your course, the manual includes
sixteen projects. The projects tend to be shorter than the Application Projects and Case Studies
that are on the text’s website. Each project described here may be downloaded as a PDF file from
the Web. Since many students may have no prior exposure to Maple, most of the worksheets contain
the Maple code needed to complete a project. The goal of the projects is to teach linear algebra, not
Maple. However, Maple skills acquired here will be directly applicable to other areas of mathematics,
science, and engineering.

While the broad selection of projects is very appealing, the textbook remains the cornerstone of
the course. The exercises are carefully selected to complement and supplement the exposition. The
matrices and vectors — numeric or symbolic — for nearly 1000 exercises can be accessed in Maple
with a few keystrokes. Also, special laylinalg commands implement the matrix operations exactly
as they are described in the text. This allows students using Maple for their homework to focus on
the mathematics without worrying (as much) about correctly copying the problem from the book or
making algebra errors. When my students realize these benefits, their use of Maple on homework
skyrockets.

The Study Guide provides detailed information on the use of the commands in the laylinalg
package. While the main portion of the Study Guide is directed towards MATLAB, the Maple im-
plementation is designed to directly parallel the MATLAB usage. The Maple appendix demonstrates
the use of Maple commands at a pace appropriate for the skills and theory being presented in the
text. The tight coordination between the text and supplements is a great benefit. If you have not
already done so, take a few minutes to look at the Study Guide — in particular, the Maple appendix.

Some students are apprehensive about the additional work that is required to complete the
projects, particularly if the benefits are not well defined. To reinforce the importance of the projects,
I strive to select relevant projects and assign them at appropriate times in the course, provide reason-
able time for the completion of the work, discuss the projects in class, grade and return the completed
projects promptly, and include the project grades in the overall course grade. To further reinforce the
importance of the projects, my students also know that each exam will include at least one question
based on the projects.

I hope you and your students find the information in this Manual useful. Comments, corrections,
and any other feedback — including questions — are greatly appreciated.

Douglas B. Meade
Department of Mathematics
University of South Carolina
Columbia, SC 29229

E-mail: meade@math.sc.edu
Homepage: http://www.math.sc.edu/~meade/

meade@math.sc.edu
http://www.math.sc.edu/~meade/
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GETTING STARTED 1

1 GETTING STARTED

PREPARE

The number of options for using technology in support of a course in linear algebra continues to grow.
Commercial software packages MATLAB, Maple, Mathematica, and MathCad, and calculators such
as the TI-86, TI-92, and HP-48G can all be used together with Linear Algebra and Its Applications,
Third Edition. The [M] exercises in Lay’s text are written in a software-independent style and can be
solved with any of these tools. This manual, however, is written specifically for instructors interested
in using Maple.

This manual also assumes that you have the Study Guide for Linear Algebra and Its Applications,
Third Edition and the laylinalg package, a collection of Maple procedures and data for nearly
1000 exercises in the text. The Study Guide contains a built-in guide to using technology with
Lay’s text. Although the main sections of the Study Guide discuss MATLAB, there are appendices
for Maple, Mathematica, and several graphing calculators. The Maple appendix provides explicit
instructions on the use of Maple for homework problems. Your students will seldom, if ever, need
more documentation for this course than the appendix in the Study Guide and Maple’s online help
facility.

If you have not used Maple before, you will want to take some time to familiarize yourself with
its basic operations. Your students will assume you are an expert and, although that may not be the
case, it will be helpful to have enough hands-on experience to be able to provide some suggestions
— and to know your own limitations. The Maple worksheets are user friendly and work much like a
word processor with the added dimension of command execution. As a quick start, you may want to
work through some of the computer projects at the end of this Manual and the [M] exercises in the
text. If you are interested in learning more about Maple, you may want to locate a tutorial. Then
try your hand at a variety of exercises such as those mentioned above.

STUDENT EDITION OF MAPLE AND THE STUDY GUIDE

Students should have a personal copy of the Study Guide. If students will be encouraged — or
required — to have a personal copy of Maple, the Student Edition of Maple 8 can be ordered from
Waterloo Maple, Inc. For current information on the Student Edition of Maple, go to the Waterloo
Maple homepage, http://www.maplesoft.com/, and search for “student edition”.

Students should have these materials the first day of class. Bookstore managers often order
insufficient quantities of supplements, unless you make it a required item. Having the Study Guide
available for students will save you the trouble of explaining the basic operations needed for the
homework exercises. Be sure to place your order in time to have the Study Guide in stock before the
start of the course.

The Student Edition of Maple is inexpensive ($129 as of June 2002) and includes a good User’s
Guide. It is functionally identical to professional Maple. Installation is fairly straightforward, but on
that rare occasion when something does happen, contact Waterloo Maple, Inc. or visit their website
(http://www.maplesoft.com/). Your local system administrators should be consulted with network
and local security issues.

THE laylinalg PACKAGE

The laylinalg package is a Maple library that contains additional Maple commands and data for
almost 1000 exercises in the text (both regular and [M] exercises). This package and installation
instructions are accessed through the WWW at the URL http://www.laylinalgebra.com/.

http://www.maplesoft.com/
http://www.maplesoft.com/
http://www.laylinalgebra.com/


2 GETTING STARTED

Having the data for the majority of the exercises in the text readily available saves each user
from typing them in and facilitates the use of Maple when working homework problems. The special
functions facilitate solution using the methods discussed in the text and Study Guide. It can also be
effective to demonstrate the use of these tools as a part of your lectures. of various exercises in the
text, and some of them are good for classroom demonstrations. A complete list of Maple commands
provided in the laylinalg package can be found in Section 3 and are described in more detail in the
Study Guide.

If you and the students will be accessing the laylinalg package via a local network, this should
be installed (and tested) before the first day of classes. This prevents most unexpected last minute
surprises, improves the effectiveness of the first demonstrations, and encourages students to utilize
this resource from throughout the course.

THINGS TO ANNOUNCE AND FIND OUT

At the first class inform the students that, if they plan to use Maple outside your labs, they will need
a copy of the laylinalg package. It is anticipated that most students will download the laylinalg
package through http://www.laylinalgebra.com/. However, since some students might not have
access to the WWW, you might want to create a number of diskettes containing the laylinalg
package that students can borrow. (Make an archive first and have the students copy just one file.)

It is a good idea to distribute a survey at your first class meeting to find out your students’ majors
and the previous experience they have with computers, calculators, and various types of software.
This will give you an idea of what kind of group you have and which students might be able to
help others. You might pair the students off, so that each novice is introduced to someone with
experience. All of this information can help you decide on appropriate goals and topics for computer
assignments and about practical matters such as whether to ask students to use a text editor, print
graphics displays, or work with a partner.

ASSIGNMENTS

The first time you plan to assign computer exercises, you might want to proceed with some caution.
Keep a close watch on students’ difficulties with each assignment. Various things can require more
attention than you might expect, especially at the beginning of the course. For instance, you may
find that access to the computer labs is inadequate, maintenance is not as quick as you would like,
or students who buy the software have trouble installing it. Equipment has a knack for picking the
worst and most unlikely times to act up. Assume “If it can go wrong, it will.” and then be pleasantly
surprised if things go smoothly.

Your first assignment should not be about math. Your students will panic when something does
not work perfectly for them. Have them practice using the computers, saving and transporting their
work, and then submitting the assignment in the form you choose — printed and handed in, saved
to a diskette that is submitted, or via e-mail. If you would like them to do some math for their first
assignment, do not grade it based on the solutions. You might use the opportunity to send back
comments on how you would like solutions presented. Then talk about how it went. Remember that
the students are resources for each other. Let them address other students’ problems. It is too much
work to be the sole source for technological support.

It is best to work through each computer assignment yourself before assigning it. While this
might be overkill for the end-of-section exercises, it cannot be overemphasized for the Case Studies
and Projects. This is the only way you can be certain you will know how this experience will fit
with your lectures, whether you should tell students to watch out for anything, how much time to
allow, and how much homework is reasonable to assign at the same time. However, do not expect

http://www.laylinalgebra.com/


GETTING STARTED 3

to see your solution from the students. They will employ any number of methods for solving the
problems. The main idea is for them to communicate their solution to you. You will have to decide
for yourself how much computer work you would like to incorporate into your class. Some classes run
entirely on the computer, while others assign a project every two or three weeks. Keep the lines of
communication open between you and your students. They will let you know when you are stepping
over the line. Try to differentiate between technical problems and content problems. Sometimes the
difficulties arise only from inexperience using Maple.

One trap to watch out for is using Maple for answer checking. While it can surely do that, and
students should be encouraged to do so if they like, using Maple simply as an answer checker is a
waste of time as the focus of computer assignments. Maple places a lot of computing power in the
hands of the students. It is a great opportunity to attack real-world situations. Both hand and
computer skills are important. Collect and grade kinds of problems.

If you are able, find a student grader with computer algebra system experience. He or she
can handle a large portion of the routine problems, leaving you time to spend on more conceptual
exercises. Having an assistant in the lab during some hours is also a huge benefit, especially during
the first weeks of class.

ALLOW TIME TO ADAPT, THINK, BE CREATIVE

It would be very good to have some release time the first time you incorporate the use of technology
in a course. Most likely, you will find yourself spending more and more time creating the kinds of
exercises you wish you could have assigned in the past. Maple will free a lot of your creativity, and
making changes in a course always takes a lot of effort. Your students will have different interests
and questions. Do not be afraid to modify the pace, style, or even topics of the course as it proceeds.

Along the same lines, it is recommended that you teach the course more than once. This pro-
vides opportunities to improve your materials and methods and increases the return on your initial
preparation for the course.

The very existence of powerful and accessible matrix computation tools raises questions about
what topics to emphasize, what skills are most important, and what style of teaching is best. These
issues never disappear. Pay attention to the things that excite the students. Allow yourself the
flexibility to change your perceptions of what they can learn and what the instructor’s role should be.
There is considerable research suggesting that people have individual learning styles and learn best
when they are in control of how information is processed. This has often been stated as “students need
to be involved in their learning”. A computer algebra system (CAS) places powerful experimentation
and investigative tools in the students’ hands. You might provide more conceptual advice and allow
the students more freedom to discover what you mean. Discussions are a wonderful venue for assessing
and guiding students. Once everyone is comfortable with the tools, you may find that students would
like to tackle more realistic situations. The CAS has a way of hiding the complexity and students
are able to “see” why math is useful.

COMMON DIFFICULTIES

Many of your students will be very computer literate, but there may be a few with no prior computer
experience. The Maple interface and mechanics will be alien to these students. Editing, saving,
printing, and executing will be new skills. These skills are not pertinent to linear algebra, but they
are central to operating the software. You can avoid such problems by having all results written by
hand and rarely printing graphics. However, this keeps many students in the dark and allows anxiety
to build. The first rule of my computer-based courses is making everyone feel comfortable. Have
the experienced students assist with the introduction. They are a resource for you and would like to
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help. Many times the novices feel nervous when the instructor is standing over their shoulder but
will accept instruction from another student. It is up to you to decide how you would like homework
handed in, but do not restrict the students to a minimal set of skills. Answer all of their questions
and solicit help from the rest of the students. The class runs much more smoothly when everyone
feels free to experiment and to ask questions.

THINGS KEEP CHANGING

At some point, a student may report different numerical results than you anticipate. Do not worry.
Different floating-point processors carry different numbers of significant digits. Most CAS will let
you change this setting. View these episodes as opportunities to discuss what is going on. After all,
this is the type of problem your students will run into frequently when they are on the job. It is not
something to fear. On the other hand, if some calculations look way off, ask students to repeat them.
Many times, the problem will be things such as the linear history kept by the CAS on executions.
Students jump around their worksheets and just need to go back and re-execute things in order. It
is not difficult to create accuracy problems for the computer. Understand that they are there. Do
not avoid them. This might even make a nice assignment.

2 THE COMPUTING ENVIRONMENT

A COMPUTING LABS

Your department may have several public labs equipped with PCs. They could be networked including
a printer somewhere. Depending on the setup and your license agreement, you may want to install
Maple on each individual machine or on the server from which the computers are updated each day.
If students are required to have an account to access e-mail and the Internet, you probably will want
to locate the system administrators and inform them of your plans. They can help you a lot!

There are a couple of ways to get started. You may want to offer an “Introduction to Maple”
workshop early in the course when the lab is not crowded. You may have the students work through
some simple examples. Most likely, the students will be up and running before you know it and a
few simple suggestions will encourage and enable them to complete the assignment on their own.
Everyone will benefit from a lab monitor. Having a student familiar with Maple and linear algebra
keeping regular hours in the lab is an inexpensive way to provide help. If you do decide on a lab
assistant, meet together before you start the lab and go over your intentions. Ask the assistant to be
in the lab the first few times with you. There will be a lot of questions and running around.

B HOW STUDENTS DO THEIR COMPUTING

The simplest setup would be for everyone to use the same hardware and to be in the lab at the same
time. Get that picture out of your head. Some students will use the lab. An increasing number of
students will have computers at home and will want to work there also. When they do use the lab,
their attendance will be scattered throughout the day. Some students may find other campus labs
more convenient for them. Except for the laylinalg package, keep your attention on the lab you
have made available and leave them to figure out the rest — they will.

Every so often a student wants to use different software, or a calculator with matrix functions. If
you are comfortable with this, give them your blessing, but tell them that they need to communicate
solutions to you. Do not spend much time acclimating yourself to their system. Undoubtedly, there
are other students in the class who are familiar with the technology and can help. Let everyone know
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it is OK to ask. This type of independence can only add to your discussions. It can be very useful
to see what other machines give for results. Independent learning is your real goal.

3 CLASSROOM DEMONSTRATIONS

A SOFTWARE

In addition to the laylinalg package, the built-in linalg, plots, and DEtools packages are the
only other Maple libraries needed for this course. While there appears to be some duplication
between the linalg and laylinalg packages, e.g., gausselim and gauss, the laylinalg commands
have been implemented so that the results returned are the same as would be obtained when the
algorithms in the text are applied by hand. In the case of gausselim and gauss, the linalg command
(gausselim) uses pivoting and the laylinalg command (gauss) does not. The results are, of course,
equivalent, but verifying this is not the primary emphasis. A complete list of commands defined in
the laylinalg package can be found in the following table. (Consult the Study Guide or Maple’s
online help worksheets for the specific syntax and examples.)

Function Description
bgauss (Backward Gauss) Uses the leftmost nonzero entry in a selected row as

the pivot, and creates zeros in the pivot column above the pivot entry
gauss Uses the leftmost nonzero entry in a selected row as the pivot, and uses

row replacement to create zeros in the pivot column, below the pivot
entry or in specified rows

gs Performs the Gram-Schmidt process on the columns of a matrix
nulbasis Computes a basis for the nullspace of a given matrix
polyroots Computes floating-point estimates of the eigenvalues of a matrix
proj Computes the orthogonal projection onto a subspace
randomint Creates a matrix with random integer entries
randomstoc Creates a random stochastic matrix
replace Performs one row replacement operation
scale Scales one row of a matrix
swap Interchanges two rows of a matrix

Many of the exercises contain specific numeric or symbolic matrices and vectors. For example,
the 3 × 4 augmented matrix in Exercise 25, Section 1.1, can be entered into a Maple worksheet by
loading the laylinalg package then issuing the Maple command: c1s1( 25 );. Electronic access to
the exercise data frees the student from the burden of manually entering (and checking) the matrices
and vectors required to solve a problem.

A Maple session can be saved as a worksheet. Maple worksheets are platform independent. That
is, regardless of the computer on which the worksheet was created (Windows, Macintosh, Linux,
UNIX, . . . ) it can be loaded into any current version of Maple (and, usually, older and newer
versions of Maple). Note that when a Maple worksheet is loaded, it is necessary to re-execute the
commands in the worksheet (even if the results from earlier use are still visible).

The library files that define the laylinalg package are not platform independent. If you experi-
ence any troubles installing this package, be sure you have the files for the correct platform. The only
other incompatibility problem is between versions of Maple. As of June 2002, the current version is
Maple 8. You should have no difficulty opening earlier worksheets, but older versions of Maple may
not be able to load current worksheets or understand the current library files.
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B EQUIPMENT

For demonstrations it is necessary to enlarge the contents of the computer screen for the entire class.
The most convenient arrangement is a projection unit hooked to a computer. Depending on the size
of your classroom, an LCD panel on an overhead projector may be equally adequate. Unless you
have a high-powered panel, the room may need to be quite dark to provide a satisfactory display. A
laptop computer is also nice since it is very portable and is not an obstacle for students to maneuver
around.

C SECURITY

Most labs fasten the computers and monitors to the tables. The lab is usually kept locked except
when a lab monitor is present. If it is a departmental lab, you may be required to keep it locked from
the outside even when you are using it.

D ADDITIONAL RESOURCES

D.1 Lay Website: http://www.laylinalgebra.com/

The Case Study for each chapter and 21 Application Projects tied to specific sections of the text
(in addition to the laylinalg package) can be downloaded from http://www.laylinalgebra.com/.
Additional information that can be accessed through this website includes review sheets, sample
exam questions, and links to additional information about the projects. A full listing of the Case
Studies and Application Projects can be found in Section 5 of this manual. Instructions for down-
loading and transferring the descriptions and related Maple worksheets can be found on WWW at
http://www.laylinalgebra.com/.

This website has a wealth of resources for students and faculty, described in the Preface of the
Text. When you are planning your Maple assignments, you should review the Case Studies and
Application Projects that are available there. The Case Studies amplify the vignettes that introduce
each chapter, and the Application Projects cover a wide variety of interesting topics. Many of these
resources involve real world data, and they may be downloaded as Maple worksheets. They have
been class tested and are an excellent source of out-of-class assignments. See Section E (page 16) in
this manual for a synopsis of each Case Study and Application Project.

D.2 Linear Algebra Module Project: http://www.aw.com/lamp/

The Linear Algebra Modules Project (LAMP) [3] contains additional projects that are appropriate
for use with Linear Algebra and Its Applications. The LAMP materials are organized into clus-
ters of individual modules to facilitate its adaptation to many different curricula, types of institu-
tions, types of students, and styles of teaching and learning. The URL for the LAMP homepage is
http://www.aw.com/lamp/.

http://www.laylinalgebra.com/
http://www.laylinalgebra.com/
http://www.laylinalgebra.com/
http://www.aw.com/lamp/
http://www.aw.com/lamp/


PURPOSES FOR COMPUTER EXERCISES 7

4 PURPOSES FOR COMPUTER EXERCISES

A POSSIBLE GOALS

As you consider your students’ interests and begin to appreciate the potential of computer exercises,
decide what goals are most appropriate for your class. Here are some possibilities:

• To teach applications

• To reinforce understanding of concepts

• To develop some computational wisdom

• To think and solve

• To explore and conjecture

• To learn something new

• To write programs to solve problems, learn algorithms, etc.

• To reduce tedious hand calculation

• To practice routine calculations

B YOUR GOALS

Your goals may or may not intersect with the list above. Technology can open many new doors
simultaneously; it is not a bad idea to sit down and identify the one or two that are most important
to you. Do not shoot for too many at once. I believe it is much better to accomplish a few goals
than to only partially achieve many goals.

Many of your students will have difficulty sorting through the abstract concepts that linear algebra
presents. It helps if they can connect new ideas with familiar concepts and skills with things they
are able to see. Technology allows students to form concrete examples of the abstraction as often as
they need to do so. Encourage them to practice with it.

Computational wisdom refers to the fact that your students are likely to be doing complex calcu-
lations when they enter the workforce. They need experience with real-world data and this may be
one of the few classes able to introduce them to some of the potential pitfalls. There is no reason to
form each exercise to demonstrate possible trouble, but an honest approach to the situation will be
appreciated. You might wish to emphasize things such as:

• The matrix algorithms that work well on computers are more sophisticated than those presented
in basic linear algebra texts. Professionally written software is almost always used in the
workplace.

• Some problems are inherently difficult to solve accurately even with the best algorithms. So,
one should never ignore warnings about poor conditioning.

• Professionally written software gives good answers to most problems, but there is almost always
some error.
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C OTHER POSSIBILITIES

David Lay and I both believe that both applications and theory are very important. He covers more
of the text in lectures and makes fewer explicit computer assignments than I do. You will have to
decide how much material you would like the students to learn from their computer work. It is all
a matter of taste and style; you are encouraged to develop a course that is appropriate for you and
your students. (See also [1].)

As you make changes, talk with faculty from other departments whose students take — or should
take — linear algebra. Let them know what you are trying to do and ask for ideas. Colleagues from
physics, engineering, biology, meteorology, and many other disciplines, have a special interest in their
students’ knowledge of linear algebra and often have good suggestions. We all would like our math
departments to teach linear algebra so effectively that other departments will want their students to
take it from us.

D SAMPLE EXAM QUESTIONS

One way to emphasize the importance of the computational work done in the projects is to include
questions on the exam that are based on the results obtained in the laboratory. If you permit students
to complete the projects in groups, such questions are also effective for determining which members
of the group actually participated in the project. Here are some sample questions seen on linear
algebra tests where computers were used during instruction — but not during the test.

1. The matrix R =


 1 2 0 −8

0 0 1 −2
0 0 0 0


 is the reduced echelon form for A =


 1 2 −3 −2

−1 −2 0 8
2 4 −5 −6


.

Write a general solution to Ax = 0. Consider the matrix transformation x → Ax; is it 1-1?
onto? Find a basis for the column space of A and a basis for the null space of A.

2. Let A =


 1 −3 −2

2 −1 3
−1 4 −5


 and b =


 10

−22
32


.

(a) Does the system Ax = b have a solution? Is the solution unique? Explain your answers.

(b) Is b in the span of the columns of A?

(c) Do the columns of A span R3? Explain your answer.

3. Consider the vectors v1 =




1
1
2
1


, v2 =




0
2
1
3


, v3 =




4
−1

1
1


, and v4 =




3
−1

1
0


 and the matrix

A = [v1 v2 v3 v4 ].

(a) Does the homogeneous system Ax = 0 have a nontrivial solution? Why or why not?

(b) Is the set {v1,v2,v3,v4} linearly dependent or linearly independent? Explain your answer.

4. Let A be a 2 × 3 matrix.

(a) If the system Ax = b is consistent, is the solution unique? Why or why not?

(b) How many pivot columns must A have to guarantee that the system Ax = b is consistent
for any choice of b in R2? Explain your answer.



PURPOSES FOR COMPUTER EXERCISES 9

(c) Suppose A has 1 pivot column. Is the system Ax = b consistent for any choice of b in
R2? Explain your answer. In particular, if your answer is “No”, explain how you know
there is a b for which Ax = b is inconsistent.

5. There is a real 3×3 matrix A for which the general solution to Ax =


 1

−2
3


 is x = c


 −3

4
1


+


 1

−2
0


. What is the general solution to Ax = 0?

6. If the columns of an n × n matrix A are linearly independent, does A−1 exist? If this inverse
exists, are its columns linearly independent? Explain.

7. Suppose A is an invertible matrix. Is AAT invertible? Why or why not?

8. Assume {v1,v2,v3,v4,v5} is linearly independent in R5. Is R5 = Span {v1,v2,v3,v4,v5}?
Why or why not?

9. Let S = {v1,v2,v3,v4} be a spanning set for a vector space V . Suppose also that the dimension
of V is 3. Can S be a basis for V ? Must S be contained in a basis for V ? Will S contain a
basis for V ? Explain each answer.

10. Is it possible that all solutions of a homogeneous system of six linear equations in eight unknowns
are linear combinations of two fixed non-zero solutions? Explain.

11. A certain population of owls feeds almost exclusively on wood rats. The following matrix
describes the evolution of the owl and rat populations from one year to the next:

O R[
0.5 0.05
0.5 0.95

]
O
R

Do not calculate. Answer each of the following in words. Include any equations that are needed;
explain what each symbol means.

(a) Suppose you want to find the number of owls and rats five years from now. What would
you calculate, why would it work, and how would you interpret the results to provide the
populations five years in the future?

(b) How could you use eigenvalues and eigenvectors to describe the long-term behavior of
these two populations? Include any equations you need to discuss, and say what all your
symbols mean.

12. If the stock market went up today, historical data shows that tomorrow it has a 65% chance of
going up, a 10% chance of staying unchanged, and a 25% chance of going down. If the market
is unchanged today, tomorrow it has a 20% chance of being unchanged, a 40% chance of going
up, and a 40% chance of going down. If the market goes down today, tomorrow it has a 25%
chance of going up, a 10% chance of being unchanged, and a 65% chance of going down.

(a) If the market went up today, what is the probability that the market is unchanged the
day after tomorrow?
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(b) Over the course of many days, what percentage of the time do you expect the market to
go up? Explain your answer.

13. We stored a certain 3 × 3 matrix A in Maple, did several row operations to A, and ended up
with


 1.000 1.000 −1.000

0 0.4141 1.000
0 0 −0.000




Based on the information given, do you think A is invertible? Explain your answer. If you
are not sure, describe additional information that you need and how you would obtain that
information.

14. Let A be a square matrix. Give an example to show that A and 2A do not usually have the
same eigenvalues. Are the eigenvectors of A and 2A always the same? Explain.

15. Let A be the n × n matrix in which every entry is 1. Justify your answers to the following
statements and questions.

(a) There are two distinct eigenvalues of A. What are they? Why?

(b) What is dim(Nul(A))? Why?

(c) What is the characteristic polynomial of A? Why?

16. Suppose A is a 7 × 7 matrix with four distinct eigenvalues.

(a) Is A diagonalizable? Why or why not? (Do you have enough information to answer this
question?)

(b) Suppose the information above is appended with the fact that one of the eigenvalues has
a three-dimensional eigenspace. Is A diagonalizable? Why or why not? (Do you have
enough information to answer this question?)

17. Let A =

[
16 −4
−4 1

]
and V =

[
1 −4
4 1

]
. Verify that the columns of V are eigenvectors for A.

Show your work. Find an orthogonal matrix Q and a diagonal matrix D such that A = QDQT .

18. Consider A =




2 1 1
3 3 1
0 1 1
5 3 1


 and b =




7
−3

5
3


.

(a) Show that Ax = b has no solution.

(b) Find a least squares solution to Ax = b.

19. Suppose that two partitioned matrices satisfy

[
I X
0 Y

] [
I B
0 D

]
=

[
I 0
0 I

]
, where X, Y ,

B, D, and the identity matrix (I) are all n× n. Find formulas for X and Y in terms of B and
D.

Explicitly state any additional assumptions that are needed on the matrices B and D.
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20. The diary of a Maple session with most Maple commands omitted is reprinted below. Fill in
each blank with the appropriate Maple command that produces the listed output.

> restart;
> with( linalg ):
> with( laylinalg ):
>
> M1 := matrix( [[ 0, 3, -6, 6, 4, -5 ],
> [ 3, -7, 8, -5, 8, 9 ],
> [ 3, -9, 12, -9, 6, 15 ]] );

[0 3 -6 6 4 -5]
[ ]

M1 := [3 -7 8 -5 8 9]
[ ]
[3 -9 12 -9 6 15]

> M2 := __________________________________ ;

[3 -9 12 -9 6 15]
[ ]

M2 := [3 -7 8 -5 8 9]
[ ]
[0 3 -6 6 4 -5]

> M3 := __________________________________ ;

[3 -9 12 -9 6 15]
[ ]

M3 := [0 2 -4 4 2 -6]
[ ]
[0 3 -6 6 4 -5]

> M4 := __________________________________ ;

[3 -9 12 -9 6 15]
[ ]

M4 := [0 1 -2 2 1 -3]
[ ]
[0 0 0 0 1 4]

> M5 := __________________________________ ;

[3 -9 12 -9 6 15]
[ ]

M5 := [0 1 -2 2 1 -3]
[ ]
[0 0 0 0 1 4]
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5 COMPUTER PROJECTS

A GENERAL INFORMATION

The projects in this manual are based on material in Linear Algebra and Its Applications and on
contributions from various workshops. They enrich and expand the text material and are independent
of each other. They can be used as assignments or as extra credit. You may copy and use them as
written, or adapt them to suit your own situation or interests. Time depends mostly on how much
independent reading students must do. So, their work will go faster if you lecture a little on the
material before they begin a project, but any of these can be “read and do” assignments.

Think about how strict you want deadlines to be and allow time for lab availability. Remember,
the equipment does not always behave, and misjudging difficulty is par for the course. In addition,
some students may have access to the computer lab only on certain days, etc.

B PARTNERS

Consider having your students find partners for the computer work. After a couple of days, you may
have to step in and help pair those who have not found partners yet. The computer projects generally
go much more smoothly when students work together. Have the partners turn in one project with
both names. This will reduce the workload on you, as well as give the students experience working
with others. Tell them not to hesitate to inform you if their partner is not keeping their end of the
bargain. Of course, if a student has a strong preference for working alone, you might want to allow
that.

C GRADING

You will have to decide on weighting for computer projects, but a good guideline is about double
that of a homework assignment that requires some writing. Consider more weight for longer projects.
If you are assigning a computer project once a week, then this will also need to be considered when
determining final grades.

In the Instructor’s HP-48G Manual, Tom Polaski provides a copy of the grading sheet he uses
for his classes. A copy of this sheet, translated for use with Maple, can be found in Figure 1.
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Instructions for Students

• You are expected to use Maple to complete this project. The general objective of this project is
to explore topics discussed in class, to deepen your understanding of the computations involved
in linear algebra, and to gain an appreciation for the diverse applications of linear algebra. In
some cases you will be expected to read some background materials to learn about topics not
directly discussed in class. You will also develop your mathematical writing skills.

• The due date for the project will be announced. Points will be deducted for late work. Work
turned in one day late will receive 0 points in the “on time” row of the grading sheet, work
turned in two days late will receive -1 points in the “on time” row. No work will be accepted
more than two days after the due date.

• You may work with other students and in groups to develop the mathematics, but your final
work must be individual and not copied. Specific questions concerning the projects are best
answered by the instructor.

• A copy of the following grading sheet with the score clearly indicated will be returned to you
when your project has been graded. The scores indicate how the goals are translated into point
values.

Grading Sheet for Maple Projects

Name:

Points Points
Possible Grading Criterion Awarded

11 Correct mathematics
3 Appropriate mathematical notation
2 Prose is clearly written
1 Prose is included appropriately
1 Spelling and grammar
1 Neat and organized presentation
1 Report turned in on time (see above)

20 Total Points

Additional Comments

Figure 1: Sample cover page for student projects includes some general comments and guidelines and
a grading sheet that shows the point distribution. Note that these instructions allow for group work
but require individual final reports.
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D OVERVIEW OF MAPLE PROJECTS

Project 1 — Introduction to Maple

This project is intended for students with no prior Maple experience. The purpose of this project
is to help students become comfortable with the Maple worksheet interface, online help, and the
laylinalg package. The mathematical content is minimal.

Project 2 — Introduction to Linear Algebra with Maple

This project introduces the linalg and laylinalg packages. Some of the questions have the students
evaluate a given expression by hand and with Maple. Students also have an opportunity to explore
properties of matrix algebra. The prerequisite is Section 1.5.

Project 3 — Exchange Economy and Homogeneous Systems

This project is self-contained, but is related to Example 1 in Section 1.6. Students can read this
background information on their own. Note the discussion of floating-point and exact arithmetic.
Students need to be aware of the potential problems that can arise with floating-point arithmetic.
This issue deserves some attention in class – but not too much.

Project 4 — Rank and Linear Independence

A computational definition of the rank of a matrix is provided at the beginning of this project.
Otherwise, this project requires only Section 1.7. Students practice applying this definition and its
relation to linear independence.

Project 5 — Population Migration

Students like linear dynamical systems and plotting. This project is essentially Exercise 11 in Sec-
tion 1.10 with some graphical additions. Use Example 3 in Section 1.10 to introduce the project. If
you want to go further, ask the students what they expect to happen if this pattern of migration
continues indefinitely. Does everyone move to the suburbs? (Why?)

Project 6 — Initial Analysis of the Spotted Owl

This is very similar to the Population Migration project. Students will need to read the Opening
Example for Chapter 5, but otherwise can be assigned along with Section 1.10. Be sure to mention
that the full analysis of this problem will be completed after eigenvalues have been introduced. (See
also Maple Project: Eigenvalue Analysis of the Spotted Owl and Case Study 5: Dynamical Systems
and Spotted Owls.)

Project 7 — The Adjacency Matrix of a Graph

This project is a detailed examination of matrix multiplication (Section 2.1) and its applicability in
graph theory. While the mathematics is simple, the application is interesting. Towards the end of
the project, students are asked to create a definition — a new, but useful, type of question for most
students. A first attempt at a definition is: “A dangerous worker is any worker with the highest level
one contact.” A difficulty with this definition is that contact level relates two workers. An improved
definition is “A dangerous worker is any worker with the highest total level one contact with all other
workers.” With this definition, workers 1, 4, and 6 are most dangerous (with total level one contact
equal to 7). Some students may notice that worker 6 is the only one to be in level two contact with
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all other workers. Mentioning this may help other students pay more attention to details. (See also
the Application Project for Section 2.1: Adjacency Matrices.)

Project 8 — An Economy with an Open Sector

This project begins by solving Exercise 13 in Section 2.6. It then asks students to look at the structure
of the problem in more detail. Question 3 is designed to test students’ understanding of Theorem 11
(Section 2.6). This connection can be provided as a hint, but resist the urge to give away too much
information. (See also Case Study 1: Linear Models in Economics.)

Project 9 — Curve Fitting

This project describes how linear algebra can be used to find an interpolating polynomial to data.
Vandermonde matrices are mentioned, but only to guarantee that the system is invertible. (Vander-
monde matrices appear in Exercise 11 in the Supplementary Exercises for Chapter 2). Students like
this project because they get to generate their own data. The question about relative maxima and
minima should not be ignored — it is a good calculus review. As far as this project is concerned, the
interp command should be used only to check the answers obtained earlier in the project. (See also
the Application Projects for Section 1.2: Interpolating Polynomials and Splines and for Section 4.1:
Hill Substitution Ciphers.)

Project 10 — Temperature Distributions

Students use a characterization of the steady-state temperature (average of the temperatures at
the four neighboring nodes) to see how steady-state temperatures can be computed using linear
algebra. Other temperature distribution problems in the text can be found in Exercises 33 and 34
for Section 1.1 and Exercise 31 for Section 2.5. (See also the Application Project for Section 2.5:
Equilibrium Temperature Distributions.)

Project 11 — Manipulating Matrices with Maple

The project introduces the family of square matrices Mn = [mij ], where mij = max(i, j). Based
on selected (small) examples, students are asked to formulate conjectures for the formulas for the
determinant (Section 3.2) and inverse (Section 2.2) of Mn for all positive integers n. This is much
simpler than it sounds; students have a lot of fun with this one.

Project 12 — Markov Chains and Long-Range Predictions

Markov chains are introduced in Section 4.9, but this project can be assigned after completing
Section 2.1. Only terminology is needed from Section 4.9. With appropriate guidance, this project
can be a good motivation for eigenvalues. Be sure to allow ample time to complete this project.

Project 13 — Real and Complex Eigenvalues

This project can be a substitute for a formal discussion of Section 5.5. In particular, this project
suggests the fact that complex eigenvalues and eigenvalues appear in conjugate pairs. This project
can be done very quickly; only Question 2 requires much time.
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Project 14 — Eigenvalue Analysis of the Spotted Owl

This is the continuation of the Maple Project: Initial Analysis of the Spotted Owl. The first three
questions are fairly self-explanatory. Eigenvalues and diagonalization are emphasized. The plots help
bring everything together. The extra credit is much more involved. The symbolic capabilities of
Maple can be used, but most of the algebra is simple enough to do by hand. The logical connection
between the various facts is what students find difficult. Explain the hints as needed. Be sure to
allow sufficient time for everyone to at least attempt the extra credit. (The extra credit problem was
created by Andre Weideman and is used with his permission.)

Project 15 — The Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem is stated. The students are asked to verify the theorem for randomly-
selected matrices of various sizes. The reference for this project is Exercises 5–7 in the Supplementary
Exercises for Chapter 5). This project can be assigned anytime after Section 5.2 has been discussed.

Project 16 — Pseudo-Inverse of a Matrix

This project can be used as an application of the Invertible Matrix Theorem and as an introduction
to the Moore-Penrose inverse (in Section 7.4). The pseudo-inverse is shown to be theoretically
useful in least-squares problems (as presented in Section 6.5). This is demonstrated numerically and
graphically for a specific example.

E OVERVIEW OF CASE STUDIES AND APPLICATION PROJECTS

The Case Studies and Application Projects are available to students and instructors on the WWW
at http://www.laylinalgebra.com/. Each Case Study and each Application Project is available in
a separate Maple worksheet. Each worksheet contains all necessary data. Solutions for the exercises
are available for instructors.

E.1 Case Studies

Chapter 1: Linear Models in Economics

This case study examines Leontief’s “exchange model” and shows systems of linear equations can
model an economy. Real economic data is used.

Chapter 2: Computer Graphics in Automotive Design

This case study explores the effective two-dimensional rendering of a three-dimensional image. Per-
spective projections, rotations, and zooming are discussed and applied to wireframe data derived
from a 1983 Toyota Corolla.

Chapter 3: Determinants in Analytic Geometry

This case study examines how determinants may be used to find the equations for lines, circles, conic
sections, planes, spheres, and quadric surfaces.

http://www.laylinalgebra.com/
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Chapter 4: Space Flight and Control Systems

This case study studies a mathematical model for engineering control systems. The notion of rank
is used to determine whether a system is controllable, and a system of linear equations is solved to
determine which inputs into the system yield a desired output.

Chapter 5: Dynamical Systems and Spotted Owls

This case study examines how eigenvalues and eigenvectors can be used to study the change in a
population over time. Real data from populations of spotted owls, blue whales, and plants (speckled
alders) is studied, and the notion of a sustainable harvest is introduced.

Chapter 6: Least-Squares Solutions

This case study uses the method of least squares to fit linear, polynomial, and sinusoidal curves to
real data. This data includes performance in the Olympic men’s 400-meter run, climatic data from
Charlotte, NC, and tidal data from the Cape Hatteras pier.

Chapter 7: The Singular Value Decomposition and Image Processing

This case study examines how the singular value decomposition of a matrix may be used to reduce
the amount of data needed to store a reasonable image of a graphical object. Two types of images
are considered: three-dimensional surfaces and black-and-white two-dimensional pictures.

E.2 Application Projects

Section 1.2: Interpolating Polynomials

This set of exercises shows how a system of linear equations may be used to fit a polynomial through
a set of data points. Polynomial curves are fit to actual acceleration data obtained from Car and
Driver magazine.

Section 1.2 Splines

This set of exercises shows how a system of linear equations may be used to fit a piecewise-polynomial
curve through a set of data points. Cubic splines are fit to actual acceleration data obtained from
Car and Driver magazine.

Section 1.10 Diet Problems

This set of exercises provides examples of vector equations that result from balancing nutrients in a
diet. Real data from the USDA website are used.

Section 1.10 Traffic Flow Problems

This set of exercises shows how a system of linear equations may be used to model the flow of
traffic through a network. Real data from the Seattle Transportation Management Division and the
Charlotte–Mecklenburg (NC) Utilities Department are used in this exploration.

Section 1.10 Loop Currents

This set of exercises provides further and larger examples involving loop currents, and reinforces the
text’s development of this topic.
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Section 2.1 Adjacency Matrices

This set of exercises studies the adjacency matrix of a graph. The real route maps of several airlines
help to motivate graphic-theoretic questions which may be answered with adjacency matrices.

Section 2.1 Dominance Matrices

This set of exercises applies matrices to questions concerning competition between individuals and
groups. The problem of ordering teams within a football conference is discussed, and real data from
several collegiate and professional football conferences are used.

Section 2.1 Other Matrix Products

This set of exercises introduces and explores the properties of two matrix products: the Jordan
product and the commutator product.

Section 2.3 Condition Numbers

This set of exercises motivates the definition of the condition number of a matrix, and explores how
its value affects the accuracy of solutions to a system of linear equations.

Section 2.5 The LU and QR Factorizations

This set of exercises shows how to use an LU factorization to perform a QR factorization. (The QR
factorization is introduced in Exercise 24 of this Section 2.5.)

Section 2.5 Equilibrium Temperature Distributions

This set of exercises discusses the problem of determining the equilibrium temperature of a thin plate.
An appropriate system of equations is derived, and is solved both by finding a matrix inverse and by
an LU factorization.

Section 2.6 The Leontief Input-Output Model

This set of exercises provides three real data examples of the Leontief Input-Output Model discussed
in the text. American economic data from the 1940’s and the 1990’s is studied.

Section 3.3 The Jacobian and Change of Variables

The Jacobian is derived and applied to the change of variables in double and triple integrals.
This set of exercises is intended for students who have completed a course in multivariate calculus.

Section 4.1 Hill Substitution Ciphers

This set of exercises studies how matrices may be used to encode and decode messages. Matrix
arithmetic modulo 26 is used.

Section 4.6 Error-Detecting and Error-Correcting Codes

This set of exercises studies the construction of methods for detecting and correcting errors made in
the transmission of encoded messages. The United States Postal Service bar code is studied as an
error-detecting code, and the error-correcting Hamming (7,4) code is also studied.
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Section 5.3 The Fibonacci Sequence and Generalizations

This set of exercises introduces the Fibonacci sequence and Lucas sequences. Eigenvalues, eigen-
vectors and diagonalization are used to derive general formulas for an arbitrary element in these
sequences.

Section 5.4 Integration by Parts

This set of exercises shows how the matrix of a linear transformation relative to a cleverly chosen
basis may be used to find antiderivatives usually found using integration by parts.

Section 6.4 The QR Method for Finding Eigenvalues

This set of exercises shows how the QR factorization of a matrix may be used to calculate its
eigenvalues. Two methods for performing this action are considered and compared.

Section 6.4 Finding Roots of Polynomials with Eigenvalues

This set of exercises describes how the real roots of a polynomial can be found by finding the
eigenvalues of its companion matrix. The QR method is then employed to find these eigenvalues.

Section 7.2 Conic Sections and Quadric Surfaces

This set of exercises shows how quadratic forms and the Principal Axes Theorem may be used to
classify conic sections and quadric surfaces.

Section 7.2 Extrema for Functions of Several Variables

Quadratic forms are used to investigate relative maximum and minimum values of functions of several
variables. Results are derived in terms of the eigenvalues of the Hessian matrix.
This set of exercises is intended for students who have completed a course in multivariate calculus.
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7 MAPLE PROJECTS

The following sixteen (16) projects are provided for you to use as is or to modify to fit the specific
needs and objectives for your course. Each project lists prerequisite sections of the text and the Maple
commands needed to complete the project. A summary of each project can be found in Section 5.D
of this document.

Each project has been designed to provide students with additional practice applying the concepts
introduced in the text while exposing them to new applications or theoretical results. In general,
students should be encouraged to provide responses to the questions in the space provided. However,
I do permit students to submit well-labeled Maple worksheets.
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Maple Project: Introduction to Maple NameMaple Project: Introduction to Maple NameMaple Project: Introduction to Maple Name

Purpose To begin to learn about Maple as a mathematical tool for linear
algebra and Maple’s online help system.

Prerequisites Elementary Algebra
Maple commands used help and ?

Notes:
• It often helps to do computer work with a partner. Help each other locate and fix typographical

errors, discuss Maple’s response, and ask and answer each other questions. If further experi-
ments are needed before answering the questions, feel free to do so.

1. (a) Start Maple, then for each of the following expressions, enter the expression in a separate
input region, execute it (by pressing the Enter key), and record Maple’s response to your
command. If the response is too long, you may summarize Maple’s response. Be sure your
description contains enough information for you to understand the result when you look
at these answers later in the course.
3 * 4;

3 * x;

a * b ^ 2;

(a * b) ^ 2;

(b) Explain the different results for a * b ^ 2; and (a * b) ^2;.

(c) What is wrong with the following command: 3 x^2 + 2 x - 5;?

(d) How would you enter the polynomial 3x2 + 2x − 5 in Maple?

page 1 of 2page 1 of 2page 1 of 2



2. (a) This set of commands will introduce you to Maple’s online help facility. There is a
help worksheet for every Maple command (including all commands in the linalg and
laylinalg packages). Each help worksheet contains a full description of the commands
arguments and output and includes several examples to illustrate its usage. Read the
computer responses to the following instructions, but you need not recored the output. If
you want to take notes for your own purposes, use a separate sheet of paper. Do not be
concerned if a lot of the information in the help worksheets does not make sense (yet).

i. help( linalg );

ii. ?matrix

iii. ?laylinalg

iv. ?replace

v. ?scale

vi. ?swap

Notes:
• When you are done with a Help window, click its close box in the upper right corner.
• The ? “command” is one of the few Maple commands that is not terminated with a

semicolon or colon.
• Type ?help for some additional information about Maple’s online help facility.

(b) Give a brief description of the Maple online help facility and how to access it.

(c) Explain how the Maple help system can be accessed via the Help pull-down menu.

(d) What command needs to be executed before using a command from the laylinalg pack-
age?

(e) Give the command that lists all problems in Section 1.1 for which there is Maple data.
List the problems in Section 1.2 for which data is provided. (If necessary, consult the
information in the online help for laylinalg.)

Maple Project page 2 of 2 Introduction to MapleMaple Project page 2 of 2 Introduction to MapleMaple Project page 2 of 2 Introduction to Maple



Maple Project: Introduction to Linear Algebra with Maple NameMaple Project: Introduction to Linear Algebra with Maple NameMaple Project: Introduction to Linear Algebra with Maple Name

Purpose To learn about the basic linear algebra commands in the linalg and
laylinalg packages.

Prerequisites Section 1.5
Maple commands used evalm, restart, and with;

matrix and vector from the linalg package.

Prior to doing any linear algebra with Maple, you should load the linalg package. The laylinalg
package contains several additional commands and data for a large number of exercises in the text-
book; it should also be loaded in each Maple worksheet that you create for this course. It is also
highly recommended that you begin every worksheet with the restart; command. This command
removes all assignments and results from Maple’s memory and restarts your Maple session. Thus,
the first commands entered in every Maple worksheet should be:

restart;
with( linalg );
with( laylinalg );

Notes:
• To remove an assignment to a variable, say, x, and make x into a variable again, use the

command: unassign( ’x’ );.

• Be sure you use the single quote (’), not the back quote (‘).

1. (a) For each of the following Maple commands, enter and execute the command, then record
the results in the boxes provided. Remember that each command must end with a semi-
colon or colon and that pressing the Enter key executes all commands in the current
execution group. (For more about execution groups and the worksheet interface, see
?worksheet.)
restart;

with(linalg);

with( laylinalg );

M := matrix( [ [1, 2, 3], [4, 5, 6] ] );
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M;

evalm(M);

N := matrix( 2, 3, [1, 2, 3, 4, 5, 6] );

evalm(N);

N[2,3] := 7;

evalm(N);

v := vector( [1, 2, 3, 1] );

v[4];

v;

evalm(v);
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Maple Project: Exchange Economy and Homogeneous Systems NameMaple Project: Exchange Economy and Homogeneous Systems NameMaple Project: Exchange Economy and Homogeneous Systems Name

Purpose Find the equilibrium price for an exchange model economy by solving
a homogeneous system.

Prerequisites Section 1.6
Maple commands used convert and map;

augment, diag, and rref from the linalg package;
bgauss, econdat, gauss, and scale from the laylinalg package.

1. Let T =




.20 .17 .25 .20 .10

.25 .20 .10 .30 0

.05 .20 .10 .15 .10

.10 .28 .40 .20 0

.40 .15 .15 .15 .80


, x =




x1

x2

x3

x4

x5


.

Consider the system of linear equations Tx = x.

(a) Without using Maple, write out the five equations in this system.

(b) Collect terms in your equations to get a homogeneous linear system, and write out the
five new equations:
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2. Let Bx = 0 denote the homogeneous system you obtained in Question 1(b), and calculate the
reduced echelon form of A = [B 0]. Record the reduced form in the table provided at the end
of this question.

The following Maple commands load the matrix T from the laylinalg package, create the
matrix B by subtracting the 5×5 identity matrix from T (see Section 2.1), and create the
augmented matrix A:

econdat( ); # load T from the laylinalg package
B := evalm( diag( 1 $ 5 ) - T ); # matrix for homogeneous system: B=I-T
A := augment( B, vector(5,0) ); # augmented matrix A = [B 0]

(a) Use bgauss, gauss, and scale to obtain the reduced echelon form of the augmented
matrix.
Notes:
• When you finish the forward elimination the (5,5) entry in the reduced matrix should

be very small. In fact, it is so small that you will not be surprised to learn that this
entry should be zero. In order to successfully complete this project you need to either
remember that this number is really zero or physically put a zero in this location in
the matrix. Recall that to change the (5, 5) entry of a matrix M, use the command:

M[5,5] := 0; # replace one entry of a matrix
(b) The problems associated with floating-point arithmetic can be avoided by converting all

floating-point numbers in the original matrix to fractions (rational numbers). The simplest
way to do this is with the command:

Arat := map( convert, A, rational ); # convert floating-point to fractions

A: original A: ref (floating point) A: ref (rational)
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3. Read about Leontief Economic Models in Section 1.6 of the text. Now consider an exchange
model economy which has five sectors: Chemicals, Metals, Fuels, Power, and Agriculture; and
assume the matrix T in Question 1 above gives an exchange table for this economy as follows:

T =

C M F P A


.20 .17 .25 .20 .10

.25 .20 .10 .30 0

.05 .20 .10 .15 .10

.10 .28 .40 .20 0

.40 .15 .15 .15 .80




C
M
F
P
A

(a) Verify that each column of T sums to one. This indicates that all output of each sector
is distributed among the five sectors, as should be the case in an exchange economy. The
economy is in equilibrium when the system of equations Tx = x is satisfied. As you saw
in Question 1, this is equivalent to saying that the system Bx = 0, with B = I − T, is
satisfied.

(b) Let xC represent the value of the output of Chemicals, xM the value of the output of Metals,
etc. Using the reduced echelon form of [B 0] from Question 2, write the general solution
for Tx = x:




xC

xM

xF

xP

xA


 =

(c) Suppose that the economy described above is in equilibrium and xA = 100 million dollars.
Calculate the values of the outputs of the other sectors and record this particular solution
for the system Tx = x:




xC

xM

xF

xP

xA


 =

(d) Consider the matrices T and B created above. As previously observed, each column of T
sums to one. Consider how you obtained B from T and explain why each column of B
must sum to zero.

Extra Credit Let B be any matrix of any shape, with the property that each column of B sums to zero.
Explain why the reduced echelon form of B must have a row of zeros.
Use appropriate linear algebra terminology whenever possible. Do not attempt to cram your
explanation on the bottom of this page; use the back of this page or attach a separate page.
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No content or questions on this page. Use this space for additional work if needed.
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Maple Project: Rank and Linear Independence NameMaple Project: Rank and Linear Independence NameMaple Project: Rank and Linear Independence Name

Purpose To define rank and learn its connection with linear independence.
Prerequisites Section 1.7
Maple commands used rank, rref, and transpose from the linalg package;

indat and randomint from the laylinalg package

Definition: The rank of a matrix A is defined to be the number of pivot columns in A.

One way to find rank is to calculate the reduced echelon form and then count the number of pivot
columns. A quicker way is to use Maple’s rank function.

Example: Suppose the matrix A =




1 2 3 4
4 5 6 7
6 9 12 15
1 1 1 1


 is defined in your Maple worksheet. When

the command rref( A ); is executed, the result is




1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0


. There are two pivot

columns in the reduced matrix so the rank of A is 2. To verify this conclusion, check the result
when the command rank( A ); is executed.

Notes:

• Recall that D is a reserved name in Maple. To avoid problems, the matrix D is stored under
the name DD.

1. Use the two methods described above to find the rank of each of the following four matrices.
For each matrix, record the reduced echelon form, circle each pivot column, and record the
rank in the table on the next page. To get the matrices, use the laylinalg command indat(
);.

B =


 1 2 4

1 −1 1
0 1 2


 C =


 1 2 −3 0

1 2 1 1
3 6 −5 1


 D =




1 2 3
4 5 6
7 8 9
5 7 9


 E =




1 1 1 1 4 1
1 2 0 4 7 6
1 3 −1 10 13 21
1 4 −2 20 23 56
1 5 −3 35 38 126
1 6 −4 56 59 252
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Matrix B C D, i.e., DD

Reduced
echelon form,
with pivot
columns
circled

Rank

Matrix E

Reduced
echelon form,
with pivot
columns
circled

Rank

2. Read the discussion of linear independence in Section 1.7. Write the definition of a linearly
independent set of vectors.
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3. Let A = [v1 v2 . . . vk] be a matrix whose columns are v1, v2, . . . , vk. Explain why the
following are logically equivalent:

• The set of vectors {v1, v2, . . . , vk} is linearly independent.

• The rank of A is k.

4. Explain why the set of columns of A could not be linearly independent if A has more columns
than rows.

5. Examine the matrices B, C, D, and E in Question 1. For which of these matrices is the set of
its columns a linearly independent set?
This question should be answered without the use of Maple.
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6. Verify each of the following conclusions by hand or with Maple. Explain your method in the
space provided.

(a) Let v1 = (2, 3, 5, 1), v2 = (1, 1,−2, 9), and v3 = (3, 4, 0, 0). Then {v1,v2, v3} is linearly

independent since the rank of




2 1 3
3 1 4
5 −2 0
1 9 0


 is 3.

(b) The set of vectors







1
4
6
1


 ,




2
5
9

11


 ,




3
6

12
1


 ,




4
7

15
1







is not a linearly independent set.

The matrix with these columns has rank 2.

(c) The set







1
4
6
1


 ,




2
5
9

11


 ,




4
6

12
1


 ,




4
6

15
1







is linearly independent because the rank of




1 4 6 1
2 5 9 11
4 6 12 1
4 6 15 1


 is 4.
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Maple Project: Population Migration NameMaple Project: Population Migration NameMaple Project: Population Migration Name

Purpose To study the population movement described in Exercise 11, Sec-
tion 1.10 in more detail.

Prerequisites Section 1.10
Maple commands used for .. do .. end do, plot, and zip;

augment from the linalg package;
c1s10 from the laylinalg package;
display from the plots package.

In preparation for this project, read Exercise 11 from Section 1.10. This describes a simple
migration model which assumes people just move around and the total population of the US remains
constant. If M is the migration matrix and x is a vector whose components are the number of people
in each area this year, then Mx is the number in each area next year.

1. To obtain the data for this exercise, load the laylinalg package into your current Maple
session with the command with( laylinalg ); then load the specific matrices for Exercise 11
in Section 1.9 with the command c1s10(11);.

(a) Record the values of M and x0.

(b) Describe the calculations needed to produce the entries in M from the information in this
exercise.
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2. Study the migration model described above. Use the following Maple commands to calculate
the population in California and in the rest of the US for the years 1990 - 2003 and store that
data as the columns of a matrix P.

x := x0/10.^6 : # rescale population data to millions
P := evalm( x ): # put 1990 data in first column of P
for i from 1991 to 2003 do # for each year ...

x := evalm( M &* x ); # – update populations
P := augment( P, x ); # – add new column to P

end do:
evalm( P ); # let’s see the final result

Record the data from P in the table below. Round each number to 5 digits.

Population (in millions) assuming no external migration
Year 1990 1991 1992 1993 1994 1995 1996

California

Rest of US

Year 1997 1998 1999 2000 2001 2002 2003

California

Rest of US

Use the following Maple commands to plot the population in California, and the population in
the rest of the US, versus years, on the same graph. Include a printed copy of your graph with
this project.

with(plots): # load plots package
yr := vector( [ $ 1990 .. 2003)] ); # vector [1990 1991 ... 2003]
ptCA := zip( (x, y) -> [x, y], yr, row(P, 1) ); # pts for California pop
ptUS := zip( (x, y) -> [x, y], yr, row(P, 2) ); # pts for rest-of-US pop
plotCA := plot(ptCA, color=red): # plot of California pop
plotUS := plot(ptUS, color=blue): # plot of rest-of-US pop
display( [ plotCA, plotUS ], # display 2 plots in 1 graph
title="CA and US pop (in millions)" );
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3. Instead of assuming the total population is constant, suppose that the population in California
and the rest of the US is actually increasing each year because of immigration, say 0.1 million
people into California and 2 million into the rest of the US each year. Then if data is expressed

in millions and x is the population vector this year, Mx +

[
0.1
2.0

]
will yield be the population

vector for the next year.

Use the next set of Maple commands to calculate the new population predictions for 1990–2003.

d := vector( 2, [ 0.1, 2.0 ] ): # annual immigration (in millions)
x := x0/10.^6 : # rescale population data to millions
P := evalm( x ): # put 1990 data in first column of P
for i from 1991 to 2003 do # for each year ...

x := evalm( M &* x + d); # – update populations
P := augment( P, x ); # – add new column to P

end do:
evalm( P ); # let’s see the final result

Record the data from P in the table below. Round each number to 5 digits.

Population (in millions) assuming external migration
Year 1990 1991 1992 1993 1994 1995 1996

California

Rest of US

Year 1997 1998 1999 2000 2001 2002 2003

California

Rest of US

Create a plot showing the annual populations of California and the rest of the US for 1990 –
2000. Include a printed copy of this graph with this project. (Since the plot is likely to be only
a small part of your Maple worksheet, you may find it more convenient to select and copy this
graphics region to a new worksheet and then print the new, smaller, worksheet.)
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No content or questions on this page. Use this space for additional work if needed.
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Maple Project: Initial Analysis of the Spotted Owl NameMaple Project: Initial Analysis of the Spotted Owl NameMaple Project: Initial Analysis of the Spotted Owl Name

Purpose To study the owl population with several survival rates for juveniles.
Prerequisites Section 1.10 (and the Opening Example for Chapter 5)
Maple commands used add, for .. do .. end do, plot, and zip;

augment, col, and row from the linalg package;
owldat from the laylinalg package;
display from the plots package.

The background information for this project can be found in the Opening Example to Chapter 5.
The fundamental idea is that spotted owls have three distinct life stages: first year (juvenile), second
year (subadult), and third year and beyond (adult) where jk, sk and ak denote the number of owls

in each stage in year k. Let xk =


 jk

sk

ak


 and define the transition matrix A =


 0 0 0.33

t 0 0
0 0.71 0.94


.

where the parameter t is the juvenile survival rate. Then xk+1 = Axk. The text reports that the
population will eventually die out if = 0.18 but not if t = 0.30. The purpose of this project is to
investigate this claim.

1. Let t = 0.18 and suppose there are 100 owls in each life stage in 1997. Load the laylinalg
package, then use the command owldat(); to load the transition matrix, A, (with t = 0.18)
and the initial population vector, x0, in 1997.

(a) The population in each stage and the total population in 1998 can be found with the
following Maple commands:

x := x0; # initial population in 1997
x := evalm( A &* x ); # next year’s populations
total := add( x[i], i=1..3 ); # total population

Record the 1998 populations, rounded to the nearest integer, in the table at the top of
the next page. Repeat the last two lines two more times to obtain the 1999 and 2000
populations. Record all results in the table below.

Spotted owl population when the juvenile survival rate is t = 0.18
Year 1997 1998 1999 2000 2010 2020

Juvenile

Subadult

Adult

Total
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(b) Continuing to execute these lines manually becomes tiresome (and it can be difficult to
keep track of the years as well). Instead, use the following repetition loop to calculate the
annual population vectors through 2020 and store the results in the matrix P.

x := x0; # initial population in 1997
P := evalm( x ): # put 1997 data in first column of P
for i from 1998 to 2020 do # for each year ...

x := evalm( A &* x ); # – update populations
P := augment( P, x ); # – add new column to P

end do:
evalm( P ); # let’s see the final result

A simple way to select the data needed to fill in the table is illustrated below:

T := augment( col(P,1..4), col(P,14), col(P,24) ); # select cols of P
vector( 6, i -> add( T(j,i), j=1..3 ) ); # total population

(c) The next set of Maple commands prepares and plots these results in a single graph. Include
this graph with your project.

with(plots): # load plots package
yr := vector( [ $ 1997 .. 2020)] ):
ptJ := zip( (x, y) -> [x, y], yr, row(P, 1) ): # points for juveniles
ptS := zip( (x, y) -> [x, y], yr, row(P, 2) ): # points for subadults
ptA := zip( (x, y) -> [x, y], yr, row(P, 3) ): # points for adults

plotJ := plot(ptJ, color=red): # plot of juveniles
plotS := plot(ptS, color=blue): # plot of subadults
plotA := plot(ptA, color=green): # plot of adults
display( [ plotJ, plotS, plotA ],
title="Spotted owl populations with t=0.18" );

2. Repeat Question 1 with a juvenile survival rate of t = 0.30. To change the value of t in the
transition matrix A, use the command: A[2,1] := 0.30;.

Spotted owl population when the juvenile survival rate is t = 0.30
Year 1997 1998 1999 2000 2010 2020

Juvenile

Subadult

Adult

Total
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3. Create separate plots for the three spotted owl subpopulations when the juvenile survival rate
is t = 0.20, t = 0.24, t = 0.26, and t = 0.28.

Summarize how the three populations (and the total population) change between 1997 and
2020 for the different values of the juvenile survival rate. For what values of t do you think the
owl will survive (forever)?
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No content or questions on this page. Use this space for additional work if needed.
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Maple Project: The Adjacency Matrix of a Graph NameMaple Project: The Adjacency Matrix of a Graph NameMaple Project: The Adjacency Matrix of a Graph Name

Purpose To learn about graphs and adjacency matrices;
to see one connection between graph theory and linear algebra.

Prerequisites Section 2.1
Maple commands used adjdat from the laylinalg package.

Definitions: A graph is a finite set of objects called nodes, together with some paths between some
of the nodes, as illustrated below. A path of length one is a path that directly connects one
node to another. A path of length k is a path made up of k consecutive paths of length one.
The same length one path can appear more than once in a longer path; for example, 1–2–1 is
a path of length two from node 1 to itself in the example below.

When the nodes are numbered from 1 to n, the adjacency matrix A of the graph is defined by
letting aij = 1 if there is a path of length one, i.e., a direct path, between vertices i and j and aij = 0
otherwise.

Example: Verify that matrix A is the adjacency matrix for the graph shown below.

��
��
��
��

���
���
���
���

��
��
��
��

���� ������

��
��
��
��

1 2 6

3

4

5

A =




0 1 0 0 0 0
1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 1 0 1 1 0




Theorem: (Interpretation of the powers of an adjacency matrix) If A is the adjacency matrix of
a graph, then the (i, j) entry of Ak is a nonnegative integer which is the number of paths of
length k from node i to node j.

1. To understand why the theorem is true, we will examine – by hand – the (6,3) entry of A2. Using
the “Row-Column Rule”, the (6,3) entry of A2 is a61a13+a62a23+a63a33+a64a43+a65a53+a66a63.
Use the following table to complete this computation.

Term a61a13 a62a23 a63a33 a64a43 a65a53 a66a63 (6,3) entry of A2

Explicit Product (1)(1)
Simplified Product 1
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2. Observe that the product a62a23 = (1)(1) = 1 says that there is one length two path connecting
nodes 6 and 3 (the intermediate node is node 2). Explain what each of the remaining five terms
in the sum for the (6,3) entry of A2 tells about paths of length 2 from node 6 to node 3.

3. The adjacency matrix A for the graph shown above can be obtained with the commands:

with( laylinalg );
adjdat();

(a) Find, and record, A2 and A3.
Remember to use evalm to force Maple to display the resulting matrix.

A2 A2
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(b) Notice that the (1,2) entry of A2 is zero, so there are no paths of length two from node 1
to node 2. Verify this by studying the graph. Similarly, notice that the (6,6) entry of A3

is 2, so there are two paths of length three from node 6 to itself; study the graph to see
that they are 6–4–5–6 and 6–5–4–6.

i. How many paths of length two go from node 4 to itself? What are they?

ii. How many paths of length three go from node 4 to node 5? What are they?

iii. Which pair(s) of nodes are connected with the most paths of length 2? How many?

iv. Which pairs of nodes are not connected by any path of length 2 or 3? What are they?

Definition: A graph is said to have contact level k between node i and node j if there is
a path of length less than or equal to k from node i to node j.

(c) Suppose A is the adjacency matrix of a graph. Explain why you must calculate the sum
A + A2 + . . . + Ak in order to decide which pairs of nodes have contact level k ?

Maple Project page 3 of 4 The Adjacency Matrix of a GraphMaple Project page 3 of 4 The Adjacency Matrix of a GraphMaple Project page 3 of 4 The Adjacency Matrix of a Graph



4. Eight workers, denoted W1, .., W8, handle a potentially dangerous substance. Safety precau-
tions are taken, but accidents do happen occasionally. It is known that if a worker becomes
contaminated, s/he could spread this through contact with another worker. The graph below
shows which workers have direct contact with which others.

(a) Write the adjacency matrix A for the following graph:

���
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W8 W7 W6

W5 W4

W3W2

W1
(b) Enter this adjacency matrix A in your Maple session and answer the following questions:

i. Which workers have contact level 3 with W3?

ii. Which workers have contact level 3 with W7?

(c) What is the smallest k such that every worker has contact level k with every other worker?
Explain how you know your answer is correct. (Hint: Use Maple to examine A, A + A2,
A + A2 + A3, etc.)

(d) Define what is meant when a worker is “dangerous”. Be very specific so anyone could
decide whether a worker was “dangerous” according to your definition.

(e) Using your definition, answer the following questions. Be sure to explain your answers and
verify that they are consistent with your definition of “dangerous”.

i. Which workers are the most dangerous if contaminated?

ii. Which workers are the least dangerous if contaminated?
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Maple Project: An Economy with an Open Sector NameMaple Project: An Economy with an Open Sector NameMaple Project: An Economy with an Open Sector Name

Purpose To use linear algebra to analyze a production model for an open
sector economy

Prerequisites Sections 2.1 and 2.6 (Exercise 13)
Maple commands used add and seq;

diag and inverse from the linalg package;
c2s6 from the laylinalg package.

Read Exercise 13 in Section 2.6. In this problem, the US economy is divided into 7 sectors. Each
sector produces goods and each sector uses some of the output of the other sectors. There is also an
open sector (i.e., a sector which only consumes). The consumption matrix is called C and d denotes
the demand vector for the open sector. The hope is that it is possible to find production levels
that meet each sector’s needs. That is, that there will be a nonnegative solution, x, to the equation
x = Cx + d. Notice this equation can be rewritten as (I − C)x = d.

The matrix C in this exercise has nonnegative entries and each column sum is less than one.
Therefore, by Theorem 11, I − C will be invertible and, when d is a non-negative vector, the unique
production vector x which satisfies (I − C)x = d will also be nonnegative.
Notes:

• Maple’s inverse command can be used to calculate the solution to any linear system whose
coefficient matrix is invertible. You are encouraged to use the inverse command in this project.

1. Enter the consumption matrix, C, and final demand vector, d, in a Maple session. Assuming
the laylinalg package has been loaded, the command c2s6( 13 ); can be used to define C
and d.

(a) Verify that each column sum is less than one. The column sums of the 7× 7 matrix C can
be found with the command:

seq( add( C[i, j], i=1..7 ), j = 1..7 ); # column sums for C

(b) Use Maple to find the inverse of (I − C) and then solve the linear system (I − C)x = d.

Id := diag( 1 $ 7 ); # 7x7 identity matrix
M := evalm( Id - C ); # M = I - C
Minv := inverse( M );
x := evalm( Minv &* d ); # production vector

Report the production levels, rounded to three significant digits in the table below.

(c) Repeat b) for two different nonnegative demand vectors, d1 and d2, which seem reasonable
to you. Record the demand vectors you selected and the corresponding production vectors
(rounded to three significant digits) in the table.

d x d1 x1 d2 x2


74, 000
56, 000
10, 500
25, 000
17, 500

196, 000
5, 000
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2. Explain why it is important for the entries of the production vector to be nonnegative.

3. Use trial and error (and educated guessing) to find one entry in the first column of C which,
when changed to a different positive number, has the property that solving (I − C)x = d with
the new consumption matrix gives a solution that has at least one negative entry. Record your
results, rounded to three significant digits, in the table.

modified C x

4. What do the numbers in your new matrix C say about the economy? Explain why your new
matrix produces a nonfeasible demand vector? (Be sure your explanation utilizes appropriate
linear algebra theorems.)
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Maple Project: Curve Fitting NameMaple Project: Curve Fitting NameMaple Project: Curve Fitting Name

Purpose To find the polynomial of order (n − 1) that passes through n data
points.

Prerequisites Section 2.2
Maple commands used interp and plot;

inverse from the linalg package.

When measuring a quantity that changes with time, for example, temperature at different times
of the day, one often ends up with data that can be interpreted as points in a plane: (x1, y1), (x2, y2),
. . . , (xn, yn), where yk is a real number representing the measurement taken at time xk. There are
a variety of ways this data can be used. In Section 6.5 you will learn how to find “least-squares”
approximations to the data. These approximations may not pass through, or interpolate, any of
the data points. One way to find a function that interpolates the data is to piece together cubic
polynomials that pass through consecutive pairs of data points with extra conditions that ensure
their first and second derivatives are continuous.1

In this project we seek a single polynomial p(x) = a0 + a1x + a2x
2 + . . . + akx

k that interpolates
all n data points. From the n conditions p(x1) = y1, p(x2) = y2, . . . , p(xn) = yn it is clear that
the polynomial must have degree n − 1. All that remains is to determine appropriate values for the
polynomial’s coefficients: a0, a1, . . . , an−1. Observe that the interpolating conditions can be written
as Ma = y where a = [a0 a1 . . . an−1]T , y = [y1 y2 . . . yn]T , and M is an n×n matrix. (Recall that
T denotes the transpose).

1. Find the n × n matrix M.

2. Read about Vandermonde matrices in Exercise 11 in the Supplementary Exercises for Chapter 2.
Under what conditions is the matrix M in Question 1 invertible?

3. Assuming M is nonsingular, the interpolation problem is solved by a = M−1y. Is the polynomial
through the points (x1, y1), (x2, y2), . . . , (xn, yn) unique? Why or why not?

1For additional information about interpolation the supplemental project, Splines, for Section 1.2, is available on
the Lay website (http://www.laylinalgebra.com/).
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4. Select a character string consisting of at least 8 letters. One possible source for the string is to
use your name – first, last, or a combination of the two.

Use the coding scheme given below to generate data points from your string.

a = -12 b = -11 c = -10 d = -9 e = -8 f = -7
g = -6 h = -5 i = -4 j = -3 k = -2 l = -1

m = 0 n = 1 o = 2 p = 3 q = 4 r = 5
s = 6 t = 7 u = 8 v = 9 w = 10 x = 11
y = 12 z = 13

That is, let y1 denote the numerical value of the first letter of your string, y2 the numerical
value of the second letter of your string, etc. For example, the string “marybeth” would be
encoded (1,0), (2,-12), (3,5), (4,12), (5,-11), (6,-8), (7,7), (8,-5). Find the degree 7 polynomial
through the points (1, y1), (2, y2), . . . , (8, y8) for the string you selected.

(a) List the 8 data points.

i 1 2 3 4 5 6 7 8

xi

yi

(b) Give the Maple commands you use to enter the vector y and the matrix M.

(c) What Maple command(s) did you use to find the coefficient vector a?

(d) What is the interpolating polynomial for your data?
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(e) Graph the interpolating polynomial for 1 ≤ x ≤ 8 on the axes provided. (Be sure to label
the axes.)

1 2 3 4 5 6 7 8 9

x

(f) Does the interpolating polynomial have any relative maxima or minima outside the interval
[1, 8]? Explain.

(g) Graph your polynomial for −30 ≤ x ≤ 30 on the axes provided.

–30 –25 –20 –15 –10 –5 5 10 15 20 25 30

x

Extra Credit Look at the online help for the interp command. Use this information to give a single Maple
command that returns the interpolating polynomial through the data points obtained from
your name. How does this compare with the interpolating polynomial you found?
Submit your answer to this question on the back of this page or on separate paper.
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No content or questions on this page. Use this space for additional work if needed.
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Maple Project: Temperature Distributions NameMaple Project: Temperature Distributions NameMaple Project: Temperature Distributions Name

Purpose Given temperature on a region’s boundary, determine the steady-
state temperature inside.

Prerequisites Section 2.5
Maple commands used diag and inverse from the linalg package.

Consider a situation in which the temperature is held constant on the surfaces of a beam with
uniform cross-section. The temperature may be different at different points on the boundary, but
does not change over time. To determine the steady-state temperature distribution inside the beam,
look at a rectangular grid of points in a cross-section of the beam. At steady-state it is assumed that
the temperature at each grid point is the average of the temperatures of the grid points to the north,
south, east, and west of the original point.

1. Suppose a rectangular beam is exposed to boiling water on its top surface and ice water on the
other three surfaces, as shown below.

0 C 0 C

0 C

100 C

If the cross-section is subdivided into a 2 × 4 grid, as shown below, there are three interior
points (P1, P2, and P3) at which the temperature is unknown.

0 C 0 C

100 C

0 C

P1 P2 P3

Let ti denote the steady-state temperature at node Pi for i=1, 2, 3. According to the assumption
stated at the outset, the three steady-state temperatures must satisfy the linear equations:

t1 =
1
4
(100 + t2 + 0 + 0)

t2 =
1
4
(100 + t3 + 0 + t1)

t3 =
1
4
(100 + 0 + 0 + t2)
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(a) Show that these equations can be written in matrix notation as 4t = b + Ct where the

vector of unknown temperatures is t =


 t1

t2
t3


, C =


 0 1 0

1 0 1
0 1 0


, and b =


 100

100
100


.

(b) If the matrix A = 4I−C is invertible the steady-state temperatures are given by t = A−1b.
Without computing the inverse of A, show that A is invertible.

(c) Assuming the matrix C and vector b have previously been defined in your Maple session,
the following Maple commands can be used to compute the matrices A and A−1 and
the solution vector t. The following Maple commands can be used to determine the
temperature at the three interior nodes for the configuration in this question.

A := evalm( 4*diag( 1$3 ) -- C ); # create the matrix A
Ainv := inverse( A ); # compute the inverse of A
t := evalm( Ainv &* b ); # compute steady-state temperatures

Record your results in the table below.

A A−1 t

(d) Do these temperatures seem reasonable? Why? or Why not?
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2. Consider the cross-section and grid shown below. Use the method described in Question 1 to
determine the steady-state temperatures at the grid points.

80 C

10 C 10 C

10 C

P1 P2 P3 P4

P8P7P5

P9

P6

P10 P11 P12

(a) Determine the temperature at the 12 interior points in this problem. Record your results
in the table below.

A A−1 t

(b) Do these temperatures seem reasonable? Why? or Why not?
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3. Consider the cross-section and grid shown below. Use the method described in Question 1 to
determine the steady-state temperatures at the grid points.

100 C

-10 C

-10 C

-10 C

P1 P2 P3

P6P5P4

P9P8P7

P10

P12

P11

(a) Record your results in the table below.

A A−1 t

(b) Do these temperatures seem reasonable? Why? or Why not?

Maple Project page 4 of 4 Temperature DistributionsMaple Project page 4 of 4 Temperature DistributionsMaple Project page 4 of 4 Temperature Distributions



Maple Project: Manipulating Matrices in Maple NameMaple Project: Manipulating Matrices in Maple NameMaple Project: Manipulating Matrices in Maple Name

Purpose To gain experience making and justifying conjectures about a family
of structured matrices.

Prerequisites Sections 2.2 and 3.2
Maple commands used for .. do .. end do and max;

det and inverse from the linalg package.

In this project you will attempt to determine the general formula for the determinant and inverse
of a special collection of matrices. You will test your conjecture for as many matrices as possible but
will not be asked to give complete proofs.

For each positive integer n, let Mn be the n × n matrix whose (i, j) entry is mij = max(i, j) for

all i, j = 1, 2, 3, . . . , n. For example, M1 =
[

1
]
, M2 =

[
1 2
2 2

]
, M3 =


 1 2 3

2 2 3
3 3 3


, . . . .

1. Find an efficient and painless way to define these matrices — even for large values of n. Record
your way of entering the matrix Mn in the box below.

Hints:

• There are numerous ways to approach this problem.

• One of the most straightforward is to use assignments of the form M[i,j] := max(i,j);
inside a do loop (see the online help for do to see the appropriate syntax).

• A more sophisticated solution involves uses only a single matrix command with a pro-
cedure as its third argument (see the online help for matrix for more details on this
approach).

2. Find a formula for the determinant of Mn for all integers n ≥ 1. Justify your conjecture with
at least 5 examples.
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3. Find the inverse matrices M−1
1 , M−1

2 , M−1
3 , and M−1

4 .

4. Find a formula for M−1
n that is valid for all n ≥ 1. Support your conjecture with several

(additional) examples.

Maple Project page 2 of 2 Manipulating Matrices in MapleMaple Project page 2 of 2 Manipulating Matrices in MapleMaple Project page 2 of 2 Manipulating Matrices in Maple



Maple Project: Markov Chains and Long-Range Predictions NameMaple Project: Markov Chains and Long-Range Predictions NameMaple Project: Markov Chains and Long-Range Predictions Name

Purpose To use linear algebra to analyze Markov chains and investigate their
steady state vectors.

Prerequisites Sections 2.1 and 4.9
Maple commands used add and for .. do .. end do;

diag and rref from the linalg package;
markdat from the laylinalg package.

Read Exercises 2 and 12 in Section 4.9. These problems consider the Markov chain with the

system matrix P =


 0.50 0.25 0.25

0.25 0.50 0.25
0.25 0.25 0.50


. Here there are three foods and the i, j entry of P is the

probability that if an animal chooses food j on the first trial, it will choose food i on the second trial.
Similarly, the (i, j) entry of P2 is the probability that if an animal chooses food j on the first trial,
it will choose food i on the third trial.

1. Load the system matrix with the command markdat( ); (this assumes the laylinalg package
is loaded).

(a) Compute the matrix P2. Record the result here.

(b) Suppose an animal chooses food 1 on the first trial. Use P and P2 to determine the
probability the animal will:

choose food 2 on the second trial

choose food 2 on the third trial

choose food 3 on the second trial

(c) Use Maple to find the reduced echelon form of P − I. Recall that the 3 × 3 identity
matrix can be defined using Id := diag( 1 $ 3 );. Then, rref( P - Id ); returns
the reduced echelon form of P − I. Use the space provided to record P − I, the reduced
echelon form of P − I, the general solution, x, to the homogeneous system (P − I)x = 0,
and a particular solution, w, corresponding to a nonzero value of the free variable.

P − I P − I (ref) x w
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(d) The steady-state vector, q, for P can be found by dividing the particular solution, w, by
the sum of its components. The Maple commands to compute this vector are:

w := vector( 3, [ your data from (c) ] ); # a particular solution
s := add( w[i], i=1..3 ); # sum of the components of w
q := evalm( w / s ); # rescaled particular solution

Is q a (particular) solution to (P − I)x = 0? Is q a probability vector? Explain.

(e) If P is a regular stochastic matrix, Theorem 18 says there is only one steady-state. This
means regardless of the particular solution you found in (c) you will compute the same
vector q in (d). Confirm this by repeating the computation in (d) using the general
solution, x instead of the particular solution w. Use linear algebra to explain why this is
true.

2. Read Exercises 4 and 14 in Section 4.9 and solve it as follows.

(a) Use the table below to record the matrix W and the initial vector v0 describing today’s
weather forecast. Explain the steps you took to ensure W is stochastic and v0 is a proba-
bility vector.

(b) Compute and record (in the table below) the probability vector for tomorrow’s weather:
Wv0. What is the chance of bad weather tomorrow?

(c) Using the predicted weather for Monday as a new initial vector, v1. Compute and record
(in the table below) the probability vector for Wednesday’s weather: W2v1. What is the
chance of good weather on Wednesday?
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(d) Use the method in Question 1(c) to calculate the steady-state vector, q. In the long run,
what is the probability the weather will be good on a given day?

W v0 Wv0 = v1 W2v1 q

3. According to Theorem 18, when P is stochastic and regular, and v is any probability vector,
the sequence of vectors v, Pv, P2v, . . . converge, and the limit vector will be the steady-state
vector of P. In other words, when the power k is big enough, Pkv will look like the unique
steady-state vector. This is not an efficient way to calculate the steady-state vector, but it
is interesting to see the sequence v, Pv, P2v, . . . converge for a few examples. The following
Maple commands can be used to compute the first 10 terms in the sequence. If more terms are
needed, change 10 to a larger number and re-execute.

v := vector( 3, [ 1, 0, 0 ] ); # initial vector
for i from 1 to 10 do # increase 10 for a longer sequence
v := evalm( P &* v ); # compute next vector in sequence

end do;

Estimate k for both Exercise 2, using matrix P, and Exercise 4, using matrix W. Use each of
the initial vectors shown below and at least one more probability vector v of your own. For each
v, calculate Pkv until you find a big enough k so that Pkv looks like the steady-state vector
for P (compare to the steady-state vectors you found in Questions 1(d) and 2(d)). Repeat this
for each v and W, and record the smallest value of k which is big enough in each case. Record
your results, including the initial vector that you chose, in the table below.

Animal Experiment (using matrix P) Weather Forecast (using matrix W)

v


 1

0
0





 0.2

0.6
0.2





 0.35

0.35
0.30





 1

0
0





 0.2

0.6
0.2





 0.35

0.35
0.30




k
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Explain, in the box below, the criteria used to determine when k was large enough to stop the
iterations.

4. The matrices P1 =


 0.7 0.2 0.6

0 0.2 0.4
0.3 0.6 0


, P2 =


 0.7 0.2 0.6

0 0.2 0
0.3 0.6 0.4


, and P3 =


 0 1 0

1 0 0
0 0 1


 can be

loaded into a Maple session by executing the command markdat( );. (This might have been
done in Question 1; it is not a problem to execute this command again here.)

(a) Which of P1, P2, and P3 are regular? Explain your answers.

P1

P2

P3

(b) Use the method in Question 1 to calculate steady state vectors for P1, P2, and P3. Record
the steady state vectors in the table below. Use Theorem 18 or some calculations to decide
whether the steady-state vector is unique.

P1 P2 P3

What steady-
state vector, q
is produced by
the method in
Question 1?

Is q unique?
(Briefly, why?)

If v =


 1

0
0


,

does Pkv converge
as k increases? If
not, what does
happen?
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Maple Project: Real and Complex Eigenvalues NameMaple Project: Real and Complex Eigenvalues NameMaple Project: Real and Complex Eigenvalues Name

Purpose To learn how to use Maple’s eigenvectors command to construct
the matrix of eigenvalues and the matrix of eigenvectors.

Prerequisites Sections 5.1 and 5.3
Maple commands used op and seq;

augment, diag and eigenvectors from the linalg package;
cxeigdat from the laylinalg package.

The following five matrices will be used in this project:

A =

[
5 1
3 3

]
B =

[
0 1

−1 0

]
C =

[
4 3

−3 4

]
D =

[
1 4

−4 1

]
E =


 0 0 5

1 0 0
0 5 4




1. Calculate the eigenvalues of each of the four 2 × 2 matrices by hand. Record your eigenvalues
in the table at the end of Question 2.

2. Repeat Question 1 on four new 2× 2 matrices created as follows: if the original matrix has real
eigenvalues, change the sign of one entry so that the resulting matrix has complex eigenvalues;
if the original matrix has complex eigenvalues, change one entry in such a way that the resulting
matrix has real eigenvalues.

Original Matrix A B C D

Original Eigenvalues

Modified Matrix

Modified Eigenvalues
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3. The five matrices (A, B, C, D, and E ) can be loaded into a Maple session with the command:
cxeigdat( );. Recall that the Maple name for matrix D is DD. The eigenvectors command
can be used to obtain all eigenvalues and the corresponding eigenvectors for a matrix. Use the
following sequence of commands to construct the diagonal matrix L and invertible matrix P
with the property that AP = PL (the text calls the diagonal matrix D, but we already have a
matrix D in this project). Repeat these computations for the other four matrices. Report your
results in the table.

EV := [ eigenvectors( A ) ]; # eigenvalues and eigenvectors
L := diag( seq( op(1,e)$op(2,e), e=EV ) ); # diagonal matrix of eigenvalues
P := augment( seq( op(op(3,e)), e=EV ) ); # invertible matrix of eigenvectors

Matrix A B C D (i.e., DD) E

L

P

AP

PL

The results found in Questions 1–3 illustrate several important facts about eigenvectors and
eigenvalues. These are summarized here and are discussed in detail in Section 5.5 of the text.
Notes:

• Real-value matrices can have complex-valued eigenvalues and eigenvectors.

• Complex eigenvalues and eigenvectors both appear in complex conjugate pairs. That is, if
λ = a + ib is an eigenvalue with eigenvector v = u + iw, then λ = a − ib is an eigenvalue with
eigenvector v = u − iw.

• If A is an n × n matrix with n odd, then A has at least one real eigenvalue.
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Maple Project: Eigenvalue Analysis of the Spotted Owl NameMaple Project: Eigenvalue Analysis of the Spotted Owl NameMaple Project: Eigenvalue Analysis of the Spotted Owl Name

Purpose To complete the analysis of the spotted owl population, including
a determination of the critical juvenile survival rate that ensures
survival of the species.

Prerequisites Sections 5.1 and 5.6 and the Maple Project: Initial Analysis of the
Spotted Owl.

Maple commands used abs, for .. do .. end do, map, plot, and zip;
augment, eigenvalues, and eigenvectors from the linalg pack-
age;
owldat from the laylinalg package;
display from the plots package.

Recall, from the Opening Example to Chapter 5 and the Maple Project “Initial Analysis of the
Spotted Owl”, that the spotted owl population is divided into three distinct life stages: first year

(juvenile), second year (subadult), and third year and beyond (adult). Let xk =


 jk

sk

ak


 be the state

vector for year k, then xk+1 = Axk with transition matrix A =


 0 0 0.33

t 0 0
0 0.71 0.94


. The parameter

t is the juvenile survival rate. In the first part of this project the claim that the population will
eventually die out if t = 0.18 but not if t = 0.30 was verified. The critical value of t that ensures long
time survival of the spotted owl will be found in this project.

Definition: Let A be an n × n matrix with eigenvalues λ1, λ2, . . . , λn sorted so that |λ1| ≥ |λ2| ≥
. . . ≥ |λn|. The eigenvalue λ1 is called a dominant eigenvalue of A.

The special type of 3×3 matrix discussed in this project has one eigenvalue λ1 such that |λ1| > |λi|
for i = 2 and 3, so we will speak of “the” dominant eigenvalue λ1. In fact, for the matrices here, λ1

is even real and positive.

1. Recall that the command: owldat( ); loads the transition matrix (and initial vector) for the
spotted owl into your current Maple session.

(a) Use the following Maple commands to find the dominant eigenvalue of the transition matrix
for t=0.18, 0.19, . . . , 0.30. Record these results, rounded to five significant digits, in the
table below. Note that the “absolute value” of a complex number is its modulus.

for t from 0.18 to 0.30 by 0.01 do
A[2,1] := t; # new value of t in transition matrix
map( abs, [eigenvalues( A )] ); # absolute values of eigenvalues

end do;

t 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30

λ1

(b) The “critical value” of the juvenile survival rate is the value of t that corresponds to a
transition matrix with dominant eigenvalue λ1 = 1. For our purposes we will approximate
the critical value of t. Define t0 to be the smallest value of t with λ1 > 1. Identify t0 in
the table in (a).
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2. Let A be the transition matrix with t = t0. Let v1, v2, and v3 denote the eigenvectors of A, let
x0 be an initial vector, and suppose c1, c2, and c3 are scalars such that x0 = c1v1 + c2v2 + c3v3.

(a) Explain why the population of owls will not die out if the coefficient of the eigenvector
corresponding to the dominant eigenvalue is not zero.
Hints:
• Do not find the eigenvectors or coefficients.
• The explanation depends on the properties of the dominant eigenvalue, etc., not their

specific values.

(b) Record the three eigenvalues, and their corresponding eigenvectors, v1, v2, and v3, of A
in the table at the end of Question 3. Notice that the dominant eigenvalue, λ1, is real and
positive and the other two eigenvalues, λ2 and λ3, are complex conjugates.

(c) Solve the equation x0 = c1v1 + c2v2 + c3v3 for c1, c2, and c3 when the initial vector is

x0 =


 100

100
100


. Record the solution, rounded to two significant digits, in the following

table. Verify that c1 , the coefficient of the dominant eigenvalue, is not zero, hence the
owl population does not die out for this initial vector. One way to do this computation is
to create the matrix V whose columns are the eigenvectors of A and then solve the linear
system Vc = x0 where c is the vector of coefficients. (Be sure the columns appear in the
correct order!)

c1 c2 c3

3. (a) Choose two new values of the juvenile survival rate t1 and t2 so that

t0 − 0.01 < t1 < t0 < t2 < t0 + 0.01.

Report the eigenvalues and eigenvectors for the associated transition matrices in the fol-
lowing table. (Round all numbers to two significant digits.)

t λ1 λ2 λ3 v1 v2 v3

t0 =

t1 =

t2 =
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(b) For each of these survival rates, t1 and t2, create one graph showing the size of each
subpopulation for the years 1997 through 2020. Be sure each plot contains a caption that
indicates the value of t. Attach both plots to this project.
Hints:
• The first step is to generate the yearly populations for 1997 – 2020 when t = 0.30.

with(plots): # load plots package

A[2,1] := 0.30; # change juvenile survival rate
x := x0; # initial population in 1997
P := evalm( x ): # put 1997 data in first column of P
for i from 1998 to 2020 do # for each year ...

x := evalm( A &* x ); # – update populations
P := augment( P, x ); # – add new column to P

end do:
• The next set of Maple commands displays the size of each subpopulation for t = 0.30.

only minor modifications are needed for t1 and t2.
yr := vector( [ $ 1997 .. 2020)] ):
ptJ := zip( (x, y) -> [x, y], yr, row(P, 1) ): # juveniles
ptS := zip( (x, y) -> [x, y], yr, row(P, 2) ): # subadults
ptA := zip( (x, y) -> [x, y], yr, row(P, 3) ): # adults

plotJ := plot(ptJ, color=red): # plot of juveniles
plotS := plot(ptS, color=blue): # plot of subadults
plotA := plot(ptA, color=green): # plot of adults
display( [ plotJ, plotS, plotA ], # combined plot
title="Spotted owl populations (t=0.30)" );

(c) What trends in the three age groups are apparent in the graphs? How do the plots with
t = t1 and t = t2 differ? How are they similar? Are these results consistent with what you
know about the dominant eigenvalue of the transition matrix? (It might help to look at
the eigenvalues of the transition matrix for these values of t.)
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Extra Credit .

(a) Let A =


 0 0 a

t 0 0
0 b c


, and assume a, b, c, t are positive. Show that f(λ) = −λ3+cλ2+abt

is the characteristic polynomial of A.

(b) Prove that A has one positive (real) eigenvalue and that the other two eigenvalues of A
must be complex conjugates. Let λ1 denote the positive eigenvalue and let λ2 and λ3

denote the other two eigenvalues.
Hints:
• Since f(λ) has only real coefficients, you can sketch its graph in R2. It will be helpful

to calculate the y-intercept and to use the derivative to find the turning points. Use
this graph to explain why there is only one real root of f(λ) and that this root is
positive. Then, use properties about zeros of polynomials to explain why the other
two zeros must be conjugate complex numbers.

(c) Prove that λ1 > |λ2| = |λ3|, hence the real positive eigenvalue of A will always be the
dominant eigenvalue for this type of matrix.
Hints:
• Show that f(λ) = (λ1 − λ)(λ2 − λ)(λ3 − λ).
• Use this to show λ1λ2λ3 = abt.
• Next, show that λ2λ3 = |λ2|2 and so λ1|λ2|2 = abt.
• Finally, explain why −λ3

1 + cλ2
1 + abt = 0.

• Put these findings together to conclude that λ1 > |λ2|.
(d) Assume λ1 = 1 and use this to obtain a formula for the exact critical value of t. Evaluate

your formula when a = 0.33, b = 0.71 and c = 0.94, and compare this with the critical
value you found experimentally in Question 1. Are they essentially the same? Discuss
what λ1 = 1 means in the owl model. (For example, does it mean no births or deaths? If
not, then what?)
Notes:
• Prepare your explanations on separate pages; attach these pages to this project.
• Be sure your explanations are well-organized and neatly presented.
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Maple Project: The Cayley-Hamilton Theorem NameMaple Project: The Cayley-Hamilton Theorem NameMaple Project: The Cayley-Hamilton Theorem Name

Purpose To learn about the Cayley-Hamilton Theorem
Prerequisites Section 5.2
Maple commands used eval;

charpoly from the linalg package;
randomint from the laylinalg package.

Cayley–Hamilton Theorem: square matrix A satisfies its characteristic equation.

That is, if p(λ) = λn + cn−1λ
n−1 + . . . + c1λ + c0 is the characteristic polynomial for A, then

p(A) = 0. Note that 0 is the n × n zero matrix. To evaluate the characteristic polynomial “at a
matrix” it is essential to interpret the constant term, c0, as the corresponding multiple of the n × n

identity matrix, c0I. For example, the characteristic polynomial for A =

[
1 2
3 4

]
is p(λ) = λ2−5λ−2.

Then, p(A) = A2 − 5A − 2I.

1. Empirical evidence of the validity of the Cayley–Hamilton Theorem can be obtained by looking
at randomly-selected matrices of various sizes. Use Maple to fill in the following table. (For
n = 8, p(A) can be evaluated with the command evalm(eval(p,lambda=A));.)

with( laylinalg ):
A := randomint( 2, 2 ); # randomly-selected 2x2 example
p = det( A - lambda * diag( 1$2 ) ); # char polynomial for 2x2 matrix

n A p(λ) p(A) – written as the sum of n + 1 matrices

2

3

4

8
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No content or questions on this page. Use this space for additional work if needed.
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Purpose To investigate the pseudo-inverse of a matrix and its use in solving
overdetermined systems.

Prerequisites Section 6.5
Maple commands used inverse and transpose from the linalg package;

implicitplot from the plots package.

The transpose AT of a matrix A is obtained by interchanging the rows and columns of A: the
first row of A becomes the first column of AT , the second row of A becomes the second column of
AT , and so forth. If A is an n × m matrix, then AT is an m × n matrix. Therefore the matrix
products AAT and AT A are always defined and yield n× n and m×m matrices, respectively. Since
AT A is a square matrix, it makes sense to ask whether it has an inverse. If it does, then the matrix
A+ = (AT A)−1AT is called the pseudo-inverse of A (sometimes the term generalized inverse is used).
Notes:

• This definition of the pseudo-inverse applies only when (AT A) is invertible. This occurs if and
only if A has linearly independent columns. (Why?)

• The singular value decomposition can be used to define the pseudo-inverse of any matrix. (See
Example 7 in Section 7.4 of the text.)

• The pseudo-inverse is sometimes called the Moore-Penrose inverse.

1. Let A be an m × n matrix and assume AT A is nonsingular. What size matrix is A+, the
pseudo-inverse of A?

2. Let A be a randomly-selected 4 × 4 matrix with integer entries. Use Maple to compute AT A
and check if it is invertible. If AT A is not invertible, obtain a new random 4 × 4 matrix of
integers. Find A+, then compute A+A and AA+; report all of your findings in the table at the
bottom of this page.

3. Repeat Question 2 with a randomly-selected 3 × 2 matrix with integer entries.

4. Repeat Question 2 with a randomly-selected 5 × 2 matrix with integer entries.

5. Repeat Question 2 with a randomly-selected 5 × 1 matrix with integer entries.

Size A A+ A+A AA+

4 × 4

3 × 2

5 × 2

5 × 1
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6. Examples 1 and 2 in Section 6.5 demonstrate that the “least-squares” solution to Ax = b is
w = A+b. You will now verify that this statement is true in general.

(a) Show that, if A is invertible, then w is the exact solution, i.e., Aw = b.

(b) Show that, if b is in the range of A, then w is the exact solution.

(c) Consider the following system of linear equations:

5x1 + 6x2 = 7
3x1 − 4x2 = 8
2x1 + 9x2 = 5

Write these equations in the form Ax = b and find the least-squares solution, w. Compute
Aw. Is this result surprising? Record the (transposes of the) vectors w and Aw in the
following table.

w

Aw

(d) Use the following template of Maple commands to graph the three lines. Then, identify
on a hardcopy of the graph, the point that corresponds to the vector w. You will need to
supply an appropriate viewing window to create the final graph. (Attach the final graph
to this project.)

with( plots ):
eq1 := 5*x1 + 6*x2 = 7;
eq2 := 3*x1 - 4*x2 = 8;
eq3 := 2*x1 + 9*x2 = 5;
implicitplot( {eq1, eq2, eq3}, x1= .. , x2= .. );
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