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Introductory courses in differential equations have traditionally consisted of a long list of solution
techniques for special equations. This characterization is becoming increasingly inaccurate as more
textbooks and courses are being designed around qualitative methods. One component of many
revised courses is the discussion of real-life applications and modeling. The parachute problem will
be used to illustrate several essential features of the improved courses. In particular, it will be seen
that the traditional version of the parachute problem is not very realistic, but is easily improved
without making the problem significantly more complicated.

INTRODUCTION

MATHEMATICAL MODELING is an increas-
ingly essential skill for many engineers. The ``para-
chute problem'' is an appealing application that
can be found in most differential equations text-
books [1, (p. 141, #19 and 20); 4, (p. 95, #10, 11,
20, and 21); 5, (p. 109, #20); 11, (pp. 112±114,
Example 3 and #8)]. The typical formulation of the
problem is:

A skydiver begins a jump at a specific height, x0,
above the ground and falls towards Earth under the
influence of gravity. Assume the force due to air
resistance is proportional to the velocity of the para-
chutist, with different constants of proportionality
when the parachute is closed (free-fall) and open
(final descent). Answer the following questions:

1. Given the conditions under which the parachute is
deployed, how long does the jump last?

2. What is the velocity when the parachute is
deployed and at landing? What are the terminal
velocities of the different stages of the jump?

3. What is the latest time the parachute can be
released and have the landing velocity below a
specified safety threshold?

This problem, like most in traditional introductory
courses, is intended to stimulate and exercise the
student's ability to find and manipulate explicit
analytical solution formulas. However, this is not
how an engineer typically encounters differential
equations in subsequent coursesÐor the real
world.

The assumptions stated in the problem descrip-
tion have several fundamental problems. For ex-
ample, basic fluid mechanics shows that the

relationship between the drag force and velocity
can be nonlinear [6, 12]. In the case of a parachute
jump, the drag force is proportional to the square
of the velocity. Moreover, the descriptions of the
deployment and inflation of a parachute found in
sport and military training guides (see [3] and [13],
respectively) go into great detail about the release
and inflation of the parachute. In particular, the
transition from free-fall to final descent is not
instantaneous. Several recent journal articles have
begun to address these problems individually [2, 6,
7, 8, 9], but not in a systematic way based on
fundamental principles.

The primary purpose of this paper is to illustrate
the coordinated use of qualitative and theoretical
results and real-world considerations that is the
cornerstone of new pedagogical approaches for
differential equations. The traditional parachute
problem analysis is presented below. An improved
model, based on the traditional analysis and addi-
tional physical information, is then developed and
analyzed. Graphical and numerical solutions are
used to verify that the motion stays within the
design specifications of the parachute.

THE TRADITIONAL PROBLEM

The ``parachute problem'' is a simple appli-
cation of Newtonian mechanics, Fg � Fd � ma,
to a skydiver of mass m with acceleration a that
is subject to a gravitational force Fg and a drag
force Fd due to air resistance. In the natural
coordinate system in which x is the distance
above the earth's surface, a � dv=dt where
v � dx=dt is velocity and Fg � ÿmg with
g � 9:81 m=s2 in MKS units. In many popular
differential equations textbooks [1, (p. 141, #19* Accepted 2 July 1999.
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and 20); 4, (p. 95, #10, 11, 20, and 21); 5, (p. 109,
#20); 11, (pp. 112±114, Example 3 and #8)] the
drag force is assumed to be proportional to
velocity, Fd � ÿkv. The coefficient of drag, k,
has one value, say k1, when the skydiver is in
free-fall and a second value, k2, when the para-
chute is fully deployed. If the deployment occurs
at time t0,

k �
k1; 0 � t < t0

k2; t � t0:

(
�1�

At this point the problem can be posed as either
a second-order ordinary differential equation
(ODE) for position or as a first-order system of
ODEs for the velocity and position. In many
traditional discussions, only the second-order
ODE would be considered. In this situation,
however, the first-order system is much simpler
to solve. During free-fall, the velocity satisfies the
initial value problem:

m
dv

dt
� ÿmg ÿ kv; v�0� � 0 �2�

with k � k1. This equation can be solved either as a
first-order linear ODE or as a separable ODE.
After the first week of the course, most students
can correctly find that the solution is:

v�t� � mg

k1
�eÿ�k=m�t ÿ 1�: �3�

The position is obtained by integrating the velocity
with initial condition x�0� � x0:

x�t� � x0 ÿmg

k
tÿm2g

k2
�eÿ�k=m�t ÿ 1�: �4�

After the parachute is deployed the velocity and
position can be found exactly as above, except that
the initial conditions are v�t0� � v�tÿ0 � and
x�t0� � x�tÿ0 � where, e.g., v�tÿ0 � � limt!tÿ

0
v�t� �

�mg=k1��eÿ�k1=m�t0 ÿ 1�. The formulae for the
velocity and position are somewhat complicated,
but are obtained as above. For example, the
velocity is:

v�t�

mg

k1
�eÿ�k1=m�t ÿ 1�; 0 � t < t0

mg

k1
�eÿ�k1=m�t0 ÿ 1�eÿ�k2=m��tÿt0�

�mg

k2
�eÿ�k2=m��tÿt0� ÿ 1�; t � t0:

8>>>>><>>>>>:
�5�

The different terminal velocities of the two
stages of the jump are easy to compute from the
velocity. However, the terminal velocity, vT , is
even easier to find by setting dv=dt � 0 in the
equation of motion, (2), and solving for v:
vT � ÿmg=k. The direct use of the differential
equation is an important feature of the new
approach to teaching differential equations.

Another instance in which the differential equa-
tion is more useful than an explicit formula for the
solution is the analysis of the acceleration of the
skydiver. Contrast the computation of the accel-
eration using a � dv=dt (or, even worse, a �
d2x=dt2) with the direct substitution of the velocity
into the equation of motion: a � ÿg ÿ �k=m�v �
ÿmgeÿ�kt=m�. Note that since k is discontinuous at
t � t0, the acceleration is also discontinuous at
the time the parachute is deployed. Physically,
however, the acceleration must be continuous
[13, 14].

THE PHYSICS OF SKYDIVING

The development of a more realistic model for a
parachute jump will be based on the basic prin-
ciples of fluid dynamics [10, 12]. The Navier-
Stokes equations describe the motion of a body
through a viscous fluid. The speed of the motion is
frequently described in terms of the dimensionless
Reynolds number, Re. In general, Re � �dv=�
where: � is fluid density, d is a characteristic
length, v is a characteristic velocity, and � is the
fluid viscosity. Realistic Reynolds numbers range
from O(1) for a dust particle in air or a larger
object in a less viscous fluid to more than 108 for a
submarine in water.

The Navier-Stokes equations contain both iner-
tial and viscous forces [10]. The Reynolds number
Re describes the relative importance of these forces
in a given flow. When Re� 1 viscous forces
dominate and the drag force on a solid sphere of
radius r is approximately linear in the velocity:
Fd � ÿ6��rv. This approximation, which is also
known as the creeping flow approximation [12],
was discussed above. When Re > 103 the inertial
forces dominate and the drag force is approxi-
mately quadratic in the velocity.

To determine which of these models is most
appropriate for a human falling through the atmo-
sphere, it suffices to estimate the Reynolds
number. The density � and viscosity � are essen-
tially constant at altitudes appropriate for para-
chuting [12]: � � 1 kg=m3, � � 1:5� 10ÿ5 kg=m=s.
Terminal velocity is a reasonable choice for the
characteristic velocity. The landing impact, which
generally occurs at the terminal velocity for the
last stage of the jump, is frequently said to be
comparable to a jump from a five-foot wall [13]:
v � 5:3 m=s � 17:4 ft=s. A realistic terminal velo-
city during free-fall is v � 45 m=s � 100 mile=hr.
A typical estimate for the characteristic length d
in a flow around an object is the diameter of a
disk which presents the same cross-section to the
flow: a fully deployed parachute presents a cross-
section of A � 44 m2 giving d � 7:5 m; a skydiver
in spread-eagle formation presents a cross-section
of A � 0:5 m2 giving d � 0:8 m. Thus, Re > 106

before and after parachute deployment and the
creeping flow approximation is not valid!

For Reynolds numbers Re > 103 the drag on a
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body which presents cross-sectional area A to the
flow can be modeled by [12, (pp. 378±9)]:

Fd � 1
2

CdA�v2: �6�

The coefficient of drag Cd is determined by the
shape of the body (see Table 1).

Drag forces are produced by the skydiver's
body, the suspension lines, and the canopy. Several
different canopy deployment schemes are
discussed in [3] and, as noted on p. 236, ``different
deployment schemes change the number and
magnitude of the impulses felt in re-accelerating
the mass components to the velocity of the body''.
A ``canopy-first'' deployment uses the inflating
parachute to pull the risers and suspension lines
to full extension. In the ``lines-first'' release the
parachute remains in a deployment bag until the
risers and suspension lines are fully extended.
Combinations of these two schemes are also pos-
sible. The deployment schemes differ in the order
in which the parachute system separates from the
skydiver's body. A completely realistic model of
the deployment is beyond the scope of this discus-
sion. We consider only the lines-first deployment
scheme which can be modeled in three distinct
stages, starting at time t0 when the ripcord is
pulled. First, the suspension lines are released
and become fully extended. At this time, t � t1,
the snatch force pulls the skydiver from the spread-
eagle position into an upright position and the
canopy begins to inflate. At t � t2 the canopy is
fully inflated, i.e., the first time when the cross-
sectional area of the canopy reaches its projected
steady-state value. Between times t2 and t3 the
momentum of the surrounding air mass over-
inflates the canopy before returning to the
steady-state area for final descent (t > t3).

Both the skydiver's body and the skydiving
equipment generate separate drag forces during
the different stages of deployment. Thus, the
total drag force is

Fd � Fb
d � Fe

d � 1
2
��Cb

dAb � Ce
dAe�v2

where the superscripts b and e are used to distin-
guish the drag coefficients and cross-sectional
areas of the skydiver's body and equipment. This
model ignores the drag force produced by the

suspension lines and assumes that the body and
equipment are rigidly connected. In reality the
suspension lines do produce drag and the entire
system is elastic. The appropriate inclusion of
these effects would lead to a slightly improved
model.

To complete the model the shape and cross-
sectional area of the body and equipment are
required for each stage of the jump. The standard
military parachute is a modification of the T-10, a
flat skirt with a 35 ft (d0 � 10:7 m) nominal
diameter and 10% extensions [3]. When fully
inflated, the projected diameter is approximately
24.5 ft (dp � 7:47 m); the cross-sectional area is
approximately 471 ft2 (a1 � 43:8 m2). The suspen-
sion lines are 84% of the nominal diameter, i.e.,
l � 8:96 m. A typical skydiver in the head- or feet-
first position can be represented as a 501000
(h � 1:78 m) long cylinder with cross-sectional
area b1 � 0:1 m2. During free-fall, this position is
unstable and difficult to maintain for more than a
few seconds. In the stable spread-eagle position the
body can be modeled as a flat rectangular strip
with area b0 � 0:5 m2. The parachute and suspen-
sion lines weigh 13.85 lbs, the harness is another
10 lbs and the skydiver weights 190 lbs; the total
mass is m � �13:85� 10� 190�=2:2 � 97:2 kg. The
time t0 when deployment begins depends on
whether the ripcord is pulled by a static line
connected to the jump plane, by the skydiver
after a specified time delay or at a predetermined
altitude. Training jumps for the parachute team
at the United States Air Force Academy begin
4000 ft (x0 � 1219 m) above ground level with a
t0 � 10 s free-fall [13]. (It is interesting to note
that a free-fall lasting more than 13 s is grounds
for removal from the team. This rule is based on
the time needed to deploy the reserve parachute
and still be able to make a safe landing. An
investigation of the reserve chute is a good
student project.) Independent of the value of
t0, the snatch force occurs around t1 ÿ t0 � 0:5 s
after the ripcord is pulled and the opening
force occurs about t2 ÿ t1 � 1:0 s after the
snatch force. The total time for this lines-
first deployment is approximately 3.2 s, i.e.,
t3 ÿ t2 � 1:7 s.

The extension of the suspension lines can be
modeled with a separate initial value problem.
However, for simplicity, it will be assumed that
the length of the suspension lines increases linearly
over the interval �t0; t1�. The cross-sectional area of
the canopy could be modeled similarly by assum-
ing a linear increase in the diameter. However,
experimental data for the canopy area indicates
this would be inappropriate [3, (p. 245)]. Let Ae

1;2
denote an appropriate approximation to this
data and Ae

2;3 the cross-sectional area during
over-inflation.

The definitions of the cross-sectional area and
drag coefficient for the body and equipment at any
time during the jump can be summarized as
follows:

Table 1. Drag coefficients of common shapes: note the drag
coefficient for a cylinder gives force per unit length [12, p. 379,

Table 12.2]

Shape Reynolds number Cd

Hemispherical shell Re > 103 1.33
Disc Re > 103 1.10
Flat strip Re > 103 1.95
Cylinder 103 < Re < 2� 105 1.95
Cylinder Re > 5� 105 � 0:35
Sphere 103 < Re < 2� 105 0.45
Sphere Re > 3� 105 � 0:20
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Ab�t� �

b0; t � t0

b0; t0 < t � t1

b1; t1 < t � t2

b1; t2 < t � t3

b1; t � t3

8>>>>>>><>>>>>>>:
�7�

Cb
d�t� �

1:95; t � t0

1:95; t0 < t � t1

0:35h; t1 < t � t2

0:35h; t2 < t � t3

0:35h; t � t3

8>>>>>>><>>>>>>>:
�8�

Ae�t� �

0:0; t � t0

b1; t0 < t � t1

Ae
1;2�t�; t1 < t � t2

Ae
2;3�t�; t2 < t � t3

a1; t � t3

8>>>>>>><>>>>>>>:
�9�

Ce
d�t� �

0:0; t � t0

0:35l
tÿ t0

t1 ÿ t0
; t0 < t � t1

1:33; t1 < t � t2

1:33; t2 < t � t3

1:33; t � t3:

8>>>>>>>>><>>>>>>>>>:
�10�

Estimates of the parameters in equations (7)±(10)
for a typical skydiver and equipment are collected
in Table 2.

The improved model for the velocity of the
skydiver is the nonlinear initial value problem:

m
dv

dt
� ÿmg � kv2; v�0� � 0 �11�

where

k � 1
2
��Cb

dAb � Ce
dAe�

�1
2
�

1:95b0; t � t0

1:95b0 � 0:35b1l
tÿ t0

t1 ÿ t0
; t0 < t � t1

0:35b1h� 1:33Ae
1;2�t�; t1 < t � t2

0:35b1h� 1:33Ae
2;3�t�; t2 < t � t3

0:35b1h� 1:33a1; t � t3:

8>>>>>>>>><>>>>>>>>>:
�12�

Observe that equation (11) with (12) differs from

the original model, equation (2) with (1), in two
important ways. The linear initial value problem
equation (2) is replaced by the nonlinear problem
(11) and the coefficient of drag in (12) contains
significantly more real-world modeling than the
piecewise constant function in (1). The improved
model will be complete when the functions Ae

1;2
and Ae

2;3 are defined. This is deferred until appro-
priate smoothness and transition conditions are
developed in the next section.

ANALYSIS OF THE MODEL

Many introductory courses omit the section on
existence and uniqueness theory. When it is
included, the typical ``application'' of the theory
is to determine the intervals for which a solution is
known to exist or the initial conditions for which a
unique solution exists for all time. The analysis of
the model derived above is based on a simple
application of the standard existence and unique-
ness theory for first-order initial value problems
[5, 11]. This use of the theory provides a more
realistic example of the utility of theoretical results.
The theorems and their proofs are not difficult for
students to understand.

Theorem. Assume Ae
1;2 is continuous on �t1; t2� and

Ae
2;3 is continuous on �t2; t3�. There is exactly one

continuous solution to equation (11) on t > 0.
Proof. The idea is to apply the classical

existence and uniqueness theory on each sub-
interval. The hypotheses guarantee that the
coefficient is continuous on each of the five
subintervals.

Consider the initial value problem (11) on �0; t0�.
The standard theory provides a unique solution in
the space of differentiable functions on �0; t0�. Use
the value of this solution as the initial condition to
create an IVP on �t0; t1�. This problem has a
unique differentiable solution on �t0; t1�. In the
same way, differentiable solutions are obtained
on �t1; t2�, �t2; t3�, and �t3;1�. The piecewise-
defined function obtained by assembling each
solution on the appropriate interval is a solution
to equation (11) for all t > 0.

Note that the solution guaranteed by the above
theorem is continuous on �0;1� but may fail to be
differentiable at any of t0, t1, t2, and t3.

To investigate the smoothness of the solutions at
the endpoints of the different stages of the jump,
recall that the acceleration can be obtained directly
from the differential equation: a � dv=dt �
ÿg � �1=m�kv2. Since g and m are constants and
v is continuous (and non-zero), the acceleration is

Table 2. Parameter estimates for a typical skydiver and equipment

a1 b0 b1 h l m t0 t1 t2 t3

43.8 m2 0.5 m2 0.1 m2 1.78 m 8.96 m 97.2 kg 10 s 10.5 s 11.5 s 13.2 s
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continuous when k is continuous. This proves the
following corollary to the theorem.

Corollary. The solution to equation (11) is dif-
ferentiable on �0;1� if and only if k is continuous
on �0;1�.

The continuity of k, as given in equation (12), is
fairly easy to determine. Continuity of Ae

1;2 and
Ae

2;3 on their respective subintervals ensures conti-
nuity of k on the interior of each subinterval. The
choice of the linear function to model the extension
of the suspension lines guarantees continuity at t0.
Continuity at t1 requires that:

1:95b0 � 0:35b1l � 0:35b1h� 1:33Ae
1;2�t1�:

Continuity at t2 follows when Ae
1;2�t2� � Ae

2;3�t2�.
Note that the definition of t2 as the time when the
opening shock is felt implies that the cross-
sectional area is a1. Lastly, Ae

2;3�t3� � a1 implies
that k is continuous at t3. These findings are
summarized in the following lemma.

Lemma 1. If Ae
1;2 is continuous on �t1; t2� with

boundary conditions

Ae
1;2�t1� � 1:95b0 � 0:35b1�l ÿ h�

1:33
and Ae

1;2�t2� � a1

and if Ae
2;3 is continuous on �t2; t3� with boundary

conditions

Ae
2;3�t2� � Ae

2;3�t3� � a1;

then k is continuous on �0;1�.
The time derivative of the acceleration is the

jerk, j � da=dt. Differentiating equation (9)
produces:

j�t� � v�t�
m
�k0�t�v�t� � 2k�t�a�t��

� v�t�
m

2

m
k�t�2v�t�2�k0�t�v�t�ÿ2gk�t�

� �
�13�

which immediately gives conditions under which
the acceleration is differentiable.

Lemma 2. If, in addition to the conditions in Lemma
1 above, Ae

1;2 and Ae
2;3 are differentiable, then the

jerk is piecewise continuous on �0;1�. Discon-
tinuities can occur only at the endpoints of the
subintervals.

Proof. The additional hypotheses ensure that k
is piecewise continuous on �0;1�. The piecewise
continuity of the jerk is now apparent.

Note that equation (13) can be used to show
that if k is differentiable on �0;1� the jerk is
continuous and, hence, the acceleration is
smooth. The additional constraints on Ae

1;2 and
Ae

2;3 necessary to make k differentiable are not
difficult to obtain, but will not be pursued further
in this paper.

Experimental data for the canopy area during
deployment of the T-10 is presented in [3, (p. 246,
Figure 6.10B)]. The area appears to be essentially
exponential. (This is further confirmed by the
information for a 28-ft solid flat circular parachute
[3, (p. 245, Figure 6.10A)].) Let:

Ae
1;2�t� � �0e�0�tÿt1�=�t2ÿt1�:

The conditions in Lemma 1 are satisfied when:

�0 � 1:95b0 � 0:35b1�1ÿ h�
1:33

and �0 � log
a1

�0

� �
:

Specific information about overinflation for the
T-10 is more difficult to obtain. One plausible,
simple functional form satisfying the hypotheses of
Lemma 1 is:

Ae
2;3�t� � �1 1� �1 sin �

tÿ t2

t3 ÿ t2

� �� �
where the parameter �1 represents the relative
increase in cross-sectional area above the nominal
projected area (dp). Experimental data suggests
that the maximum cross-sectional area is approxi-
mately 115% of dp. Thus, a reasonable choice is
�1 � 0:15.

The model and values for all of its parameters
are now completely determined. A numerical solu-
tion of the problem can be created and graphed
using a software package such as Maple, Mathe-
matica, or MATLAB. Special care must be exer-
cised when plotting a discontinuous function,
particularly one defined as the solution of an initial
value problem. The most common numerical
methods for initial value problems assume the
solution has a certain smoothness. One way to
avoid this problem is to use a numerical method
to compute the solution to equation (11) and
compute the acceleration and jerk in terms of the
velocity as discussed above.

VERIFICATION OF THE MODEL

Prior to looking at a numerical approximation
to the solution, recall that the terminal velocity can
be determined directly from equation (11):

vT � ÿ
�������
mg

k

r
� ÿ

����������������������������������
2mg

��Cb
dAb � Ce

dAe�

s
: �14�

With k as defined in equation (12) and the numer-
ical parameters given above, the free-fall terminal
velocity is vT � ÿ44:2 m=s � ÿ98:9 miles=hr while
the impact velocity should be approximately
vT � ÿ5:72 m=s � ÿ12:8 miles=hr. The free-fall
terminal velocity is exceptionally close to the
100 miles/hr estimate given above. The impact
velocity is about 10% higher than the landing
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velocity for a free-fall from a 5 ft wall. A quick
calculation shows that to decrease the impact
velocity to vT � ÿ5:5 m=s the drag coefficient for
t > t3 by would have to increase about 10% from
its current value of 29.16 kg/m to approximately
32.21 kg/m. One possible source for this extra drag
is the suspension lines.

According to the analysis above, the velocity
and acceleration should be continuous and the jerk

should be piecewise continuous. Figure 1(a) shows
that the drag coefficient is continuous. It is difficult
to see that k0 has a jump discontinuity at t � t0, all
other jump discontinuities in k0 are clearly visible
in Figure 1(b). A good reinforcement of the dis-
continuity of k0 is to have the students explicitly
compute the derivative of equation (12) and check
for continuity at the transitions from one stage to
the next.

Fig. 1. Plots used to estimate time of impact: (a) the drag coefficient k and (b) its derivative k0 during the first 30 seconds of the jump.

Fig. 2. Velocity and acceleration for the first 30 seconds of the jump.

Fig. 3. Velocity, acceleration, and jerk (a) during canopy deployment and (b) showing the snatch (t � 10:5) and opening forces
(t � 11:5).
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Figure 2 provides additional verification of the
terminal velocity and smoothness results. The
spike in the acceleration contains both the snatch
force and opening force. Figure 3 provides a closer
look at the velocity, acceleration, and jerk during
each stage of canopy deployment. This model does
not do a good job of capturing the snatch force. To
obtain a larger snatch force it would be necessary
to have a larger jump in k0 at t1. A more careful
modeling of the line extension and inclusion of the
canopy's porosity are two ways to improve this
part of the model. The opening force has a
magnitude of approximately 4.9 g; this is in
strong agreement with the data presented in [3,
Figure 6.7(b)].

The analysis of the solution concludes with an
estimate of the time when the skydiver returns to
solid ground. Notice that once the motion
approaches terminal velocity, the position is essen-
tially linear. Simplifying even further, the motion
appears to be piecewise linear with slope given by
the free-fall and final descent terminal velocities,
respectively. Under this assumption, the skydiver
falls approximately t0jvT j � 442 m during free-fall
and spends a little less than 140 s in final descent.
As this analysis overestimates the velocity during
free-fall, this actual landing time should be slightly
longer than 150 s. The landing time predicted by
Figure 4(b) is 162 s.

Maple reports that at t � 162 s, x � ÿ1:34763 m
and v � ÿ5:71886 m=s. Since the motion is essen-
tially linear at this time, linear interpolation yields
an improved landing time of t � 161:674 s. At this
time, Maple reports the height is about 2 cmÐless
than one inch!

CONCLUSION

Some of the new pedagogical methods being
used to teach an introductory course in differential
equations have been illustrated. While knowledge
of solution techniques is still essential, modeling,
qualitative analysis, and the mathematical theory
of ordinary differential equations are also quite
important. Each of these topics played an impor-
tant role in the development and analysis of an
improved model for a parachute jump.

While the new model is an improvement over the
model found in traditional textbooks and recent
journal articles, it does not include all of the
physics. The derivation of models that eliminate
some of these simplifications make excellent
student projects. Specific suggestions for improv-
ing the model are to consider the elasticity and
drag forces of the suspension lines and to include
the porosity of the canopy. A more challenging
exercise is to derive a model for all three com-
ponents of motion and some of the handling
characteristics of the parachute. Note, in particu-
lar, that a tangential velocity component allows
for faster final descents without sacrificing safety
(at least in terms of vertical landing forces).

The authors used Maple and Mathematica to
assist with some of the symbolic manipulations,
numerical computations and visualization. Copies
of a supplemental Maple worksheet and Mathe-
matica notebook can be found on the authors'
homepages. The URLs are:

http://www.math.sc.edu/~meade/publ.html
http://www.math.mtu.edu/~struther/publ.html.
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