#1. (a) \(A = \begin{bmatrix} -2 & 3 \\ 0 & 1 \end{bmatrix} \) \(\lambda_1 = -2 \) \(\lambda_2 = 1 \) so \(K = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \).

\(\lambda = -2 : \quad A - (-2)I = \begin{bmatrix} 0 & 3 \\ 0 & -2 \end{bmatrix} \quad \begin{bmatrix} 0 & 3 \\ 0 & -2 \end{bmatrix} \quad \text{so } u = [1, 0]^T \)

\(\lambda = 1 : \quad A - I = \begin{bmatrix} -3 & 3 \\ 0 & 0 \end{bmatrix} \quad \text{so } \text{null space basis } u = [1]^T \).

This gives us that \(A \) is diagonalized by \(P = [1, 1]^T \).

(b) \(A = \begin{bmatrix} 3 & -3 \\ 0 & 0 \end{bmatrix} \) has eigenvalues 3 to 0 so \(K = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \).

\(\lambda = 3 : \quad A - 3I = \begin{bmatrix} 0 & -3 \\ 0 & -3 \end{bmatrix} \quad \begin{bmatrix} 0 & -3 \\ 0 & -3 \end{bmatrix} \quad \text{so } u = [1, 0]^T \).

\(\lambda = 0 : \quad A - 0I = \begin{bmatrix} 3 & -3 \\ 0 & 0 \end{bmatrix} \) has null space basis \(u = [1]^T \).

This matrix is also diagonalized by \(P = [1, 1]^T \).

(c) \(A = \begin{bmatrix} -2 & 0 \\ -6 & 1 \end{bmatrix} \) has eigenvalues -2 1 so \(K = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \).

\(\lambda = -2 : \quad A - (-2)I = \begin{bmatrix} 0 & 0 \\ -6 & 3 \end{bmatrix} \quad \begin{bmatrix} -2 & 0 \\ -6 & 3 \end{bmatrix} \quad \text{so } u = [1, 2]^T \).

\(\lambda = 1 : \quad A - I = \begin{bmatrix} 0 & 0 \\ -6 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 \\ -6 & 0 \end{bmatrix} \quad \text{so } u = [1]^T \).

This matrix is diagonalized by \(P = [1, 0]^T \).
#2. \(M = \begin{bmatrix} 1 & -35 \\ 6 & -13 \end{bmatrix} \) has eigenvectors \(u = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, v = \begin{bmatrix} 7 \\ 3 \end{bmatrix} \).

(a) \(M \) is diagonalized by \(P = \begin{bmatrix} u & v \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \).

To find the eigenvalues of \(P \) we can compute (as in \(\text{87.1} \))

\[
M_u = \begin{bmatrix} 10 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 2u \quad \text{so \ these \ eigenvector \ has \ \lambda = 2}.
\]

\[
M_v = \begin{bmatrix} 7 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 7 \\ 3 \end{bmatrix} = 1u \quad \lambda = 1.
\]

Thus, \(K = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \), and we can write \(M = PKP^{-1} \).

(b) \(M^3 = (PKP^{-1})^3 = PK^3P^{-1} = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 \\ 2 & 5 \end{bmatrix} \]

\[
= \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 24 & -54 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 100 & -245 \\ 42 & -97 \end{bmatrix}
\]

(c) \(M^{-1} = (PKP^{-1})^{-1} = PK^{-1}P^{-1} = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 \\ 2 & 5 \end{bmatrix} \]

\[
= \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & -7/2 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} -13/2 & 37/2 \\ -3 & -8 \end{bmatrix}
\]

#5. Claim. If \(A \) is similar to \(B \) and \(A \) is singular, then \(B \) must also be singular.

Proof: If \(A \) is singular, then at least one of \(A \)'s eigenvalues must be zero.

Because \(A \) is \(B \) are similar, they have the same eigenvalues.

Thus, at least one of \(B \)'s eigenvalues will also be zero which means \(B \) is singular. \(\square \)
#6. (a) A diagonalizable means A has a basis of eigenvectors.
A invertible means A has non-zero eigenvalues.
If A has a zero eigenvalue and a basis of eigenvectors
then A is diagonalizable and not invertible.
False
(b) Similar to (a) except now if A has all eigenvalues non-zero
and is deficient, then A is invertible & not diagonalizable.
False.
(c) If λ is an eigenvalue of A with algebraic multiplicity n
it is diagonalizable only when λ also has geometric
multiplicity n. Since this is not guaranteed, this
statement is False.
(d) If A is diagonalized by P, then
\[A = P \Lambda P^{-1} \] and \[A^2 = P \Lambda^2 P^{-1} \]
so that \[A^2 \] is also diagonalized by P. False
(e) If A has n distinct eigenvalues, then each of their
eigenspaces has dimension 1 and there is a basis of eigenvectors.
This means A can be diagonalized. True

#8. \[H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \] has eigenvalue \(\lambda = 1 \) with algebraic multiplicity 2.
\[H - 1I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \] has \(1 \) free variable so the geometric multiplicity is 1.
H cannot be diagonalized because H turns all vectors not on the
Geometric x-axis to the right (HV is not parallel to v when v is not on the x-axis).
* Use Mode: H: = Matrix ([[1,1], [0,1]]);
Head1t (H)