Math 241 (Section 502) – Vector Calculus

Instructor Professor Doug Meade
Office Hours: MW 10:00 – 11:00, Th 12:30 – 2:00 and by prior appointment
Office: LeConte College 300E
Phone: 777-6183
E-mail: meade@math.sc.edu
WWW URL http://www.math.sc.edu/~meade/math241-S02/
Meeting Times MWF 11:15AM– 12:05PM, LC 405
Prerequisite Completion of Math 142 with a grade of C or better; or consent of the Mathematics Department.
Overview The main topics in this course are the same as in the first two courses in this sequence: limits, derivatives, integrals, and applications of these concepts. The new component of this journey is that the functions depend on more than one variable and/or are vector-valued. To make sense of general n-space, we start with a basic introduction to two- and three-space.
 Differential calculus in n-space is very similar to that in one variable. The same rules will be used and we will be able to solve many optimization problems.
 Integral calculus in n-space is fundamentally quite different in n-space. Instead of integrating over an interval, we can think about integrating over a 2-d region of the plane, a 3-d solid in 3-space, along a line, or over the surface of a solid. The fortunate aspect of this is that, when thought about in the proper way, each of these types of integrals can be evaluated using our standard one variable methods. We will work to develop a proper understanding of these integrals. Another component of understanding these integrals is knowing what the theorems of Green, Gauss, and Stokes say and how to use them.
Course Content Chapters 13 — 17 of the text correspond to this material. Here is a breakdown of the major topics in each chapter.
 Chapter 13: Geometry in Plane, Vectors
 • 2-d vectors
 • vector-valued functions
 • curvilinear motion
 Chapter 14: Geometry in Space, Vectors
 • 3-d vectors and the cross product
 • surfaces
 • cylindrical and spherical coordinates
 Chapter 15: The Derivative in n-Space
 • partial derivatives
 • directional derivatives and gradients
 • optimization and Lagrange multipliers
 Chapter 16: The Integral in n-Space
 • double and triple integrals
 • iterated integrals
 • surface integrals
 Chapter 17: Vector Calculus
 • line integrals and independence of path
 • Green’s Theorem
 • Gauss’ Divergence Theorem
 • Stokes’ Theorem
Grading

Your grade in this course will be based on your performance on homework, two (2) technology-based projects, two (2) mid-term exams, and a final exam. The weights assigned to each of these components will be:

- Homework 15%
- Projects 10%
- Mid-term exams (2) 50%
- Final exam 25%

Course grades will be determined according to the following scale:

- A 90 –100
- B 80 – 89
- C 70 – 79
- D 60 – 69
- F 0 – 59

Note that the deadline to drop this course with a grade of W is Monday, February 25, 2002.

Exams

There will be two (2) exams during the semester. Tentative dates and topics for these exams are:

- Wednesday, February 20
- Wednesday, April 17

There will be no make-up exams. If you miss one exam due to a documented reason of illness, family emergency or participation in a University sponsored event, your score on the final exam will be used to replace the missing exam score. Excuses such as oversleeping, forgetting the time or location of the exam, and lack of studying are explicitly noted as unacceptable grounds for missing an exam.

A comprehensive final will be given at 2:00 PM on Saturday, May 4, 2001.

Homework

Homework problems will be announced for each section that we discuss. The assigned problems will be collected each week, typically on Friday. You will have an opportunity to ask questions about the homework before it is collected, particularly on Wednesdays. Homework papers are collected at the beginning of the class in which they are due. Your three (3) lowest homework scores will not be used when computing your homework grade. No late homework will be accepted for a grade.

Projects

The projects will be similar to the Technology Projects found at the end of each chapter. Each student is expected to complete two (2) projects, working either alone or with a group of no more than three students. The projects will require the use of the computer.

Study Hints

Before each class, you should both review the material from recent sections and read the section to be discussed that day. This will allow you to both understand my presentation of new material and identify questions that you have about earlier material.

Attendance

Regular class attendance is important. Consistent with the USC Undergraduate Bulletin, a grade penalty may be applied to any student missing more than four classes (10%) during the semester.

Academic Honesty

Cheating and plagiarism will not be tolerated in this course. You are encouraged to discuss homework problems with others. Violations of this policy will be dealt with in a manner consistent with University guidelines.