MATH 241 Prof. Meade University of South Carolina Fall 2000

Final Exam December 11, 2000 Name: _______ SS #: _____

Instructions:

- 1. There are a total of 10 problems on 9 pages. Check that your copy of the exam has all of the problems.
- 2. You must show all of your work to receive credit for a correct answer.
- 3. I will provide paper for all of your work. Please begin each problem on a new piece of paper and organize your papers by problem number. It is your responsibility to clearly label your work.

Problem	Points	Score
1	10	
2	18	
3	16	
4	12	
5	10	
6	15	
7	21	
8	18	
9	12	
10	18	
Total	150	

1. (10 points) Find the length of the curve

$$x = \cos t + t \sin t$$
$$y = \sin t - t \cos t$$

from 0 to 2π .

- 2. (18 points) Consider the curve $\mathbf{r}(t) = t\mathbf{i} + \frac{1}{3}t^3\mathbf{j}$.
 - (a) Find the unit tangent vector $\mathbf{T}(t)$ to the curve.

(b) Find the point on the curve when t = 1.

(c) Find the tangent line to the curve when t = 1.

- 3. (16 points) Write an equation of the plane through the point (12, 25, 0) that satisfies each condition.
 - (a) Parallel to the xy-plane.

(b) Perpendicular to the x-axis.

(c) Parallel to the x- and z-axes.

(d) Parallel to the plane 4x - 2y + z = 5.

- 4. (12 points) For $f(x,y) = \frac{1}{2}x^2 + y^2$,
 - (a) find the equation of its level curve that goes through the point (4, 1);

(b) find a normal vector to the level curve in (a) at (4, 1).

5. (10 points) Find and classify the extrema of $f(x, y) = x^2y - 6y^2 - 3x^2$.

- 6. (15 points) A triangle has vertices A, B, and C. Let the side between vertices A and B be c = AB, the side b = AC, and the included angle α .
 - (a) Use the cross-product to show that the area of the triangle is $A = \frac{1}{2}bc\sin\alpha$.

(b) Find the rate at which the area is changing when the side c = 10 inches and increasing at the rate of 3 inches per second, the side b = 8 inches and decreasing at 1 inch per second, and the $\alpha = \frac{\pi}{6}$ radians and decreasing at 0.1 radian per second.

7. (21 points) Evaluate each of the following multiple integrals.

(a)
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} 2xy^2 \, dx \, dy$$

(b) $\int \int_S \frac{1}{x^2 + y^2} dA$ where S is the region between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.

(c)
$$\int_{1}^{4} \int_{3}^{x} \int_{0}^{\sqrt{3}y} \frac{z}{y^{2} + z^{2}} dz dy dx$$

- 8. (18 points) Let $\mathbf{F}(x, y, z) = 2xyz\mathbf{i} 3y^2\mathbf{j} + 2y^2z\mathbf{k}$. Find
 - (a) $\operatorname{div}\mathbf{F}$

(b) $\operatorname{curl} \mathbf{F}$

(c) $\nabla(\operatorname{div} \mathbf{F})$

9. (12 points)

(a) Find a function f satisfying $\nabla f = (yz - e^{-x})\mathbf{i} + (xz + e^y)\mathbf{j} + xy\mathbf{k}$

(b) Use (a) to evaluate
$$\int_{(0,0,0)}^{(1,1,4)} (yz - e^{-x}) dx + (xy + e^y) dy + xy dz$$
.

- 10. (18 points) Use Green's Theorem to evaluate $\int_C xy \ dx + (x^2 + y^2) \ dy$ if
 - (a) C is the square path (0,0) to (1,0) to (1,1) to (0,1) to (0,0);

(b) C is the triangular path (0,0) to (2,0) to (2,1) to (0,0);

(c) C is the circle $x^2 + y^2 = 1$ traversed in the *clockwise* direction.

(d) Explain how the results in (a), (b), and (c) tell you the vector field $\mathbf{F} = xy\mathbf{i} + (x^2 + y^2)\mathbf{j}$ is *not* conservative.