Math 241
Prof. Meade
University of South Carolina
Fall 2000

Final Exam
December 11, 2000

Name: \qquad
SS \#: \qquad

Instructions:

1. There are a total of 10 problems on 9 pages. Check that your copy of the exam has all of the problems.
2. You must show all of your work to receive credit for a correct answer.
3. I will provide paper for all of your work. Please begin each problem on a new piece of paper and organize your papers by problem number. It is your responsibility to clearly label your work.

Problem	Points	Score
1	10	
2	18	
3	16	
4	12	
5	10	
6	15	
7	21	
8	18	
9	18	
10	Total	

[^0]1. (10 points) Find the length of the curve

$$
\begin{aligned}
& x=\cos t+t \sin t \\
& y=\sin t-t \cos t
\end{aligned}
$$

from 0 to 2π.
2. (18 points) Consider the curve $\mathbf{r}(t)=t \mathbf{i}+\frac{1}{3} t^{3} \mathbf{j}$.
(a) Find the unit tangent vector $\mathbf{T}(t)$ to the curve.
(b) Find the point on the curve when $t=1$.
(c) Find the tangent line to the curve when $t=1$.
3. (16 points) Write an equation of the plane through the point $(12,25,0)$ that satisfies each condition.
(a) Parallel to the $x y$-plane.
(b) Perpendicular to the x-axis.
(c) Parallel to the x - and z-axes.
(d) Parallel to the plane $4 x-2 y+z=5$.
4. (12 points) For $f(x, y)=\frac{1}{2} x^{2}+y^{2}$,
(a) find the equation of its level curve that goes through the point $(4,1)$;
(b) find a normal vector to the level curve in (a) at (4, 1).
5. (10 points) Find and classify the extrema of $f(x, y)=x^{2} y-6 y^{2}-3 x^{2}$.
6. (15 points) A triangle has vertices A, B, and C. Let the side between vertices A and B be $c=A B$, the side $b=A C$, and the included angle α.
(a) Use the cross-product to show that the area of the triangle is $A=\frac{1}{2} b c \sin \alpha$.
(b) Find the rate at which the area is changing when the side $c=10$ inches and increasing at the rate of 3 inches per second, the side $b=8$ inches and decreasing at 1 inch per second, and the $\alpha=\frac{\pi}{6}$ radians and decreasing at 0.1 radian per second.
7. (21 points) Evaluate each of the following multiple integrals.
(a) $\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} 2 x y^{2} d x d y$
(b) $\iint_{S} \frac{1}{x^{2}+y^{2}} d A$ where S is the region between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
(c) $\int_{1}^{4} \int_{3}^{x} \int_{0}^{\sqrt{3} y} \frac{z}{y^{2}+z^{2}} d z d y d x$
8. (18 points) Let $\mathbf{F}(x, y, z)=2 x y z \mathbf{i}-3 y^{2} \mathbf{j}+2 y^{2} z \mathbf{k}$. Find
(a) $\operatorname{div} \mathbf{F}$
(b) curlF
(c) $\nabla(\operatorname{div} \mathbf{F})$
9. (12 points)
(a) Find a function f satisfying $\nabla f=\left(y z-e^{-x}\right) \mathbf{i}+\left(x z+e^{y}\right) \mathbf{j}+x y \mathbf{k}$
(b) Use (a) to evaluate $\int_{(0,0,0)}^{(1,1,4)}\left(y z-e^{-x}\right) d x+\left(x y+e^{y}\right) d y+x y d z$.
10. (18 points) Use Green's Theorem to evaluate $\int_{C} x y d x+\left(x^{2}+y^{2}\right) d y$ if
(a) C is the square path $(0,0)$ to $(1,0)$ to $(1,1)$ to $(0,1)$ to $(0,0)$;
(b) C is the triangular path $(0,0)$ to $(2,0)$ to $(2,1)$ to $(0,0)$;
(c) C is the circle $x^{2}+y^{2}=1$ traversed in the clockwise direction.
(d) Explain how the results in (a), (b), and (c) tell you the vector field $\mathbf{F}=x y \mathbf{i}+\left(x^{2}+y^{2}\right) \mathbf{j}$ is not conservative.

[^0]: Happy Holidays!

