Math 241
Prof. Meade

Exam 2
November 17, 2000

University of South Carolina
Fall 2000

Name: \qquad
SS \#: \qquad

Instructions:

1. There are a total of 6 problems on 6 pages. Check that your copy of the exam has all of the problems.
2. You must show all of your work to receive credit for a correct answer.
3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	15	
2	10	
3	10	
4	20	
5	30	
6	15	
Total	100	

Good Luck!

1. (15 points) For each of the following limits, find the limit or explain why the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$
(b) $\lim _{(x, y) \rightarrow(2,2)} \frac{x^{2}-2 y}{x^{2}+2 y}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}$
2. (10 points) In what direction is $f(x, y)=x^{2}+x y^{4}$ increasing most rapidly at $(1,-1)$? Remember that a direction vector has unit length.
3. (10 points) Suppose $F(u, v)=\ln (u v), u=\sqrt{x y}$, and $v=\sqrt{\frac{y}{x}}$. Use the Chain Rule to find $\frac{\partial F}{\partial y}$ in terms of x and y.
Be sure to simplify your answer.
4. (20 points)
(a) Formulate the constrained optimization problem for finding the largest possible rectangular box that is inscribed in the ellipsoid $36 x^{2}+4 y^{2}+9 z^{2}=36$.
(b) Find the Lagrange equations for this problem.

Do not solve!
5. (30 points)
(a) Evaluate $\iint_{S}\left(x^{2}+2 y\right) d A$ where S is the region between $y=x^{2}$ and $y=\sqrt{x}$. (Sketch S.)
(b) Convert $\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} 2 x y^{2} d x d y$ to an equivalent integral in polar coordinates. Do not evaluate the integral.
(c) Rewrite the iterated integral $\int_{0}^{2} \int_{x^{2}}^{4} \int_{0}^{4-y} f(x, y, z) d z d y d x$ in the order $d x d y d z$. Hint: A sketch should help.
6. (15 points) Find the Cartesian coordinate equation corresponding to
(a) the cylindrical coordinate equation $r^{2} \cos (2 \theta)+z^{2}=1$
(b) the spherical coordinate equation $\rho \sin \phi=2$

Hint: Square the equation and use trigonometric identities.

