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Let
 C be the unit circle with center (1,0)
 Cr be the circle with radius r and center (0,0)
 P be the point (0, r)
 Q be the upper point of intersection of C and Cr
 R be the intersection of line PQ and the x-axis.

What happens to R as Cr shrinks to the origin?
Stewart, Essential Calculus: Early Transcendentals,

Thomson Brooks/Cole, 2007, p. 45, Exercise 56.
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Geometry 
Expressions Excel Maple
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 Numeric
◦ Sensitive to floating-point cancellation

 Symbolic
◦ Indeterminate form

(l’Hopital’s Rule, or simply rationalize)

 Geometric
◦ Tom Banchoff (Brown University)
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Let
C be a fixed curve
Cr be circle with center at origin and radius r
P is point (0, r)
Q is upper point of intersection of C and Cr
R is point of intersection of line PQ and x-axis

What happens to R as Cr shrinks to a point?
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Let C be the circle with center (a, b) that 
includes the origin, i.e.,

(x − a)2 + (y − b)2 = a2 + b2.

Define Cr, P, Q, and R as in the Generalized 
Shrinking Circle Problem.

Then, 

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=→ otherwise)0,0(
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Let C be a curve in the plane that includes 
the origin and is twice continuously 
differentiable at the origin. Define Cr, P, Q, 
and R as in the Generalized Shrinking Circle 
Problem. If the curvature at the origin, κ, is 
positive, the osculating circle of C at the 
origin has radius  ρ=1/κ and center (a, b)
where a2 + b2 = ρ2.

Moreover, 

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 =

=→ otherwise)0,0(
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Let O be a point on a curve C in the plane where the 
osculating circle to C at O exists.  Let T and N be the unit 
tangent and normal vectors to C at O, respectively. Let κ be 
the curvature of C at O.

(Orient N so that O + 1/κ N is the center of the osculating circle to C at O.)

For any r > 0, define
• Cr to be the circle with radius r centered at O,
• P = O + r T, to be the point at the “top” of Cr,
• Q to be the intersection of C and Cr, and
• R to be the point on the line through P and Q such that OR

is parallel with N

Then, as r decreases to 0,
R converges to the point R0 = O + 4/κ N.
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Let
 S = sphere with center (0,a,b) that includes 

the origin, i.e., x2+(y-a)2+(z-b)2 = a2+b2

 Sr = sphere with radius r and center (0,0,0)
 P = point (0,0,r), the “north pole” of Sr
 Q = curve of intersection of S and Sr
 R = projection of P through Q onto xy plane

What happens to R as Sr shrinks to the origin?
Note: R is now, by definition, a curve.
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Let O be a point on a surface S in R3 with a well-defined 
normal vector, N, at O.  Let C be a curve on S such that, at O, 
the unit tangent vector to C on S is T and the principal normal 
vector for the curve C coincides with the normal vector to S at 
O, i.e., N=|dT/ds| (where s is arclength).

For any r>0, define
• Sr to be the sphere with radius r centered at O,
• P = O + r T, to be the point at the “top” of Sr,
• Q to be the intersection of S and Sr, and
• R to be the curve that is the projection of P through Q onto 

the plane containing O that is orthogonal to T.

Then, as r decreases to 0, R converges to the circle with 
radius 2/κ, centered at O + 2/κ N, and lies in the plane with 
normal vector T.
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 These geometric results are so elegant, and 
seemingly simplistic.

 Is it possible they were never observed or 
published until now?

 How did Stewart come up with this problem?
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 Wikipedia ( http://en.wikipedia.org/wiki/Meusnier%27s_theorem )

In differential geometry, Meusnier's theorem
states that all curves on a surface passing 
through a given point p and having the same 
tangent line at p also have the same normal 
curvature at p and their osculating circles
form a sphere.

First announced by Jean Baptiste Meusnier in 1776.
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 Answers.com (from Sci-Tech Dictionary)

A theorem stating that the curvature of a 
surface curve equals the curvature of the 
normal section through the tangent to the 
curve divided by the cosine of the angle 
between the plane of this normal section and 
the osculating plane of the curve. 
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 Simple, routine-sounding textbook exercises led to 
interesting discoveries, even if they were not 
completely new.

 Numerical simulations were incomplete, or 
misleading.

 The essential ingredients for the general problems 
became clear only through careful use of technology 
for both visual and symbolic analysis.

 Three-dimensional visualization tools are lacking.
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D.B. Meade and W-C Yang,
Analytic, Geometric, and Numeric Analysis of the 
Shrinking Circle and Sphere Problems, Electronic 
Journal of Mathematics and Technology, v 1, 
issue 1, Feb. 2007, ISSN 1993-2823

 https://php.radford.edu/~ejmt/deliveryBoy.php?
paper=eJMT_v1n1p4

 http://www.math.sc.edu/~meade/eJMT-Shrink/
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