Recent Developments in Computer Algebra Technology and Their Impact on Mathematical Research and Teaching

Douglas B. Meade
Homepage: http://www.math.sc.edu/~meade
E-mail: meade@math.sc.edu

December 14, 2005
Theorem

Ultimate success of the use of technology in mathematics education requires a paradigm shift.
Outline of the Proof

To appreciate the current state of computer algebra systems (CAS) and to influence future developments of these systems it is instructive to look back in time.

•
•
•
Outline of the Proof

To appreciate the current state of computer algebra systems (CAS) and to influence future developments of these systems it is instructive to look back in time.

- Long-term view shows how much progress has been made.
Outline of the Proof

To appreciate the current state of computer algebra systems (CAS) and to influence future developments of these systems it is instructive to look back in time.

- Long-term view shows how much progress has been made.
- Short-term view shows where current efforts are concentrated.
Outline of the Proof

To appreciate the current state of computer algebra systems (CAS) and to influence future developments of these systems it is instructive to look back in time.

- Long-term view shows how much progress has been made.
- Short-term view shows where current efforts are concentrated.
- Together, the future becomes clearer
Overview
Overview

• First Generation (1967 – 1989)
Overview

• First Generation (1967 – 1989)

• Second Generation (1990 – 2001)

•
Overview

- Second Generation (1990 – 2001)
- Third Generation (2002 –)
Overview

- Second Generation (1990 – 2001)
- Third Generation (2002 –)
- Future
Overview

- Second Generation (1990 – 2001)
- Third Generation (2002 –)
- Future . . . Near and Distant???
First Generation (1967–1989)

1967
1979
1980
1988
First Generation (1967–1989)

1967 — MACSYMA project begins at MIT

1979

1980

1988
First Generation (1967–1989)

1967 — MACSYMA project begins at MIT

1979 — muMATH-79 released (becomes DERIVE)

1980

1988
First Generation (1967–1989)

1967 — MACSYMA project begins at MIT

1979 — muMATH-79 released (becomes DERIVE)

1980 — Maple project commences at U. of Waterloo

1988
First Generation (1967–1989)

1967 — MACSYMA project begins at MIT

1979 — muMATH-79 released (becomes DERIVE)

1980 — Maple project commences at U. of Waterloo

1988 — Mathematica 1.0 (successor to SMP)
First Generation – Personal

First Generation – Personal

 - Introduction to Numerical Analysis
First Generation – Personal

 - Introduction to Numerical Analysis
 - Homework 7, Question (a) [PDF]
First Generation – Personal

 - Introduction to Numerical Analysis
 - Homework 7, Question (a) [PDF]
 - Solution:
 - [MACSYMA] (5 minutes)
 - [Maple 9.5] (2.5 seconds)
 - [Maple 10] (0.3 seconds)
Second Generation (1990–2001)

• first appearance of graphical user interface (GUI)

• supporting literature becomes more abundant, and higher quality

• materials shared via Internet, growth of WWW

• educational usage becomes more feasible

• still not really practical for education
Second Generation – Personal

- ODE PowerTool (2001)
Second Generation – Personal

- ODE PowerTool (2001)
 - Maple Application Center [WWW]
Second Generation – Personal

- ODE PowerTool (2001)
 - Maple Application Center [WWW]
 - Education PowerTools [WWW]
Second Generation – Personal

- ODE PowerTool (2001)
 - Maple Application Center [WWW]
 - Education PowerTools [WWW]
 - ODE Powertool [WWW]
Second Generation – Personal

- ODE PowerTool (2001)
 - Maple Application Center [WWW]
 - Education PowerTools [WWW]
 - ODE Powertool [WWW]
 - Lesson 6: Bifurcations
 [Maple 8] [Maple 9.5]
Third Generation (2002–present)

- less reliance on syntax (more student-friendly)
- better interaction between applications
- standalone web-based applets
- testing and assessment
Third Generation – Personal

- Irreducibility Tests for 0-1 Polynomials
- Calculus I with Maple in Blackboard
- Lab Materials/Projects for Calculus
Irreducibility Tests for 0-1 Polynomials

2000

2004

2005
Irreducibility Tests for 0-1 Polynomials

2000 cgi-based Web forms

[Irreduc]

2004

2005
Irreducibility Tests for 0-1 Polynomials

2000 cgi-based Web forms
 [Irreduc]

2004 maplet
 [Irreduc.maplet] [via MapleNet]

2005
Irreducibility Tests for 0-1 Polynomials

2000 cgi-based Web forms
 [Irreduc]

2004 maplet
 [Irreduc.maplet] [via MapleNet]

 [URL: http://www.math.sc.edu/~meade/papers/JAlgFilasetaMeade.pdf]
Irreducibility Tests for 0-1 Polynomials

2000 cgi-based Web forms
[Irreduc]

2004 maplet
[Irreduc.maplet] [via MapleNet]

[URL: http://www.math.sc.edu/~meade/papers/JAlgFilasetaMeade.pdf]

pure research, but ...
Calculus I with Maple in Blackboard
Calculus I with Maple in Blackboard

- Blackboard-based self-contained course
- [Home] [Unit] [Lessons] [Homework / Quizzes / Exams]
Calculus I with Maple in Blackboard

- Blackboard-based self-contained course
 [Home] [Unit] [Lessons] [Homework / Quizzes / Exams]

- MapleNet / maplet
 [EpsilonDelta] [CalculusI maplets]

 •
Calculus I with Maple in Blackboard

- Blackboard-based self-contained course
 [Home] [Unit] [Lessons] [Homework / Quizzes / Exams]

- MapleNet / maplet
 [EpsilonDelta] [CalculusI maplets]

- MapleTA
 Practice: [Q1] [Q2] [Q3] [Q4] [Q5]
Calculus I with Maple in Blackboard

- Blackboard-based self-contained course
 [Home] [Unit] [Lessons] [Homework / Quizzes / Exams]

- MapleNet / maplet
 [EpsilonDelta] [CalculusI maplets]

- MapleTA
 Practice: [Q1] [Q2] [Q3] [Q4] [Q5]

many shortcomings, but . . .
http://www.math.sc.edu/calclab/

- Lab Materials / Projects for Calculus I and II
- Bonus Labs for Vector Calculus
- Lab Materials for Numerical Linear Algebra
http://www.math.sc.edu/calclab/

- Lab Materials / Projects for Calculus I and II
- Bonus Labs for Vector Calculus
- Lab Materials for Numerical Linear Algebra

improving . . .
State of the Art in CAS
State of the Art in CAS

- Maplets for Calculus [WWW]
State of the Art in CAS

- Maplets for Calculus [WWW]
- Maple 10
State of the Art in CAS

- Maplets for Calculus [WWW]

- Maple 10
 - Palettes, 2d input, handwriting recognition
State of the Art in CAS

- Maplets for Calculus [WWW]

- Maple 10
 - Palettes, 2d input, handwriting recognition
 - Embedded components [Maple 10]
State of the Art in CAS

- Maplets for Calculus [WWW]

- Maple 10
 - Palettes, 2d input, handwriting recognition
 - Embedded components [Maple 10]
 - Worksheet based assessment [Maple 10]
State of the Art in CAS

- Maplets for Calculus [WWW]

- Maple 10
 - Palettes, 2d input, handwriting recognition
 - Embedded components [Maple 10]
 - Worksheet based assessment [Maple 10]
 - “Clickable Calculus” [WWW]
State of the Art in CAS

- Maplets for Calculus [WWW]
- Maple 10
 - Palettes, 2d input, handwriting recognition
 - Embedded components [Maple 10]
 - Worksheet based assessment [Maple 10]
 - “Clickable Calculus” [WWW]

and primed to take advantage of new possibilities!
What’s Coming? (What I want?)

- Tablet and handheld PC’s
- Natural language recognition
- Inter-application portability
- Easy user customization
- Improved testing and assessment
What’s Coming? (What I want?)

- Tablet and handheld PC’s
- Natural language recognition
- Inter-application portability
- Easy user customization
- Improved testing and assessment

What’s on your (technology) wish list?
Theorem

Ultimate success of the use of technology in mathematics education requires a paradigm shift.

Proof

The process is iterative, and not monotone, every step is progress. This conference, and others like it, are evidence of the vitality of this endeavor. Each of us has a role to play in the overall plan. Our efforts have meaning for all “users” of mathematics: students, instructors, researchers — everyone.