
Chapter 18

The Theorems of Green, Stokes,
and Gauss

Imagine a fluid or gas moving through space or on a plane. Its density may
vary from point to point. Also its velocity vector may vary from point to point.
Figure 18.0.1 shows four typical situations. The diagrams shows flows in the
plane because it’s easier to sketch and show the vectors there than in space.

(a) (b) (c) (d)

Figure 18.0.1: Four typical vector fields in the plane.

The plots in Figure 18.0.1 resemble the slope fields of Section 3.6 but now,
instead of short segments, we have vectors, which may be short or long. Two
questions that come to mind when looking at these vector fields:

• For a fixed region of the plane (or in space), is the amount of fluid in the
region increasing or decreasing or not changing?

• At a given point, does the field create a tendency for the fluid to rotate?
In other words, if we put a little propeller in the fluid would it turn? If
so, in which direction, and how fast?

This chapter provides techniques for answering these questions which arise
in several areas, such as fluid flow, electromagnetism, thermodynamics, and
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1282 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

gravity. These techniques will apply more generally, to a general vector field.
Applications come from magnetics as well as fluid flow.

Throughout we assume that all partial derivatives of the first and second
orders exist and are continuous.
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§ 18.1 CONSERVATIVE VECTOR FIELDS 1283

18.1 Conservative Vector Fields

In Section 15.3 we defined integrals of the form∫
C

(P dx+Q dy +R dz). (18.1.1)

where P , Q, and R are scalar functions of x, y, and z and C is a curve in
space. Similarly, in the xy-plane, for scalar functions of x and y, P and Q, we
have ∫

C

(P dx+Q dy).

Instead of three scalar fields, P , Q, and R, we could think of a single vector
function F(x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Such a function is
called a vector field, in contrast to a scalar field. It’s hard to draw a vector
field defined in space. However, it’s easy to sketch one defined only on a
plane. Figure 18.1.1 shows three wind maps, showing the direction and speed
of the winds for (a) the entire United States, (b) near Pierre, SD and (c) near
Tallahassee, FL on April 24, 2009.

(a) (b) (c)

Figure 18.1.1: Wind maps showing (a) a source and (b) a saddle. Ob-
tained from www.intellicast.com/National/Wind/Windcast.aspx on April
23, 2009. [Another idea for these sample plots is to use maps from Hurricane
Katrina.]

Introducing the formal vector dr = dxi+dyj+dzk, we may rewrite (18.1.1)
as ∫

C

F · dr.

The vector notation is compact, is the same in the plane and in space, and
emphasizes the idea of a vector field. However, the clumsy notations∫
C

(P dx+Q dy+R dz) and

∫
C

(P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz)

do have two uses: to prove theorems and to carry out calculations.
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Conservative Vector Fields

Recall the definition of a conservative vector field from Section 15.3.

DEFINITION (Conservative Field) A vector field F defined in
some planar or spatial region is called conservative if∫

C1

F · dr =

∫
C2

F · dr

whenever C1 and C2 are any two simple curves in the region with
the same initial and terminal points.

An equivalent definition of a conservative vector field F is that for any
simple closed curve C in the region

∮
C

F · dr = 0, as Theorem 18.1.1 implies.
A closed curve is a curve that begins and ends at the same point, forming a
loop. It is simple if it passes through no point — other than its start and
finish points — more than once. A curve that starts at one point and ends
at a different point is simple if it passes through no point more than once.
Figure 18.1.2 shows some curves that are simple and some that are not.

Figure 18.1.2:

Theorem 18.1.1. A vector field F is conservative if and only if
∮
C

F · dr = 0
for every simple closed curve in the region where F is defined.

Proof

Assume that F is a conservative and let C be simple closed curve that starts
and ends at the point A. Pick a point B on the curve and break C into two
curves: C1 from A to B and C∗2 from B to A, as indicated in Figure 18.1.3(a).

Let C2 be the curve C∗2 traversed in the opposite direction, from A to B.
Then, since F is conservative,Note the sign change. ∮

C

F · dr =

∫
C1

F · dr +

∫
C∗2

F dr =

∫
C1

F · dr−
∫
C2

F · dr = 0.
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On the other hand, assume that F has the property that
∮
C

F · dr = 0 for
any simple closed curve C in the region. Let C1 and C2 be two simple curves
in the region, starting at A and ending at B. Let −C2 be C2 taken in the
reverse direction. (See Figures 18.1.3(b) and (c).) Then C1 followed by −C2

is a closed curve C from A back to A. Thus

(a) (b) (c)

Figure 18.1.3:

0 =

∮
C

F · dr =

∫
C1

F · dr +

∫
−C2

F · dr =

∫
C1

F · dr −
∫
C2

F · dr.

Consequently, ∫
C1

F · dr =

∫
C2

F · dr.

This concludes both directions of the argument. •

In this proof we tacitly assumed that C1 and C2 overlap only at their
endpoints, A and B. Exercise 26 treats the case when the curves intersect
elsewhere also.

Every Gradient Field is Conservative

Whether a particular vector field is conservative is important in the study of
gravity, electro-magnetism, and thermodynamics. In the rest of this section
we describe ways to determine whether a vector field F is conservative.

The first method that may come to mind is to evaluate
∮

F · dr for every
simple closed curve and see if it is always 0. If you find a case where it is
not 0, then F is not conservative. Otherwise you face the task of evaluating
a never-ending list of integrals checking to see if you always get 0. That is a
most impractical test. Later in this section partial derivatives will be used to
obtain a much simpler test. The first test involves gradients.
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Gradient Fields Are Conservative

The fundamental theorem of calculus asserts that
∫ b
a
f ′(x) dx = f(b) − f(a).

The next theorem asserts that
∫
C
∇f ·dr = f(B)−f(A), where f is a function of

two or three variables and C is a curve from A to B. Because of its resemblance
to the fundamental theorem of calculus, Theorem 18.1.2 is sometimes called
the fundamental theorem of vector fields.

Any vector field that is the gradient of a scalar field turns out to be conser-
vative. That is the substance of Theorem 18.1.2, which says, “The circulation
of a gradient field of a scalar function f along a curve is the difference in values
of f at the end points.”

Theorem 18.1.2. Let f be a scalar field defined in some region in the plane
or in space. Then the gradient field F = ∇f is conservative. In fact, for any
points A and B in the region,∫

C

∇f · dr = f(B)− f(A).

Proof

For simplicity take the planar case. Let C be given by the parameterization
r = G(t) for t in [a, b]. Let G(t) = x(t)i + y(t)j. Then,

∫
C

∇f · dr =

∫
C

(
∂f

∂x
dx+

∂f

∂y
dy

)
=

b∫
a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt.

The integrand (∂f/∂x)(dx/dt) + (∂f/∂y)(dy/dt) is reminiscent of the chain
rule in Section 16.3. If we introduce the function H defined by

H(t) = f(x(t), y(t)),

then the chain rule asserts that

dH

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Thus
b∫

a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt =

b∫
a

dH

dt
dt = H(b)−H(a)

by the fundamental theorem of calculus. But

H(b) = f(x(b), y(b)) = f(B)
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and
H(a) = f(x(a), y(a)) = f(A).

Consequently, ∫
C

∇f · dr = f(B)− f(A), (18.1.2)

and the theorem is proved. •
In differential form Theorem 18.1.2 reads

If f is defined as the xy-plane, and C starts at A and ends at B,∫
C

(
∂f

∂x
dx+

∂f

∂y
dy

)
= f(B)− f(A) (18.1.3)

If f is defined in space, then,∫
C

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
= f(B)− f(A). (18.1.4)

Note that one vector equation (18.1.2) covers both cases (18.1.3) and
(18.1.4). This illustrates an advantage of vector notation.

It is a much more pleasant task to evaluate f(B)− f(A) than to compute
a line integral.

EXAMPLE 1 Let f(x, y, z) = 1√
x2+y2+z2

, which is defined everywhere ex-

cept at the origin. (a) Find the gradient field F = ∇f , (b) Compute
∫
C

F · dr
where C is any curve from (1, 2, 2) to (3, 4, 0).
SOLUTION (a) Straightforward computations show that

∂f

∂x
=

−x
(x2 + y2 + z2)3/2

,
∂f

∂y
=

−y
(x2 + y2 + z2)3/2

,
∂f

∂z
=

−z
(x2 + y2 + z2)3/2

.

So

∇f =
−zi− yj− zk

(x2 + y2 + z2)3/2
. (18.1.5)

If we let r(x, y, z) = xi + yj + zk, r = ‖r‖, and r̂ = r/r, then (18.1.5) can
be written more simply as

F = ∇f =
−r

r3
=
−r̂

r2
.
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(b) For any curve C from (1, 2, 2) to (3, 4, 0),∫
C

∇f · dr = f(3, 4, 0)− f(1, 2, 2) =
1√

32 + 42 + 02
− 1√

12 + 22 + 22

=
1

5
− 1

3
= − 2

15
.

�
For a constant k, positive or negative, any vector field, F = kr̂/r2, is called

an inverse square central field. They play an important role in the study
of gravity and electromagnetism.

In Example 1 ‖∇f‖ = ‖−r‖
r3

= r
r3

= 1
r2

and f(x, y, z) = 1
r
. In the study of

gravity, ∇f measures gravitational attraction, and f measures “potential.”

EXAMPLE 2 Evaluate
∮
C

(y dx + x dy) around a closed curve C taken
counterclockwise.

SOLUTION In Section 15.3 it was shown that if the area enclosed by a curve
C is A, then

∮
C
x dy = A and

∮
C
y dx = −A. Thus,∮

C

(y dx+ x dy) = −A+ A = 0.

A second solution uses Theorem 18.1.2. Note that

∇(xy) =
∂(xy)

∂x
i +

∂(xy)

∂y
j = yi + xj,

that is, the gradient of xy is yi + xj.
Hence, byTheorem 18.1.2, if the endpoints of C are A and B∮

C

(y dx+ x dy) =

∮
C

∇(xy) · dr = xy|BA .

Because C is a closed curve, A = B and so the integral is 0. �
A differential form P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz is called exact

if there is a scalar function f such that P (x, y, z) = ∂f/∂x, Q(x, y, z) = ∂f/∂y,
and R(x, y, z) = ∂f/∂z. In that case, the expression takes the form

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

That is the same thing as saying that the vector field F = P (x, y, z)i +
Q(x, y, z)j +R(x, y, z)k is a gradient field: F = ∇f .
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If F is Conservative Must It Be a Gradient Field?

The proof of the next theorem is similar to the proof of the second part of
the Fundamental Theorem of Calculus. We suggest you review that proof FTC II states that every

continuous function has an
antiderivative.

(page 469) before reading the following proof.
The question may come to mind, “If F is conservative, is it necessarily the

gradient of some scalar function?” The answer is “yes.” That is the substance
of the next theorem, but first we need to introduce some terminology about
regions.

A region R in the plane is open if for each point P in R there is a disk
with center at P that lies entirely in R. For instance, a square without its
edges is open. However, a square with its edges is not open.

An open region in space is defined similarly, with “disk” replaced by “ball.”
An open region R is arcwise-connected if any two points in it can be

joined by a curve that lies completely in R. In other words, it consists of just
one piece.

Theorem 18.1.3. Let F be a conservative vector field defined in some arcwise-
connected region R in the plane (or in space). Then there is a scalar function
f defined in that region such that F = ∇f .

Proof

Consider the case when F is planar, F = P (x, y)i +Q(x, y)j. (The case where
F is defined in space is similar.) Define a scalar function f as follows. Let
(a, b) be a fixed point in R and (x, y) be any point in R. Select a curve C in
R that starts at (a, b) and ends at (x, y).

Figure 18.1.4:

Define f(x, y) to be
∫
C

F · dr. Since F is conservative, the number f(x, y)
depends only on the point (x, y) and not on the choice of C. (See Figure 18.1.4.)

All that remains is to show that ∇f = F; that is, ∂f/∂x = P and ∂f/∂y =
Q. We will go through the details for the first case, ∂f/∂x = P . The reasoning
for the other partial derivative is similar.

Let (x0, y0) be an arbitrary point in R and consider the difference quotient
whose limit is ∂f/∂x(x0, y0), namely,

f(x0 + h, y0)− f(x0, y0)

h
,

for h small enough so that (x0 + h, y0) is also in the region.

Figure 18.1.5:

Let C1 be any curve from (a, b) to (x0, y0) and let C2 be the straight path
from (x0, y0) to (x0 + h, y0). (See Figure 18.1.5.) Let C be the curve from
(0, 0) to the point(x0 + h, y0) formed by taking C1 first and continuing on C2.
Then

f(x0, y0) =

∫
C1

F · dr,

Calculus October 22, 2010
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and

f(x0 + h, y0) =

∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr.

Thus

f(x0 + h, y0)− f(x0, y0)

h
=

∫
C2

F · dr
h

=

∫
C2

(P (x, y) dx+Q(x, y) dy)

h
.

On C2, y is constant, y = y0; hence dy = 0. Thus
∫
C2
Q(x, y) dy = 0. Also,

∫
C2

P (x, y) dx =

x+h∫
x

P (x, y) dx.

By the Mean-Value Theorem for definite integrals, there is a number x∗ be-See Section 6.3 for the
MVT for Definite Integrals tween x and x+ h such that

x+h∫
x

P (x, y) dx = P (x∗, y0)h.

Hence

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h

= lim
h→0

1

h

x0+h∫
x0

P (x, y0) dx = lim
h→0

P (x∗, y0) = P (x0, y0).

Consequently,
∂f

∂x
(x0, y0) = P (x0, y0),

as was to be shown.
In a similar manner, we can show that

∂f

∂y
(x0, y0) = Q(x0, y0).

•

For a vector field F defined throughout some region in the plane (or space)
the following three properties are therefore equivalent: Figure 18.1.6 tells us
that any one of the three properties, (1), (2), or (3), describes a conservative
field. We used property (3) as the definition.
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Figure 18.1.6: Double-headed arrows (⇔) mean “if and only if” or “is equiv-
alent to.” (Single-headed arrows (⇒) mean “implies.”)

Almost A Test For Being Conservative

Figure 18.1.6 describes three ways of deciding whether a vector field F =
P i + Qj + Rk is conservative. Now we give a simple way to tell that it is
not conservative. The method is simpler than finding a particular line integral∫
C

F · dr that is not 0.

Remember that we have assumed that all of the functions we encounter in
this chapter have continuous first and second partial derivatives.

The test depends on the fact that the two orders in which are may compute
a second-order mixed partial derivative give the same result. (We used this
fact in Section 16.8 in a thermodynamics context.)

Consider an expression of the form P dx+Q dy +R dz (or equivalently a
vector field F = P i +Qj +Rk). If the form is exact, then F is a gradient and
there is a scalar function f such that

∂f

∂x
= P,

∂f

∂y
= Q,

∂f

∂z
= R.

Since
∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
,

we have
∂P

∂y
=
∂Q

∂x
.

Similarly we find
∂Q

∂z
=
∂R

∂y
and

∂P

∂z
=
∂R

∂x
.

To summarize,

Calculus October 22, 2010



1292 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

If the vector field F = P i +Qj +Rk is conservative, then

∂Q

∂x
− ∂P

∂y
= 0,

∂R

∂y
− ∂Q

∂z
= 0,

∂R

∂x
− ∂P

∂z
= 0. (18.1.6)

If at least one of these three equations (18.1.6) doesn’t hold, then P dx +
Q dy +R dz is not exact (and F = P i +Qj +Rk is not conservative).

EXAMPLE 3 Show that cos(y) dx+sin(xy) dy+ln(1+x) dz is not exact.
SOLUTION Checking whether the first equation in (18.1.6) holds we com-
pute

∂(sin(xy))

∂x
− ∂(cos(y))

∂y
,

which equals

y cos(xy) + sin(y),

which is not 0. There’s no need to check the remaining two equations in
(18.1.6). The expression sin(xy) dx + cos(y) dy + ln(1 + x) dz is not exact.
(Equivalently, the vector field sin(xy)i + cos(y)j + ln(1 + x)k is not a gradient
field, hence not conservative.) �

Notice that we completed Example 3 without doing any integration.

We can restate the three equations (18.1.6) as a single vector equation, by
introducing a 3 by 3 formal determinant i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

 (18.1.7)

Expanding this as though the nine entries were numbers, we get

i

(
∂R

∂y
− ∂Q

∂z

)
− j

(
∂R

∂x
− ∂P

∂z

)
+ k

(
∂Q

∂x
− ∂P

∂y

)
. (18.1.8)

If the three scalar equations in (18.1.6) hold, then (18.1.8) is the 0-vector. In
view of the importance of the vector (18.1.8), it is given a name.

DEFINITION (Curl of a Vector Field) The curl of the vector
field F = P i + Qj + Rk is the vector field given by the formula
(18.1.7) or (18.1.8). It is denoted curl F.
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The formal determinant (18.1.7) is like the one for the cross product of two
vectors. For this reason, it is also denoted∇×F (read as “del cross F”). That’s
a lot easier to write than (18.1.8), which refers to the components. Once again
we see the advantage of vector notation.

The definition also applies to a vector field F = P (x, y)i + Q(x, y)j in the
plane. Writing F as P (x, y)i + Q(x, y)j + 0k and observing that ∂Q/∂z = 0
and ∂P/∂z = 0, we find that

∇× F =

(
∂Q

∂x
− ∂P

∂y

)
k.

EXAMPLE 4 Compute the curl of F = xyzi + x2j− xyk.
SOLUTION The curl of F is given by i j k

∂
∂x

∂
∂y

∂
∂z

xyz x2 −xy,


which is short for(

∂

∂y
(−xy)− ∂

∂z
(x2)

)
i−
(
∂

∂x
(−xy)− ∂

∂z
(xyz)

)
j +

(
∂

∂x
(x2)− ∂

∂y
(xyz)

)
k

= (−x− 0)i− (−y − xy)j + (2x− xz)k

= −xi + (y + xy)j + (2x− xz)k.

�

If any case, in view of (18.1.6), for vector fields in space or in the xy-plane
we have this theorem.

Theorem 18.1.4. If F is a conservative vector field, then ∇× F = 0.

You may wonder why the vector field curl F obtained from the vector field
F is called the “curl of F.” Here we came upon the concept purely mathe-
matically, but, as you will see in Section 18.6 it has a physical significance: If
F describes a fluid flow, the curl of F describes the tendency of the fluid to
rotate and form whirlpools — in short, to “curl.”

The Converse of Theorem 18.1.4 Isn’t True
Warning: The converse of
Theorem 18.1.4 is false.It would be delightful if the converse of Theorem 18.1.4 were true. Unfor-

tunately, it is not. There are vector fields F whose curls are 0 that are not
conservative. Example 5 provides one such F in the xy-plane. Its curl is 0 but
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it is not conservative, that is, ∇ × F = 0 and there is a closed curve C with∮
C

F · dr not zero.

EXAMPLE 5 Let F = −yi
x2+y2

+ xj
x2+y2

. Show that (a) ∇×F = 0, but (b) F
is not conservative.
SOLUTION (a) We must compute

det

 i j k
∂
∂x

∂
∂y

∂
∂z

−y
x2+y2

x
x2+y2

0


which equals (

∂(0)

∂y
− ∂

∂z

(
x

x2 + y2

))
i−
(
∂(0)

∂x
− ∂

∂z

(
−y

x2 + y2

))
j

+

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
k.

The i and j components are clearly 0, and a direct computation shows that
the k component is

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0.

Thus the curl of F is 0.
(b) To show that F is not conservative, it suffices to exhibit a closed curve

C such that
∮
C

F · dr is not 0. One such choice for C is the unit circle
parameterized counterclockwise by

x = cos(θ), y = sin(θ), 0 ≤ θ ≤ 2π.

On this curve x2 + y2 = 1. Figure 18.1.7 shows a few values of F at points on
C. Clearly

∫
C

F · dr, which measures circulation, is positive, not 0. However,
if you have any doubt, here is the computation of

∫
C

F · dr:Recall that, on C,
x2 + y2 = 1. ∮

C

F · dr =

∮
C

(
−y dx
x2 + y2

+
x dy

x2 + y2

)

=

2π∫
0

(− sin θ d(cos θ) + cos θ d(sin θ))

=

2π∫
0

(sin2 θ + cos2 θ) dθ =

2π∫
0

dθ = 2π.

This establishes (b), F is not conservative. �
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Figure 18.1.7:

The curl of F being 0 is not enough to assure us that a vector field F
is conservative. An extra condition must be satisfied by F. This condition
concerns the domain of F. This extra assumption will be developed for planar
fields in Section 18.2 and for spatial fields F in Section 18.6. Then we will
have a simple test for determining whether a vector field is conservative.

Summary

We showed that a vector field being conservative is equivalent to its being the
gradient of a scalar field. Then we defined the curl of a vector field. If a field
is denoted F, the curl of F is a new vector field denoted curl F or ∇× F. If
F is conservative, then ∇× F is 0. However, if the curl of F is 0, it does not
follow that F is conservative. An extra assumption (on the domain of F) must
be added. That assumption will be described in the next section.
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EXERCISES for Section 18.1 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4 answer “True” or “False” and ex-
plain.

1.[R] “If F is conserva-
tive, then ∇× F = 0.”
2.[R] “If ∇×F = 0, then
F is conservative.”
3.[R] “If F is a gradient

field, then ∇×F = 0.”

4.[R] “If ∇×F = 0, then
F is a gradient field.”

5.[R] Using information in this section, describe vari-
ous ways of showing a vector field F is not conservative.

6.[R] Using information in this section, describe var-
ious ways of showing a vector field F is conservative.

7.[R] Decide if each of the following sets is open,
closed, neither open nor closed, or both open and
closed.

(a) unit disk with its boundary

(b) unit disk without any of its boundary points

(c) the x-axis

(d) the entire xy-plane

(e) the xy-plane with the x-axis removed

(f) a square with all four of its edges (and corners)

(g) a square with all four of its edges but with its
corners removed

(h) a square with none of its edges (and corners)

8.[R] In Example 1 we computed a certain line
integral by using the fact that the vector field
(−xi − yj − zk)/(x2 + y2 + z2)3/2 is a gradient field.
Compute that integral directly, without using the in-
formation that the field is a gradient.

9.[R] Let F = y cos(x)i + (sin(x) + 2y)j.

(a) Show that curl F is 0 and F is defined in an
arcwise-connected region of the plane.

(b) Construct a “potential function” f whose gradi-
ent is F.

10.[R] Let f(x, y, z) = e3x ln(z + y2). Compute∫
C ∇f · dr, where C is the straight path from (1, 1, 1)

to (4, 3, 1).

11.[R] We obtained the first of the three equations in
(18.1.6). Derive the other two.

12.[R] Find the curl of F(x, y, z) = ex
2
yzi +

x3 cos2 3yj + (1 + x6)k.

13.[R] Find the curl of F(x, y) = tan2(3x)i+e3x ln(1+
x2)j.

14.[R] Using theorems of this section, explain why
the curl of a gradient is 0, that is, curl(∇f) = 0
(∇×∇f = 0) for a scalar function f(x, y, z). Hint: No
computations are needed.

15.[R] By a computation using components, show
that for the scalar function f(x, y, z), curl∇f = 0.

16.[R] Let f(x, y) = cos(x+ y). Evaluate
∫
C ∇f · dr,

where C is the curve that lies on the parabola y = x2

and goes from (0, 0) to (2, 4).

17.[R] In Example 5 we computed
∮
C F · dr, where

F = −yi+xj
x2+y2

and C is the unit circle with center at the
origin. Compute the integral when C is the circle of
radius 5 with center at the origin.

18.[M] In Example 5 we computed
∮
C F · dr where

F = −yi+xj
x2+y2

and C is the unit circle with center at the
origin.

(a) Without doing any new computations, evaluate∮
C F · dr where C is the square path with ver-

tices (1, 0), (2, 0), (2, 1), (1, 1), (1, 0).
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(b) Evaluate the integral in (a) by a direct compu-
tation, breaking the integral into four integrals,
one over each edge.

19.[M] If F and G are conservative, is F + G?

20.[M] By a direct computation, show that
curl(fF) = ∇f × F + f curl F.

21.[M] By a direct computation, show that curl(F×
G) = (G · ∇)F − (F · ∇)G + F(∇ · G) − G(∇ · F).
Each of the first two terms has a form not seen before
now in this text. Here is how to interpret them when
F = F1i + F2j + F3k and G = G1i +G2j +G3k:

(G · ∇)F = G1
∂F1

∂x
+G2

∂F2

∂y
+G3

∂F3

∂z
.

22.[M] If F and G are conservative, is F×G?

23.[M] Explain why the curl of a gradient field is the
zero vector, that is, ∇×∇f = 0.

24.[M] Assume that F(x, y) is conservative. Let C1

be the straight path from (0, 0, 0) to (1, 0, 0), C2 the
straight path from (1, 0, 0) to (1, 1, 1). If

∫
C1

F dr = 3
and

∫
C2

F dr = 4, what can be said about
∫
C F dr,

where C is the straight path from (0, 0, 0) to (1, 1, 1)?

25.[M] Let F(x, y) be a field that can be written in
the form

F(x, y) = g(
√
x2 + y2)

xi + yj√
x2 + y2

where g is a scalar function. If we denote xi + yj as r,
then F(x, y) = g(r)r̂, where r = ‖r‖ and r̂ = ‖r‖/r.
Show that

∮
C F · dr = 0, for any path ABCDA of

the form shown in Figure 18.1.8. (The path consists of
two circular arcs and parts of two rays from the origin.)

Figure 18.1.8:

26.[M] In Theorem 18.1.1 we proved that ∂f/∂x = P .
Prove that ∂f/∂y = Q.

27.[C] In view of the previous exercise, we may ex-
pect F(x, y) = g(

√
x2 + y2) xi+yj√

x2+y2
to be conservative.

Show that it is by showing that F is the gradient of
G(x, y) = H(

√
x2 + y2), where H is an antiderivative

of g, that is, H ′ = g.

28.[C] The domain of a vector field F is all of the
xy-plane. Assume that there are two points A and B
such that

∫
C F dr is the same for all curves C from A

to B. Deduce that F is conservative.

29.[C] A gas at temperature T0 and pressure P0 is
brought to the temperature T1 > T0 and pressure
P1 > P0. The work done in this process is given by
the line integral in the TP - plane∫

C

(
RT dP

P
−R dT

)
,

where R is a constant and C is the curve that records
the various combinations of T and P during the pro-
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cess. Evaluate this integral over the following paths,
shown in Figure 18.1.9.

Figure 18.1.9:

(a) The pressure is kept constant at P0 while the
temperature is raised from T0 to T1; then the
temperature is kept constant at T1 while the
pressure is raised from P0 to P1.

(b) The temperature is kept constant at T0 while
the pressure is raised from P0 to P1; then the
temperature is raised from T0 to T1 while the
pressure is kept constant at P1.

(c) Both pressure and temperature are raised si-
multaneously in such a way that the path from

(P0, T0) to (P1, T1) is straight.

Because the integrals are path dependent, the differ-
ential expression RT dP/P − R dT defines a thermo-
dynamic quantity that depends on the process, not
just on the state. Vectorially speaking, the vector field
(RT/P )i−Rj is not conservative.

30.[C] Assume that F(x, y) is defined throughout the
xy-plane and that

∮
C F(x, y) · dr = 0 for every closed

curve that can fit inside a disk of diameter 0.01. Show
that F is conservative.

31.[C] This exercise completes the proof of Theo-
rem 18.1.1 in the case when C1 and C2 overlap outside
of their endpoints A and B. In that case; introduce a
third simple curve from A to B that overlaps C1 and C2

only at A and B. Then an argument similar to that in
the proof of Theorem 18.1.1 can dispose of this case.

32.[C] We proved that lim
R x0+h
x0

P (x,y0) dx

h equals
P (x0, y0), by using the Mean Value Theorem for defi-
nite integrals. Find a different proof of this result that
uses a part of the Fundamental Theorem of Calculus.
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18.2 Green’s Theorem and Circulation

In this section we discuss a theorem that relates an integral of a vector field
over a closed curve C in a plane to an integral of a related scalar function over
the region R whose boundary is C. We will also see what this means in terms
of the circulation of a vector field.

Statement of Green’s Theorem
There are two analogs of
Green’s Theorem in space;
they are discussed in
Sections 18.5 and 18.6.

We begin by stating Green’s Theorem and explaining each term in it. Then
we will see several applications of the theorem. Its proof is at the end of the
next section.

Green’s Theorem
Let C be a simple, closed counterclockwise curve in the xy-plane, bounding
a region R. Let P and Q be scalar functions defined at least on an open set
containing R. Assume P and Q have continuous first partial derivatives. Then∮

C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

Recall, from Section 18.1, that a curve is closed when it starts and ends at
the same point. It’s simple when it does not intersect itself (except at its start
and end). These restrictions on C ensure that it is the boundary of a region
R in the xy-plane.

Since P and Q are independent of each other, Green’s Theorem really
consists of two theorems:∫

C

P dx = −
∫
R

∂P

∂y
dA and

∮
C

Q dy =

∫
R

∂Q

∂x
dA. (18.2.1)

EXAMPLE 1 In Section 15.3 we showed that if the counterclockwise curve
C bounds a region R, then

∮
C
y dx is the negative of the area of R. Obtain

this result with the aid of Green’s Theorem.
SOLUTION Let P (x, y) = y, and Q(x, y) = 0. Then Green’s Theorem says
that ∮

C

y dx = −
∫
R

∂y

∂y
dA.

Since ∂y/∂y = 1, it follows that
∮
y dx is −

∫
R 1 dA, the negative of the area

of R. �
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Green’s Theorem and Circulation

What does Green’s Theorem say about a vector field F = P i + Qj? First of
all,

∮
C

(P dx+Q dy) now becomes simply
∮
C

F · dr.
The right hand side of Green’s Theorem looks a bit like the curl of a vector

field in the plane. To be specific, we compute the curl of F: i j k
∂x ∂y ∂z

P (x, y) Q(x, y) 0

 = 0i− 0j +

(
∂Q

∂x
− ∂P

∂y

)
k

Thus the curl of F equals the vector function(
∂Q

∂x
− ∂P

∂y

)
k. (18.2.2)

To obtain the (scalar) integrand on the right-hand side of (18.2.2), we “dot
(18.2.2) with k,” ((

∂Q

∂x
− ∂P

∂y

)
k

)
· k =

∂Q

∂x
− ∂P

∂y
.

Green’s Theorem Expressed in Terms of Circulation

We can now express Green’s Theorem using vectors. In particular, circulation
around a closed curve can be expressed in terms of a double integral of the
curl over a region.

If the counterclockwise closed curve C bounds the region R, then∮
C

F · dr =

∫
R

(∇× F) · k dA.

Recall that if F describes the flow of a fluid in the xy-plane, then
∮
C

F · dr
represents its circulation, or tendency to form whirlpools. This theorem tells
us that the magnitude of the curl of F represents the tendency of the fluid to
rotate. If the curl of F is 0 everywhere, then F is called irrotational — there
is no rotational tendency.

This form of Green’s theorem provides an easy way to show that a vector
field F is conservative. It uses the idea of a simply-connected region. Informally
“a simply-connected region in the xy-plane comes in one piece and has no
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holes.” More precisely, an arcwise-connected region R in the plane or in space
is simply-connected if each closed curve in R can be shrunk gradually to a
point while remaining in R.

Figure 18.2.1 shows two regions in the plane. The one on the left is simply-
connected, while the one on the right is not simply connected. For instance, the

(a) (b)

Figure 18.2.1: Regions in the plane that are (a) simply connected and (b)
not simply connected.

xy-plane is simply connected. So is the xy-plane without its positive x-axis.
However, the xy-plane, without the origin is not simply connected, because
a circular path around the origin cannot be shrunk to a point while staying
within the region.

If the origin is removed from xyz-space, what is left is simply connected.
However, if we remove the z-axis, what is left is not simply connected.

Figure 18.2.2(b) shows a curve that cannot be shrunk to a point while
avoiding the z-axis.

Now we can state an easy way to tell whether a vector field is conservative.

Theorem. If a vector field F is defined in a simply-connected region in the
xy-plane and ∇× F = 0 throughout that region, then F is conservative.

Proof

Let C be any simple closed curve in the region and R the region it bounds.
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(a) (b)

Figure 18.2.2: (a) xyz-space with the origin removed is simply connected. (b)
xyz-space with the z-axis removed is not simply connected.

We wish to prove that the circulation of F around C is 0. We have∮
C

F · dr =

∫
R

(curl F) · k dA.

Since curl F is 0 throughout R, it follows that
∮
C

F · dr = 0. •

In Example 5 in Section 18.1, there is a vector field whose curl is 0 but is
not conservative. In view of the theorem just proved, its domain must not be
simply connected. Indeed, the domain of the vector field in that example is
the xy-plane with the origin deleted.

EXAMPLE 2 Let F(x, y, z) = exyi + (ex + 2y)j.

1. Show that F is conservative.

2. Exhibit a scalar function f whose gradient is F.

SOLUTION

1. A straightforward calculation shows that ∇×F = 0. Since F is defined
throughout the xy-plane, a simply-connected region, Theorem 18.2 tells
us that F is conservative.

2. By Section 18.1, we know that there is a scalar function f such that
∇f = F. There are several ways to find f . We show one of these
methods here. Additional approaches are pursued in Exercises 7 and 8.
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The approach chosen here follows the construction in the proof of Theo-
rem 18.1.3. For a point (a, b), define f(a, b) to equal

∫
C

F ·dr, where C is
any curve from (0, 0) to (a, b). Any curve with the prescribed endpoints
will do. For simplicity, choose C to be the curve that goes from (0, 0) to
(a, b) in a straight line. (See Figure 18.2.3.) When a is not zero, we can
use x as a parameter and write this segment as: x = t, y = (b/a)t for
0 ≤ t ≤ a. (If a = 0, we would use y as a parameter.) Then

Figure 18.2.3:

f(a, b) =

∫
C

(exy dx+ (ex + 2y) dy) =

a∫
0

(
et
b

a
t dt+

(
et + 2

b

a
t

)
b

a
dt

)

=
b

a

a∫
0

(
tet + et + 2

b

a
t

)
dt =

b

a

(
(t− 1)et + et +

b

a
t2
)∣∣∣∣a

0

=
b

a

(
tet +

b

a
t2
)∣∣∣∣a

0

= bea + b2.

Since f(a, b) = bea + b2, we see that f(x, y) = yex + y2 is the desired
function. One could check this by showing that the gradient of f is indeed yex + y2 + k for any

constant k, also would be a
potential.

exyi + (ex + 2y)j. Other suitable potential functions f are exy + y+k for
any constant k.

�
The next example uses the cancellation principle, which is based on the

fact that the sum of two line integrals in opposite direction on a curve is zero.
This idea is used here to develop the two-curve version of Green’s Theorem
and then several more times before the end of this chapter. Green’s Theorem — The

Two-Curve Case
EXAMPLE 3 Figure 18.2.4(a) shows two closed counterclockwise curves
C1, and C2 that enclose a ring-shaped region R in which ∇ × F is 0. Show
that the circulation of F over C1 equals the circulation of F over C2.
SOLUTION Cut R into two regions, each bounded by a simple curve, to
which we can apply Theorem 18.2. Let C3 bound one of the regions and C4

bound the other, with the usual counterclockwise orientation. On the cuts, C3

and C4 go in opposite directions. On the outer curve C3 and C4 have the same
orientation as C1. On the inner curve they are the opposite orientation of C2.
(See Figure 18.1.2(b).) Thus∫

C3

F · dr +

∫
C4

F · dr =

∫
C1

F · dr −
∫
C2

F · dr. (18.2.3)

By Theorem 18.2 each integral on the left side of (18.2.3) is 0. Thus∫
C1

F · dr =

∫
C2

F · dr (18.2.4)
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(a) (b)

Figure 18.2.4:

�
Example 3 justifies the “two-curve” variation of Green’s Theorem:

Two-Curve Version of Green’s Theorem
Assume two nonoverlapping curves C1 and C2 lie in a region where curl F
is 0 and form the border of a ring. Then, if C1 and C2 both have the same
orientation, ∮

C1

F · dr =

∮
C2

F · dr.

This theorem tells us “as you move a closed curve within a region of zero-
curl, you don’t change the circulation.” The next Example illustrates this
point.

EXAMPLE 4 Let F = −yi+xj
x2+y2

and C be the closed counterclockwise curve

bounding the square whose vertices are (−2,−2), (2,−2), (2, 2), and (−2, 2).
Evaluate the circulation of F around C as easily as possible.
SOLUTION This vector field appeared in Example 5 of Section 18.1. Since
its curl is 0, at all points except the origin, where F is not defined, we may use
the two-curve version of Green’s Theorem. Thus

∮
C

F·dr equals the circulation
of F over the unit circle in Example 5, hence equals 2π.

This is a lot easier than integrating F directly over each of the four edges
of the square. �

How to Draw ∇× F

For the planar vector field F, its curl, ∇×F, is of the form z(x, y)k. If z(x, y)
is positive, the curl points directly up from the page. Indicate this by the
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symbol �, which suggests the point of an arrow or the nose of a rocket. If
z(x, y) is negative, the curl points down from the page. To show this, use
the symbol ⊕, which suggests the feathers of an arrow or the fins of a rocket.
Figure 18.2.5 illustrates their use. This is standard notation in

physics.

Figure 18.2.5:

Summary

We first expressed Green’s theorem in terms of scalar functions∮
C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

We then translated it into a statement about the circulation of a vector field;∮
C

F · dr =

∫
R

(∇× F) · k dA.

In this theorem the closed curve C is oriented counterclockwise.
With the aid of this theorem we were able to show the following important

result:

If the curl of F is 0 and if the domain of F is simply connected, then F is
conservative.

Also, in a region in which ∇×F = 0, the value of
∮
C

F · dr does not change
as you gradually change C to other curves in the region.
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EXERCISES for Section 18.2 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 through 4 verify Green’s Theorem for
the given functions P and Q and curve C.

1.[R] P = xy, Q = y2

and C is the border of
the square whose vertices
are (0, 0), (1, 0), (1, 1) and
(0, 1).
2.[R] P = x2, Q = 0
and C is the boundary of
the unit circle with center
(0, 0).
3.[R] P = ey, Q = ex

and C is the triangle with
vertices (0, 0), (1, 0), and
(0, 1).

4.[R] P = sin(y), Q = 0
and C is the boundary
of the portion of the unit
disk with center (0, 0) in
the first quadrant.

5.[R] Figure 18.2.6 shows a vector field for a fluid
flow F. At the indicated points A, B, C, and D tell
when the curl of F is pointed up, down or is 0. (Use
the � and ⊕ notation.) Hint: When the fingers of
your right hand copy the direction of the flow, your
thumb points in the direction of the curl, up or down.

Figure 18.2.6:

6.[R] Assume that F describes a fluid flow. Let P be
a point in the domain of F and C a small circular path
around P .

(a) If the curl of F points upward, in what direction
is the fluid tending to turn near P , clockwise or
counterclockwise?

(b) If C is oriented clockwise, would
∮
C F · dr to be

positive or negative?

7.[R] In Example 2 we constructed a function f by
using a straight path from (0, 0) to (a, b). Instead,
construct f by using a path that consists of two line
segments, the first from (0, 0) to (a, 0), and the second,
from (a, 0) to (a, b).
8.[R] In Example 2 we constructed a function f by
using a straight path from (0, 0) to (a, b). Instead,
construct f by using a path that consists of two line
segments, the first from (0, 0) to (0, b), and the second
from (0, b) to (a, b).
9.[R] Another way to construct a potential function
f for a vector field F = P i + Qj is to work directly
with the requirement that ∇f = F. That is, with the
equattions

∂f

∂x
= P (x, y) and

∂f

∂y
= Q(x, y).

(a) Integrate ∂f
∂x = exy with respect to x to conclude

that f(x, y) = exy + C(y). Note that the “con-
stant of integration” can be any function of y,
which we call C(y). (Why?)

(b) Next, differentiate the result found in (a) with
respect to y. This gives two formulas for ∂f

∂y :
ex + C ′(y) and ex + 2y. Use this fact to explain
why C ′(y) = 2y.

(c) Solve the equation for C found in (b).

(d) Combine the results of (a) and (c) to obtain the
general form for a potential function for this vec-
tor field.

In Exercises 10 through 13

(a) check that F is conservative in the given domain,
that is ∇×F = 0, and the domain of F is simply
connected

(b) construct f such that ∇f = F, using integrals
on curves

(c) construct f such that ∇f = F, using antideriva-
tives, as in Exercise 9.
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10.[R] F = 3x2y vi+x3j,
domain the xy-plane
11.[R] F = y cos(xy) vi+
(x cos(xy) + 2y)j, domain
the xy-plane
12.[R] F = (yexy +

1/x)i + xexyj, domain all
xy with x > 0
13.[R] F = 2y ln(x)

x i +
(ln(x))2j, domain all xy
with x > 0

14.[R] Verify Green’s Theorem when F(xy) = xi+ yj
andR is the disk of radius a and center at the origin.

15.[R] In Example 1 we used Green’s Theorem to
show that

∮
C y dx is the negative of the area that C

encloses. Use Green’s Theorem to show that
∮
C x dy

equals that area. (We obtained this result in Sec-
tion 15.3 without Green’s Theorem.)

16.[R] Let A be a plane region with boundary C a
simple closed curve swept out counterclockwise. Use
Green’s theorem to show that the area of A equals

1
2

∮
(−y dx+ x dy).

17.[R] Use Exercise 16 to find the area of the region
bounded by the line y = x and the curve{

x = t6 + t4

y = t3 + t
for t in [0, 1].

18.[R] Assume that curl F at (0, 0) is −3. Let C
sweep out the boundary of a circle of radius a, center
at (0, 0). When a is small, estimate the circulation∫
C F · dr.

19.[R] Which of these fields are conservative:

(a) xi− yj

(b) xi−yj
x2+y2

(c) 3i + 4j

(d) (6xy − y3)i + (4y + 3x2 − 3xy2)j

(e) yi−xj
1+x2y2

(f) xi+yj
x2+y2

20.[R] Figure 18.2.7 shows a fluid flow F. All the vec-
tors are parallel, but their magnitudes increase from
bottom to top. A small simple curve C is placed in the
flow.

Figure 18.2.7:

(a) Is the circulation around C positive, negative, or
0? Justify your opinion.

(b) Assume that a wheel with small blades is free
to rotate around its axis, which is perpendicular
to the page. When it is inserted into this flow,
which way would it turn, or would it not turn at
all? (Don’t just say, ”It would get wet.”)

21.[R] Let F(x, y) = y2i.

(a) Sketch the field.

(b) Without computing it, predict when (∇×F) · k
is positive, negative or zero.

(c) Compute (∇× F) · k.

(d) What would happen if you dipped a wheel with
small blades free to rotate around its axis, which
is perpendicular to the page, into this flow.
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22.[R] Check that the curl of the vector field in Ex-
ample 2 is 0, as asserted.

23.[R] Explain in words, without explicit calcula-
tions, why the circulation of the field f(r)r̂ around the
curve PQRSP in Figure 18.2.8 is zero. As usual, f is
a scalar function, r = ||r||, and r̂ = r/r.

Figure 18.2.8: ARTIST: Please color the four sides
of the closed curve.

In Exercises 24 to 27 let F be a vector field defined
everywhere in the plane except a the point P shown
in Figure 18.2.9. Assume that ∇ × F = 0 and that∫
C1

F · dr = 5.

Figure 18.2.9:

24.[R] What, if any-
thing, can be said about∫
C2

F · dr?
25.[R] What, if any-
thing, can be said about∫
C3

F · dr?
26.[R] What, if any-
thing, can be said about

∫
C4

F · dr?

27.[R] What, if any-
thing, can be said about∫
C F · dr, where C is the

curve formed by C1 fol-
lowed by C3?

In Exercises 28 to 31 show that the vector field is con-
servative and then construct a scalar function of which
it is the gradient. Use the method in Example 2.

28.[R] 2xyi + x2j
29.[R] sin(y)i +
(x cos(y) + 3)j
30.[R] (y+1)i+(x+1)j

31.[R] 3y sin2(xy) cos(xy)i+
(1+3x sin2(xy) cos(xy))j

32.[R] Show that

(a) 3x2y dx+ x3 dy is exact.

(b) 3xy dx+ x2 dy is not exact.

33.[R] Show that (x dx + y dy)/(x2 + y2) is exact
and exhibit a function f such that df equals the given
expression. (That is, find f such that ∇f · dr agrees
with the given differential form.)

34.[R] Let F = r̂/‖r‖ in the xy plane and let C be
the circle of radius a and center (0, 0).

(a) Evaluate
∮
C F · n ds without using Green’s the-

orem.

(b) Let C now be the circle of radius 3 and center
(4, 0). Evaluate

∮
C F · n ds, doing as little work

as possible.

35.[R] Figure 18.2.10(a) shows the direction of a vec-
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tor field at three points. Draw a vector field compatible
with these values. (No zero-vectors, please.)

(a) (b) (c)

Figure 18.2.10:

36.[R] Consider the vector field in Figure 18.2.10(b).
Will a paddle wheel turn at A? At B? At C? If so, in
which direction?

37.[R] Use Exercise 16 to obtain the formula for area
in polar coordinates:

Area =
1
2

β∫
α

r2 dθ.

Hint: Assume C is given parametrically as x =
r(θ) cos(θ), y = r(θ) sin(θ), for α ≤ θ ≤ β.

38.[M] A curve is given parametrically by x = t(1 −
t2), y = t2(1− t3), for t in [0, 1].

(a) Sketch the points corresponding to t = 0, 0.2,
0.4, 0.6, 0.8, and 1.0, and use them to sketch the
curve.

(b) LetR be the region enclosed by the curve. What
difficulty arises when you try to compute the
area of R by a definite integral involving vertical
or horizontal cross sections?

(c) Use Exercise 16 to find the area of R.

39.[M] Repeat Exercise 38 for x = sin(πt) and
y = t − t2, for t in [0, 1]. In (a), let t = 0, 1/4,

1/2, 3/4, and 1.

40.[C] Assume that you know that Green’s Theorem
is true when R is a triangle and C its boundary.

(a) Deduce that it therefore holds for quadrilaterals.

(b) Deduce that it holds for polygons.

41.[C] Assume that ∇ × F = 0 in the region R
bounded by an exterior curve C1 and two interior
curves C2 and C3, as in Figure 18.2.11. Show that∫
C1

F · dr =
∫
C2

F · dr +
∫
C3

F · dr.

Figure 18.2.11:
42.[C] We proved that

∫
R
∂Q
∂y dA =

∫
C Q dy in a spe-

cial case. Prove it in this more general case, in which
we assume less about the region R. Assume that R
has the description a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x).
Figure 18.2.10(c) shows such a region, which need not
be convex. The curved path C breaks up into four
paths, two of which are straight (or may be empty), as
in Figure 18.2.10(c).

43.[C] We proved the second part of (18.2.1), namely
that

∮
C Q dy =

∫
R ∂Q/∂x dA. Prove the first part,∮

C P dx = −
∫
R ∂p/∂y dA.
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18.3 Green’s Theorem, Flux, and Divergence

In the previous section we introduced Green’s Theorem and applied it to dis-
cover a theorem about circulation and curl. That concerned the line integral
of F · T, the tangential component of F, since F · dr is short for (F · T) ds.
Now we will translate Green’s Theorem into a theorem about the line integral
of F · n, the normal component of F,

∮
F · n ds. Thus Green’s Theorem will

provide information about the flow of the vector field F across a closed curve
C (see Section 15.4).

Green’s Theorem Expressed in Terms of Flux

Let F = M i +N j and C be a counterclockwise closed curve. (We use M and
N now, to avoid confusion with P and Q needed later.) At a point on a closed
curve the unit exterior normal vector (or unit outward normal vector)
n is perpendicular to the curve and points outward from the region enclosed
by the curve. To compute F · n in terms of M and N , we first express n in
terms of i and j.

Figure 18.3.1:

The vector

T =
dx

ds
i +

dy

ds
j

is tangent to the curve, has length 1, and points in the direction in which
the curve is swept out. A typical T and n are shown in Figure 18.3.1. As
Figure 18.3.1 shows, the exterior unit normal n has its x component equal
to the y component of T and its y component equal to the negative of the x
component of T. Thus

n =
dy

ds
i− dx

ds
j.

Consequently, if F = M i +N j, then∮
C

F · n =

∮
C

(M i +N j) ·
(
dy

ds
i− dx

ds
j

)
ds =

∮
C

(
M
dy

ds
−N dx

ds

)
ds

=

∮
C

(M dy −N dx) =

∮
C

(−N dx+M dy). (18.3.1)

In (18.3.1), −N plays the role of P and M plays the role of Q in Green’s
Theorem. Since Green’s Theorem states that∮

C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA

we have ∮
C

(−N dx+M dy) =

∫
R

(
∂M

∂x
− ∂(−N)

∂y

)
dA
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or simply, if F = M i +N j, then∮
C

F · n ds =

∫
R

(
∂M

∂x
+
∂N

∂y

)
dA.

In our customary “P and Q” notations, we have

Green’s Theorem Expressed in Terms of Flux
If F = P i +Qj, then ∮

C

F · n ds =

∫
R

(
∂P

∂x
+
∂Q

∂y

)
dA

where C is the boundary of R.

The expression
∂P

∂x
+
∂Q

∂y
,

the sum of two partial derivatives, is call the divergence of F = P i + Qj. It
is written div F or ∇ · F. The latter notation is suggested by the “symbolic”
dot product (

∂

∂x
i +

∂

∂y
j

)
· (P i +Qj) =

∂P

∂x
+
∂Q

∂y
.

It is pronounced “del dot eff”. Theorem 18.3 is called “the divergence theorem
in the plane.” It can be written as

Divergence Theorem in the Plane∮
C

F · n ds =

∫
R

div F dA

where C is the boundary of R.

EXAMPLE 1 Compute the divergence of (a) F = exyi + arctan(3x)j and
(b) F = −x2i + 2xyj.
SOLUTION

(a) ∂
∂x
exy + ∂

∂y
arctan(3x) = yexy + 0 = yexy

(b) ∂
∂x

(−x2) + ∂
∂y

(2xy) = −2x+ 2x = 0.
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�
The double integral of the divergence of F over a region describes the

amount of flow across the border of that region. It tells how rapidly the fluid
is leaving (diverging) or entering the region (converging). Hence the name
“divergence”.

In the next section we will be using the divergence of a vector field defined
in space, F = P i + Qj + Rk, where P , Q and R are functions of x, y, and z.
It is defined as the sum of three partial derivatives

∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

It will play a role in measuring flux across a surface.

EXAMPLE 2 Verify that
∮
C

F · n ds equals
∫
R
∇ · F dA, when F(x, y) =

xi+yj, R is the disk of radius a and center at the origin and C is the boundary
curve of R.

Figure 18.3.2:

SOLUTION First we compute
∮
C

F · n ds, where C is the circle bounding
R. (See Figure 18.3.2.)

Since C is a circle centered at (0, 0), the unit exterior normal n is r̂:

n = r̂ =
xi + yj

‖xi + yj‖
=
xi + yj

a
.

Thus, remembering that
∮
C
ds is just the arclength of C,∮

C

F · n ds =

∮
C

(xi + yj) ·
(
xi + yj

a

)
ds =

∮
C

x2 + y2

a
ds

=

∮
C

a2

a
ds = a

∮
C

ds = a(2πa) = 2πa2. (18.3.2)

Next we compute
∫
R

(
∂P
∂x

+ ∂Q
∂y

)
dA. Since P = x and Q = y, ∂P/∂x +

∂Q/∂y = 1 + 1 = 2. Then∫
R

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫
R

2 dA,

which is twice the area of the disk R, hence 2πa2. This agrees with (18.3.2).
�

As the next example shows, a double integral can provide a way to compute
the flux:

∮
F · n ds.
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Figure 18.3.3:

EXAMPLE 3 Let F = x2i + xyj. Evaluate
∮

F · n ds over the curve that
bounds the quadrilateral with vertices (1, 1), (3, 1), (3, 4), and (1, 2) shown in
Figure 18.3.3.

SOLUTION The line integral could be evaluated directly, but would require
parameterizing each of the four edges of C. With Green’s Theorem we can
instead evaluate an integral over a single plane region.

Let R be the region that C bounds. By Green’s theorem∮
C

F · n ds =

∫
R

∇ · F dA =

∫
R

(
∂(x2)

∂x
+
∂(xy)

∂y

)
dA

=

∫
R

(2x+ x) dA =

∫
R

3x dA.

See Exercise 15.

Then ∫
R

3x dA =

3∫
1

y(x)∫
1

3x dy dx,

where y(x) is determined by the equation of the line that provides the top edge
of R. We easily find that the line through (1, 2) and (3, 4) has the equation
y = x+ 1. Therefore,

∫
R

3x dA =

3∫
1

x+1∫
1

3x dy dx.

The inner integration gives

x+1∫
1

3x dy = 3xy|y=x+1
y=1 = 3x(x+ 1)− 3x = 3x2.

The second integration gives

3∫
1

3x2 dx = x3
∣∣3
1

= 27− 1 = 26

�
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A Local View of div F

We have presented a “global” view of div F, integrating it over a region R
to get the total divergence across the boundary of R. But there is another
way of viewing div F, “locally.” This approach makes uses an extension of the
Permanence Principle of Section 2.5 to the plane and to space.

Let P = (a, b) be a point in the plane and F a vector field describing fluid
flow. Choose a very small region R around P , and let C be its boundary. (See
Figure 18.3.4.) Then the net flow out of R is∮

C

F · n ds.

By Green’s theorem, the net flow is also∫
R

div F dA.

Now, since div F is continuous and R is small, div F is almost constant

Figure 18.3.4:

throughout R, staying close to the divergence of F at (a, b). Thus∫
R

div F dA ≈ div F(a, b) Area(R).

or, equivalently,
Net flow out of R

Area of R
≈ div F(a, b). (18.3.3)

This means that
div F at P

is a measure of the rate at which fluid tends to leave a small region around
P . Hence another reason for the name “divergence.” If div F is positive, fluid
near P tends to get less dense (diverge). If div F is negative, fluid near P
tends to accumulate (converge).

Moreover, (18.3.3) suggests a different definition of the divergence div F at
(a, b), namelyDiameter is defined in

Section 17.1.

Local Definition of div F(a, b)

div F(a, b) = lim
Diameter of R→0

∮
C

F · n ds

Area of R
where R is a region enclosing (a, b) whose boundary C is a simple closed curve.

October 22, 2010 Calculus



§ 18.3 GREEN’S THEOREM, FLUX, AND DIVERGENCE 1315

This definition appeals to our physical intuition. We began by defining
div F mathematically, as ∂P/∂x + ∂Q/∂y. We now see its physical meaning,
which is independent of any coordinate system. This coordinate-free definition
is the basis for Section 18.9.

EXAMPLE 4 Estimate the flux of F across a small circle C of radius a if
div F at the center of the circle is 3.
SOLUTION The flux of F across C is

∮
C

F ·n ds, which equals
∫
R div F dA,

where R is the disk that C bounds. Since div F is continuous, it changes little
in a small enough disk, and we treat it as almost constant. Then

∫
R div F dA

is approximately (3)(Area of R) = 3(πa2) = 3πa2. �

Proof of Green’s Theorem

As Steve Whitaker of the chemical engineering department at the University
of California at Davis has observed, “The concepts that one must understand
to prove a theorem are frequently the concepts one must understand to apply
the theorem.” So read the proof slowly at least twice. It is not here just
to show that Green’s theorem is true. After all, it has been around for over
150 years, and no one has said it is false. Studying a proof strengthens one’s
understanding of the fundamentals.

In this proof we use the concepts of a double integral, an iterated integral,
a line integral, and the fundamental theorem of calculus. So the proof provides
a quick review of four basic ideas.

We prove that
∮
RQ dy =

∫
R
∂Q
∂x

dA. The proof that
∮
C
P dx = −

∫
∂P
∂y

dA
is similar.

To avoid getting involved in distracting details we assume thatR is strictly
convex: It has no dents and its border has no straight line segments. The
basic ideas of the proof show up clearly in this special case. Thus R has the
description a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), as shown in Figure 18.3.5. We will
express both

∫
R
∂Q
∂y
dA and

∫
C
Q dy as definite integrals over the interval [a, b].

First, we have ∫
R

∂Q

∂y
dA =

b∫
a

y2(x)∫
y1(x)

∂Q

∂y
dy dx.

By the Fundamental Theorem of Calculus,

y2(x)∫
y1(x)

∂Q

∂y
dy = Q(x, y2(x))−Q(x, y1(x)).

Calculus October 22, 2010



1316 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

Figure 18.3.5: ARTIST: Please change A with R.

Hence ∫
R

∂Q

∂y
dA =

b∫
a

(Q(x, y2(x))−Q(x, y1(x))) dx. (18.3.4)

Next, to express
∫
C
−Q dx as an integral over [a.b], break the closed path

C into two successive paths, one along the bottom part of R, described by
y = y1(x), the other along the top part of R, described by y = y2(x). Denote
the bottom path C1 and the top path C2. (See Figure 18.3.6.)

Figure 18.3.6:

Then ∮
C

(−Q) dx =

∫
C1

(−Q) dx+

∫
C2

(−Q) dx. (18.3.5)

But ∫
C1

(−Q) dx =

∫
C1

(−Q(x, y1(x))) dx =

b∫
a

(−Q(x, y1(x))) dx,

and∫
C2

(−Q) dx =

∫
C2

(−Q(x, y2(x))) dx =

a∫
b

(−Q(x, y2(x))) dx =

b∫
a

Q(x, y2(x)) dx.

Thus by (18.3.5),∮
C

(−Q) dx =

b∫
a

−Q(x, y1(x)) dx+

b∫
a

Q(x, y2(x)) dx

=

b∫
a

(Q(x, y2(x))−Q(x, y1(x))) dx.
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This is also the right side of (18.3.4) and concludes the proof.

Summary

We introduced the “divergence” of a vector field F = P i + Qj, namely the
scalar field ∂P

∂x
+ ∂Q

∂y
denoted div F or ∇ · F.

We translated Green’s Theorem into a theorem about the flux of a vector
field in the xy-plane. In symbols, the divergence theorem in the plane says
that ∮

C

F · n ds =

∫
R

div F dA.

“The integral of the normal component of F around a simple closed curve
equals the integral of the divergence of F over the region which the curve
bounds.”

From this it follows that

div F(P ) = lim
diameter of R→0

∮
C

F · n ds

Area of R
= lim

diameter of R→0

Flux across C

Area of R

where C is the boundary of the region R, which contains P .
We concluded with a proof of Green’s theorem, that provides a review of

several basic concepts.
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EXERCISES for Section 18.3 Key: R–routine,
M–moderate, C–challenging

1.[R] State the divergence form of Green’s Theorem
in symbols.

2.[R] State the divergence form of Green’s Theorem
in words, using no symbols to denote the vector fields,
etc.

In Exercises 3 to 6 compute the divergence of the given
vector fields.

3.[R] F = x3yi + x2y3j
4.[R] F = arctan(3xy)i+
(ey/x)j
5.[R] F = ln(x + y)i +
xy(arcsin y)2j

6.[R] F = y
√

1 + x2i +
ln((x+1)3(sin(y))3/5ex+y)j

In Exercises 7 to 10 compute
∫
R div F dA and

∮
C F ·

n ds and check that they are equal.

7.[R] F = 3xi + 2yj, and
R is the disk of radius 1
with center (0, 0).
8.[R] F = 5y3i − 6x2j,
and R is the disk of ra-
dius 2 with center (0, 0).

9.[R] F = xyi + x2yj,
and R is the square with

vertices (0, 0), (a, 0) (a, b)
and (0, b), where a, b > 0.

10.[R] F = cos(x +
y)i + sin(x+ y)j, and R is
the triangle with vertices
(0, 0), (a, 0) and (a, b),
where a, b > 0.

In Exercises 11 to 14 use Green’s Theorem expressed
in terms of divergence to evaluate

∮
C F · n ds for the

given F, where C is the boundary of the given region
R.

11.[R] F = ex sin yi +
e2x cos(y)j, and R is the
rectangle with vertices
(0, 0), (1, 0), (0, π/2), and
(1, π/2).
12.[R] F = y tan(x)i +
y2j, and R is the square
with vertices (0, 0), (1, 0),
(1, 1), and (0, 1).
13.[R] F = 2x3yi −

3x2y2j, and R is the tri-
angle with vertices (0, 1),
(3, 4), and (2, 7).
14.[R] F = −i

xy2
+ j

x2y
,

and R is the triangle with
vertices (1, 1), (2, 2), and
(1, 2). Hint: Write F with
a common denominator.

15.[R] In Example 3 we found
∮
C F ·n ds by comput-

ing a double integral. Instead, evaluate the integral∮
C F · n ds directly.

16.[R] Let F(x, y) = i, a constant field.

(a) Evaluate directly the flux of F around the tri-
angular path, (0, 0) to (1, 0), to (0, 1) back to
(0, 0).

(b) Use the divergence of F to evaluate the flux in
(a).

17.[R] Let a be a “small number” andR be the square
with vertices (a, a), (−a, a), (−a,−a), and (a,−a), and
C its boundary. If the divergence of F at the origin is
3, estimate

∮
C F · n ds.

18.[R] Assume ‖F(P )‖ ≤ 4 for all points P on a
curve of length L that bounds a region R of area A.
What can be said about the integral

∫
R∇ · F dA?

19.[R] Verify the divergence form of Green’s Theorem
for F = 3xi + 4yj and C the square whose vertices are
(2, 0), (5, 0), (5, 3), and (2, 3).

A vector field F is said to be divergence free when
∇ · F = 0 at every point in the field.
20.[R] Figure 18.3.7 shows four vector fields. Two
are divergence-free and two are not. Decide which two
are not, copy them onto a sheet of drawing paper, and
sketch a closed curve C for which

∮
C F · n ds is not 0.
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Figure 18.3.7:

21.[R] For a vector field F,

(a) Is the curl of the gradient of F always 0?

(b) Is the divergence of the gradient of F always 0?

(c) Is the divergence of the curl of F always 0?

(d) Is the gradient of the divergence of F always 0?

22.[R] Figure 18.3.8 describes the flow F of a fluid.
Decide whether ∇ · F is positive, negative, or zero at
each of the points A, B, and C.

Figure 18.3.8:

23.[R] If div F at (0.1, 0.1) is 3 estimate
∮
C F · n ds,

where C is the curve around the square whose vertices
are (0, 0), (0.2, 0), (0.2, 0.2), (0, 0.2).

24.[M] Find the area of the region bounded by the

line y = x and the curve{
x = t6 + t4

y = t3 + t

for t in [0, 1]. Hint: Use Green’s Theorem.

25.[M] Let f be a scalar function. Let R be a con-
vex region and C its boundary taken counterclockwise.
Show that∫
R

(
∂2f

∂x2
+
∂2f

∂y2

)
dA =

∮
C

(
∂f

∂x
dy − ∂f

∂x
dx

)
.

26.[M] Let F be the vector field whose formula in
polar coordinates is F(r, θ) = rnr̂, where r = xi + yj,
r = ‖r‖, and r̂ = r/r. Show that the divergence of F is
(n + 1)rn−1. Hint: First express F in rectangular co-
ordinates. Note: See also Exercise 46 in Section 18.8.

27.[M] A region with a hole is bounded by two ori-
ented curves C1 and C2, as in Figure 18.3.9. which
shows typical exterior-pointing unit normal vectors.

Figure 18.3.9:
Find an equation expressing

∫
R∇ · F dA in terms of∮

C1
F · n ds and

∮
C2

F · n ds. Hint: Break R into two
regions that have no holes, as in Exercises 34 and 35.

28.[M] The region R is bounded by the
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curves C1 and C2, as in Figure 18.3.10.

Figure 18.3.10:

(a) Show that
∮
C1

F · n ds −
∫
C2

F · n ds =
∫
R(∇ ·

F) dA.

(b) If ∇ · F = 0 in R, show that
∫
C1

F · n ds =∫
C2

F · n ds.

29.[M] Let F be a vector field in the xy-plane whose
flux across any rectangle is 0. Show that its flux across
the curves in Figure 18.3.11(a) and (b) is also 0.

(a) (b)

Figure 18.3.11:

30.[M] Assume that the circulation of F along every
circle in the xy-plane is 0. Must F be conservative?

31.[C] The field F is defined throughout the xy-plane.
If the flux of F across every circle is 0, must the flux
of F across every square be 0? Explain.

32.[C] Let F(x, y) describe a fluid flow. Assume ∇·F

is never 0 in a certain region R. Show that none of
the stream lines in the region closes up to form a loop
within R. Hint: At each point P on a stream line,
F(P ) is tangent to that streamline.

33.[C] Let R be a region in the xy-plane bounded
by the closed curve C. Let f(x, y) be defined on the
plane. Show that∫

R

(
∂2f

∂x2
+
∂2f

∂x2

)
dA =

∮
C

Dn(f) ds.

34.[C] Assume that F is defined everywhere in the xy-
plane except at the origin and that the divergence of F
is identically 0. Let C1 and C2 be two counterclockwise
simple curves circling the origin. C1 lies within the re-
gion within C2. Show that

∮
C1

F · n ds =
∫
C2

F · n ds.
(See Figure 18.3.12(a).)

(a) (b)

Figure 18.3.12:
Hint: Draw the dashed lines in Figure 18.3.12(b) to
cut the region between C1 and C2 into two regions.

35.[C] (This continues Exercise 34.) Assume that
F is defined everywhere in the xy-plane except at the
origin and that the divergence of F is identically 0.
Let C1 and C2 be two counterclockwise simple curves
circling the origin. They may intersect. Show that∮
C1

F · n ds =
∮
C2

F · n ds. The message from this
Exercise is this: if the divergence of F is 0, you are
permitted to replace an integral over a complicated
curve by an integral over a simpler curve.

36.[C]

(a) Draw enough vectors for the field F(x, y) =
(xi + yj)/(x2 + y2) to show what it looks like.

(b) Compute ∇ · F.
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(c) Does your sketch in (a) agree with what you
found for ∇ · F. in (b)? (If not, redraw the
vector field.)
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18.4 Central Fields and Steradians

Central fields are a special but important type of vector field that appear in
the study of gravity and the attraction or repulsion of electric charges. These
fields radiate from a point mass or point charge. Physicists invented these
fields in order to avoid the mystery of “action at a distance.” One particle
acts on another directly, through the vector field it creates. This comforts
students of gravitation and electromagnetism by glossing over the riddle of
how an object can act upon another without any intervening object such as a
rope or spring.

Figure 18.4.1:

Central Fields

A central field is a continuous vector field defined everywhere in the plane
(or in space) except, perhaps, at a point O, with these two properties:

1. Each vector points towards (or away from) O.

2. The magnitudes of all vectors at a given distance from O are equal.

O is call the center, or pole, of the field. A central field is also called
“radially symmetric.” There are various ways to think of a central vector
field. For such a field in the plane, all the vectors at points on a circle with
center O are perpendicular to the circle and have the same length, as shown
in Figures 18.4.1 and 18.4.2.

The same holds for central vector fields in space, with “circle” replaced by
“sphere.”

Figure 18.4.2:

The formula for a central vector field has a particularly simple form. Let

the field be F and P any point other than O. Denote the vector
−→
OP by r and

its magnitude by r and r/r by r̂. Then there is a scalar function f , defined
for all positive numbers, such that

F(P ) = f(r)r̂.

The magnitude of F(P ) is ‖f(r)‖. If f(r) is positive, F(P ) points away
from O. If f(r) is negative, F(P ) points toward O.

To conclude this introduction to central fields we point out that a central
field is a vector-valued function of more than one variable. Because the point

P with coordinates (x, y, z) is also associated with the vector r =
−→
OP =

xi + yj + zk we may denote F(P ) as F(x, y, z) or F(r).
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Central Vector Fields in the Plane

Using polar coordinates with pole placed at the point O, we may express a
central field in the form

F(r) = f(r)r̂,

where r = ‖r‖ and r̂ = r/r. The magnitude of F(r) is |f(r)|.
We already met such a field in Section 18.1 in the study of line integrals.

In that case, f(r) = 1/r; the “field varied as the inverse first power.” When, See page 1051.

in Section 15.4, we encountered the line integral for the normal component of
this field along a curve we found that it gives the number of radians the curve
subtends.

The vector field F(r) = (1/r)r̂ can also be written as

F(r) =
r

r2
. (18.4.1)

When glancing too quickly at (18.4.1), you might think its magnitude is in-
versely proportional to the square of r. However, the magnitude of the vector
r in the numerator is r; the magnitude of r/r2 is r/r2 = 1/r, the reciprocal of
the first power of r.

Figure 18.4.3:

EXAMPLE 1 Evaluate the flux
∮
C

F · n ds for the central field F(x, y) =
f(r)r̂, where r = xi + yj, over the closed curve shown in Figure 18.4.3. We
have a < b and the path goes from A = (a, 0) to B = (b, 0) to C = (0, b), to
D = (0, a) and ends at A = (a, 0).
SOLUTION On the paths from A to B and from C to D the exterior normal,
n, is perpendicular to F, so F ·n = 0, and these integrands contribute nothing
to the integral. On BC, F equals f(b)r̂. There r̂ = n, so F · n = f(b) since
r · n = 1. Note that the length of arc BC is (2πb)/4 = πb/2. Thus

C∫
B

F · n ds =

C∫
B

f(b) ds = f(b)

C∫
B

ds ==
πb

2
f(b)

On the arc DC, r̂ = −n. A similar calculation shows that

C∫
D

F · n ds = −π
2
af(a).

Hence ∮
C

F · n ds = 0 +
π

2
bf(b) + 0− π

2
af(a) =

π

2
(bf(b)− af(a)).
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�
In order for a central field f(r)r̂ to have zero flux around all paths of the

special type shown in Figure 18.4.3, we must have

f(b)b− f(a)a = 0,

for all positive a and b. In particular,

f(b)b− f(1)1 = 0 or f(b) =
f(1)

b
.

Thus f(r) must be inversely proportional to r and there is a constant c such
that

f(r) =
c

r
.

If f(r) is not of the form c/r, the vector field F(x, y) = f(r)r̂ does not have
zero flux across these paths. In Exercise 5 you may compute the divergence of
(c/r)r̂ and show that it is zero.

The only central vector fields with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the distance
from the origin.

We underline “in the plane,” because in space the only central fields with
zero flux across closed surfaces have a magnitude inversely proportional to the
square of the distance to the pole, as we will see in a moment.

Knowing that the central field F = r̂/r has zero divergence enables us to
evaluate easily line integrals of the form

∮
C
br·n
r
ds, as the next example shows.

EXAMPLE 2 Let F(r) = r̂/r. Evaluate
∮
C

F · n ds where C is the coun-
terclockwise circle of radius 1 and center (2, 0), as shown in Figure 18.4.4.

Figure 18.4.4:

SOLUTION Exercise 5 shows that the field F has 0-divergence throughout
C and the region R that C bounds. By Green’s Theorem, the integral also
equals the integral of the divergence over R:∮

C

F · n ds =

∫
R

∇ · F dA. (18.4.2)

Since the divergence of F is 0 throughout R, the integral on the right side of
(18.4.2) is 0. Therefore

∮
C

F · n ds = 0. �
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The next example involves a curve that surrounds a point where the vector
field F = r̂/r is not defined.

EXAMPLE 3 Let C be a simple closed curve enclosing the origin. Evaluate∮
C

F · n ds, where F = r̂/r.
SOLUTION Figure ?? shows C and a small circle D centered at the origin
and situated in the region that C bounds. Without a formula describing C,
we could not compute

∮
C

F ·n ds directly. However, since the divergence of F
is 0 throughout the region bounded by C and D, we have, by the Two-Curve See page 1051 in

Section 15.4.Case of Green’s Theorem, ∮
C

F · n ds =

∮
D

F · n ds. (18.4.3)

The integral on the right-hand side of (18.4.3) is easy to compute directly. To
do so, let the radius of D be a. Then for points P on D, F(P ) = r̂/a. Now, r̂
and n are the same unit vector. So r̂ · n = 1. Thus∮

D

F · n ds =

∮
D

r̂ · n
a

ds =

∫
D

1

a
ds =

1

a
2πa = 2π.

Hence
∮
C

F · n ds = 2π. �

Figure 18.4.5:

Central Fields in Space

A central field in space with center at the origin has the form F(x, y, z) =
F(r) = f(r)r̂ We show that if the flux of F over any surface bounding certain
special regions is zero then f(r) must be inversely proportional to the square
of r.

Consider the surface S shown in Figure 18.4.5. It consists of an octant of
two concentric spheres, one of radius a, the other of radius b, a < b, together
with the flat surfaces on the coordinate planes. LetR be the region bounded by
the surface S. On its three flat sides F is perpendicular to the exterior normal.
On the outer sphere F(x, y, z) · n = f(b). On the inner sphere F(x, y, z) · n =
−f(a). Thus Surface area of a sphere of

radius r is 4πr2.∮
S

F · n dS = f(b)(
1

8
)(4πb2)− f(a)(

1

8
)(4πa2) =

π

2
(f(b)b2 − f(a)a2).

Since this is to be 0 for all positive a and b, it follows that there is a constant
c, such that Compare with Example 1.

f(r) =
c

r2
.

The magnitude must be proportional to the “inverse square.”
The following fact is justified in Exercise 28:
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The only central vector field with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the distance
from the origin.

A Geometric Application
See Sections 18.7 and 18.9.

As we will see later in this chapter an “inverse square” central field is at
the heart of gravitational theory and electrostatics. Now we show how it is
used in geometry, a result we will apply in both areas.

In Section 15.4 we showed how radian measure could be expressed in terms
of the line integral

∫
C

(r̂/r) · n ds, that is, in terms of the central field whose
magnitude is inversely proportional to the first power of the distance from
the center. That was based on circular arcs in a plane. Now we move up
one dimension and consider patches on surfaces of spheres, which will help us
measure solid angles.

Let O be a point and S a surface such that each ray from O meets S in at
most one point. Let S∗ be the unit sphere with center at O. The rays from O
that meet S intersect S∗ in a set that we call R, as shown in Figure 18.4.6(a).
Let the area of R be A. The solid angle subtended by S at O is said to have
a measure of A steradiansSteradians comes from

stereo, the Greek word for
space, and radians.

For instance, a closed surface S that encloses O subtends a solid angle of
4π steradians, because the area of the unit sphere is 4π.

(a) (b)

Figure 18.4.6:

EXAMPLE 4 Let S be part of the surface of a sphere of radius a, Sa, whose
center is O. Find the angle subtended by S at O. (See Figure 18.4.6(b).)
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SOLUTION The entire sphere Sa subtends an angle of 4π steradians because
it has an area 4πa2. We therefore have the proportion

Angle S subtends

Angle Sa subtends
=

Area of S
Area of Sa

,

or
Angle S subtends

4π
=

Area of S
4πa2

.

Hence

Angle S subtends =
Area of S

a2
steradians.

�

EXAMPLE 5 Let S be a surface such that each ray from the point O
meets S in at most one point. Find an integral that represents in steradians
the solid angle that S subtends at O.
SOLUTION Consider a very small patch of S. Call it dS and let its area

Figure 18.4.7:

be dA. If we can estimate the angle that this patch subtends at O, then we
will have the local approximation that will tell us what integral represents the
total solid angle subtended by S.

Let n be a unit normal at a point in the patch, which we regard as es-
sentially flat, as in Figure 18.4.7. Let dA be the projection of the patch dS
on a plane perpendicular to r, as shown in Figure 18.4.7. The area of dA is
approximately dA, where

dA = r̂ · n dS.

Now, dS and dA subtend approximately the same solid angle, which ac-
cording to Example 4 is about

r̂ · n
‖r‖2

dS steradians.

Consequently S subtends a solid angle of∫
S

r̂ · n
‖r‖2

dS steradians.

�

The following special case will be used in Section 18.5.
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Let O be a point in the region bounded by the closed surface S. Assume each
ray from O meets S in exactly one point, and let r denote the position vector
from O to that point. Then ∫

S

r̂ · n
r2

dS = 4π. (18.4.4)

Incidentally, (18.4.4) is easy to establish when S is a sphere of radius a
and center at the origin. In that case r̂ = n, so r̂ · n = 1. Also, r = a. Then
(18.4.4) becomes

∫
S(1/a2) dS = (1/a2)4πa2 = 4π. However, it is not obvious

that (18.4.4) holds far more generally, for instance when S is a sphere and the
origin is not its center, or when S is not a sphere.

Figure 18.4.8:

EXAMPLE 6 Let S be the cube of side 2 bounded by the six planes x = ±1,
y = ±1, z = ±1, shown in Figure 18.4.8. Find

∮
S
br·n
r2

dS, where S is one of
the six faces of the cube.
SOLUTION Each of the six faces subtends the same solid angle at the origin.
Since the entire surface subtends 4π steradians, each face subtends 4π/6 =
2π/3 steradians. Then the flux over each face is∫

S

r̂ · n
r2

dS =
2π

3
.

�

Figure 18.4.9:

In physics books you will see the integral
∫
S
br·n
r2

dS written using other nota-
tions, including:∫

S

r̂ · n
r3

dS,

∫
S

r̂ · dS
r2

,

∫
S

r · dS
r3

,

∫
S

cos(r,n)

r2
dS.

The symbol dS is short for n dS, and calls to mind Figure 18.4.9, which shows
a small patch on the surface, together with an exterior normal unit vector.

Recall that cos(r,n)
denotes the cosine of the

angle between r and n; see
also Section 14.2. October 22, 2010 Calculus



§ 18.4 CENTRAL FIELDS AND STERADIANS 1329

Summary

We investigated central vector fields. In the plane the only divergence-free
central fields are of the form (c/r)r̂ where c is a constant, “an inverse first
power.” In space the only incompressible central fields are of the form (c/r2)r̂,
“an inverse second power.” The field r̂/r2 can be used to express the size of
a solid angle of a surface S in steradians as an integral:

∫
S r̂ · n/r2 dS. In

particular, if S encloses the center of the field, then
∫
S r̂ · n/r2 dS = 4π. Incompressible vector fields

have divergence zero, and
are discussed again in
Section 18.6.
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EXERCISES for Section 18.4 Key: R–routine,
M–moderate, C–challenging

1.[R] Define a central field in words, using no sym-
bols.

2.[R] Define a central field with center at O, in sym-
bols.

3.[R] Give an example of a central field in the plane
that

(a) does not have zero divergence,

(b) that does have zero divergence.

4.[R] Give an example of a central field in space that

(a) that is not divergence-free,

(b) that is divergence-free.

5.[R] Let F(x, y) be an inverse-first-power central field
in the plane F(x, y) = (c/r)r̂, where r = xi+yj. Com-
pute the divergence of F. Hint: First write F(x, y) as
cxi+cyj
x2+y2

.

6.[R] Show that the curl of a central vector field in
the plane is 0.

7.[R] Show that the curl of a central vector field in
space is 0.

8.[R] Let F(r) = r̂/r. Evaluate
∮
C F · n ds as simply

as you can for the two ellipses in Figure 18.4.10.

(a) (b)

Figure 18.4.10:
9.[R] Figure 18.4.11 shows a cube of side 2 with one
corner at the origin.

Figure 18.4.11:
Evaluate as easily as you can the integral of the func-
tion r̂ · n/r2 over

(a) the square EFGH,

(b) the square ABCD,

(c) the entire surface of the cube.

10.[R] Let F(r) = r̂/r3. Evaluate the flux of F over
the sphere of radius 2 and center at the origin.

11.[R] A pyramid is made of four congruent equilat-
eral triangles. Find the steradians subtended by one
face at the centroid of the pyramid. (No integration is
necessary.)

12.[R] How many steradians does one face of a cube
subtend at
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(a) One of the four vertices not on that face?

(b) The center of the cube? Note: No integration
is necessary.

13.[M] In Example 2 the integral
∮
C r̂ ·n/r ds turned

out to be 0. How would you explain this in terms of
subtended angles?

14.[M] Let F and G be central vector fields in the
plane with different centers.

(a) Show that the vector field F+G is not a central
field.

(b) Show that the divergence of F + G is 0.

15.[M] In Example 6, we evaluated a surface integral
by interpreting it in terms of the size of a subtended
solid angle. Evaluate the integral directly, without
that knowledge.

16.[M] Let S be the triangle whose vertices are
(1, 0, 0), (0, 1, 0), (0, 0, 1). Evaluate

∫
S
br·n
r2

dS by using
steradians.

17.[M] Evaluate the integral in Exercise 16 directly.

18.[M] Let F(x, y, z) = xi+yj+0k
x2+y2

be a vector field in
space.

(a) What is the domain of F?

(b) Sketch F(1, 1, 0) and F(1, 1, 2) with tails at the
given points.

(c) Show F is not a central field.

(d) Show its divergence is 0.

Exercises 19 to 26 are related.

19.[M] Let F be a planar central field. Show that

∇× F is 0. Hint: F(x, y) = g(
√
x2+y2(xi+yj))√

x2+y2
for some

scalar function g.

20.[M] (This continues Exercise 19.) Show that F
is a gradient field; to be specific, F = ∇g(

√
x2 + y2).

21.[C] Carry out the computation to show that the
only central fields in space that have zero divergence
have the form F(r) = cr̂/r2, if the origin of the coor-
dinates is at the center of the field.

22.[C] If we worked in four-dimensional space instead
of the two-dimensional plane or three-dimensional
space, which central fields do you think would have
zero divergence? Carry out the calculation to confirm
your conjecture.

23.[C] Let F = r̂/r2 and S be the surface of the
lopsided pyramid with square base, whose vertices are
(0, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1).

(a) Sketch the pyramid.

(b) What is the integral of F·n over the square base?

(c) What is the integral of F · n over each of the
remaining four faces?

(d) Evaluate
∮
S F · n dS.

24.[C] Let C be the circle x2 +y2 = 4 in the xy-plane.
For each point Q in the disk bounded by C consider the
central field with center Q, F(P ) =

−−→
PQ/‖PQ‖2. Its

magnitude is inversely proportional to the first power
of the distance P is from Q. For each point Q consider
the flux of F across C.

(a) Evaluate directly the flux when Q is the origin
(0, 0).

(b) If Q is not the origin, evaluate the flux of F.

(c) Evaluate the flux when Q lies on C.
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25.[C] Let F be the central field in the plane, with
center at (1, 0) and with magnitude inversely pro-
portional to the first power of the distance to (1, 0):
F(x, y) = (x−1)i+yj

‖(x−1)i+yj‖2 . Let C be the circle of radius 2
and center at (0, 0).

(a) By thinking in terms of subtended angle, evalu-
ate the flux

∮
C F · n ds.

(b) Evaluate the flux by carrying out the integration.

26.[C] This exercise gives a geometric way to see why
a central force is conservative. Let F(x, y) = f(r)r̂.
Figure 18.4.12 shows F(x, y) and a short vector

−→
dr and

two circles.

Figure 18.4.12:

(a) Why is F(x, y)· dr approximately f(r) dr, where
dr is the difference in the radii of the two circles?

(b) Let C be a curve from A to B, where A = (a, α)
and B = (b, β) in polar coordinates. Why is∫
C F · dr =

∫ b
a f(r) dr?

(c) Why is F conservative?

Skill Drill

27.[R] Show that the derivative of 1
3 tan3(x)−tan(x)+

x is tan4(x).

28.[R] Use integration by parts to show that∫
tann(x) dx =

tann−1(x)
n− 1

−
∫

tann−2(x) dx.

29.[R] Entry 16 in the Table of Antiderivatives in the
front cover of this book is:∫

dx

x(ax+ b
=

1
b

ln
∣∣∣∣ x

ax+ b

∣∣∣∣ .
(a) Use a partial fraction expansion to evaluate the

antiderivative.

(b) Use differentiation to check that this formula is
correct.

30.[R] Repeat Exercise 29 for entry 17 in the Table
of Antiderivatives:∫

dx

x(ax+ b)
=

1
b

ln
∣∣∣∣ x

ax+ b

∣∣∣∣ .

31.[R] Show that x arccos(x)−
√

1− x2 is an integral
of arccos(x).

32.[R] Find
∫

arctan(x).

33.[R]

(a) Find
∫
xeax dx.

(b) Use integration by parts to show that∫
xmeax dx =

xmeax

a
− m

a

∫
xm−1eax dx.

(c) Verify the equation in (b) by differentiating the
right hand side.
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18.5 The Divergence Theorem in Space (Gauss’

Theorem)

In Sections 18.2 and 18.3 we developed Green’s theorem and applied it in two
forms for a vector field F in the plane. One form concerned the line integral
of the tangential component of F,

∮
C

F · T ds, also written as
∮
C

F · dr. The
other concerned the integral of the normal component of F,

∮
C

F ·n ds. In this
section we develop the Divergence Theorem, an extension of the second
form from the plane to space. The extension of the first form to space is
the subject of Section 18.6. In Section 18.7 the Divergence Theorem will be
applied to electro-magnetism.

The Divergence (or Gauss’s) Theorem

Consider a region R in space bounded by a surface S. For instance, R may be
a ball and S its surface. This is a case encountered in the elementary theory of
electro-magnetism. In another case, R is a right circular cylinder and S is its
surface, which consists of two disks and its curved side. See Figure 18.5.1(a).
Both figures show typical unit exterior normals, perpendicular to the surface.

(a) (b)

Figure 18.5.1:

The Divergence Theorem relates an integral over the surface to an integral
over the region it bounds.

Theorem (Divergence Theorem —One-Surface Case.). Let V be the region in
space bounded by the surface S. Let n denote the exterior unit normal of V
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along the boundary S. Then∫
S

F · n ds =

∫
V

∇ · F dV

for any vector field F defined on V.
State the Theorem aloud.

In words: “The integral of the normal component of F over a surface equals
the integral of the divergence of F over the region the surface bounds.”

The integral
∫
S F · n dS is called the flux of the field F across the surface

S.

If F = P i+Qj+Rk and cos(α), cos(β), and cos(γ) are the direction cosines
of the exterior normal, then the Divergence Theorem reads∫
S

(P i+Qj+Rk)·(cos(α)i+cos(β)j+cos(γ)k) dS =

∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV.

Evaluating the dot product puts the Divergence Theorem in the formDirection cosines are
defined in Section 14.4. ∫

S

(P cos(α) +Q cos(β) +R cos(γ)) dS =

∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV.

When the Divergence Theorem is expressed in this form, we see that it amounts
to three scalar theorems:∫
S

P cos(α) dS =

∫
V

∂P

∂x
dV,

∫
S

Q cos(β) dS =

∫
V

∂Q

∂y
dV, and

∫
S

R cos(γ) dS =

∫
V

∂R

∂z
dV.

(18.5.1)

As is to be expected, establishing these three equations proves the Diver-
gence Theorem. We delay the proof to the end of this section, after we have
shown how the Divergence Theorem is applied.

You could have guessed the result in this Example by thinking in terms of
the solid angle and steradians. Why?

Figure 18.5.2:

Two-Surface Version of the Divergence Theorem

The Divergence Theorem also holds if the solid region has several holes like a
piece of Swiss cheese. In this case, the boundary consists of several separate
closed surfaces. The most important case is when there is just one hole and
hence an inner surface S1 and an outer surface S2 as shown in Figure 18.5.2.
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Theorem (Divergence Theorem — Two-Surface Case.). Let V be a region in
space bounded by the surfaces S1 and S2. Let n∗ denote the exterior normal
along the boundary. Then∫

S1

F · n∗ dS +

∫
S2

F · n∗ dS =

∫
V

div F dV

for any vector field defined on V.
Compare with (18.2.4) in
Exercise 3 in Section 18.2.The importance of this form of the Divergence Theorem is that it allows

us to conclude that the flux across each of the surfaces are the same provided
these surfaces form the boundary of a solid where div F = 0.

Let S1 and S2 be two closed surfaces that form the boundary of the region V .
Let F be a vector field defined on V such that the divergence of F, ∇ ·F, is 0
throughout V . Then ∫

S1

F · n dS =

∫
S2

F · n dS (18.5.2)

The proof of this result closely parallels the derivation of (18.2.4) in Sec-
tion 18.2.

The next example is a major application of (18.5.2), which enables us, if
the divergence of F is 0, to replace the integral of F · n over a surface by an
integral of F · n over a more convenient surface.

EXAMPLE 1 Let F(r) = r̂/r2, the inverse square vector field with center
at the origin. Let S be a convex surface that encloses the origin. Find the flux
of F over the surface,

∫
S F · n dS.

SOLUTION Select a sphere with center at the origin that does not intersect
S. This sphere should be very small in order to miss S. Call this spherical
surface S1 and its radius a. Then, by (18.5.2),∫

S

F · n dS =

∫
S1

F · n dS

But
∫
S1 F ·n dS is easy because the integrand (r̂/r2) ·n equals r·n

r2
. Then, r ·n

is just 1. Thus:∫
S1

F · n dS =

∫
S1

1

a2
dS =

1

a2

∫
S1

dS =
1

a2
4πa2 = 4π.
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�

A uniform or constant vector field is a vector field where vectors at every
point are all identical. Such fields are used in the next example.

EXAMPLE 2 Verify the Divergence Theorem for the constant field F(x, y, z) =
2i+3j+4k and the surface S of a cube whose sides have length 5 and is situated
as shown in Figure 18.5.3.

Figure 18.5.3:

SOLUTION To find
∫
S F · n dS we consider the integral of F · n over each

of the six faces.

On the bottom face, ABCD the unit exterior normal is −k. Thus

F · n = (2i + 3j + 4k) · (−k) = −4.

So ∫
ABCD

F · n dS =

∫
ABCD

(−4) dS = −4

∫
ABCD

dS = (−4)(25) = −100.

The integral over the top face involves the exterior unit normal k instead of
−k. Then

∫
EFGH

F · n dS = 100. The sum of these two integrals is 0. Similar
computations show that the flux of F over the entire surface is 0.

The Divergence Theorem says that this flux equals
∫
R div F dV , where R

is the solid cube. Now, div F = ∂(2)/∂x+ ∂(3)/∂y+ ∂(4)/∂z = 0 + 0 + 0 = 0.
So the integral of div F over R is 0, verifying the divergence theorem. �
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Why div F is Called the Divergence

Let F(x, y, z) be the vector field describing the flow for a gas. That is,
F(x, y, z) is the product of the density of the gas at (x, y, z) and the velocity
vector of the gas there.

The integral
∫
S F · n dS over a closed surface S represents the tendency of

the gas to leave the region R that S bounds. If that integral is positive the gas
is tending to escape or “diverge”. If negative, the net effect is for the amount
of gas in R to increase and become denser.

Let ρ(x, y, z, t) be the density of the gas at time t at the point P , with units
mass per unit volume. Then

∫
R ρ dV is the total mass of gas in R at a given

time. So the rate at which the mass in R changes is given by the derivative

d

dt

∫
R

ρ dV.

If ρ is sufficiently well-behaved, mathematicians assure us that we may
“differentiate past the integral sign.” Then

d

dt

∫
R

ρ dV =

∫
R

∂p

∂t
dV.

Therefore ∫
R

∂p

∂t
dV =

∫
S

F · n dS

since both represent the rate at which gas accumulates in or escapes from R.
But, by the Divergence Theorem,

∫
S F · n dS =

∫
R∇ · F dV , and so∫

R

∇ · F dV =

∫
R

∂p

∂t
dV

or, ∫
R

(∇ · F− ∂p

∂t
) dV = 0. (18.5.3)

From this is it possible to conclude that ∇ · F− ∂p
∂t

= 0?
Recall that the Zero-Integral Principle (see Section 6.3) says: If a contin-

uous function f on an interval [a, b] has the property that
∫ d
c
f(x) dx = 0 for

every subinterval [c, d] then f(x) = 0 on [a, b]. A natural extention of the
Zero-Integral Principle (see Exercise 27) is:

Zero-Integral Principle in Space
Let R be a region in space, that is, a set of points in space that is bounded
by a surface, and let f be a continuous function on R. Assume that for every
region S in R,

∫
S f(P ) dS = 0. Then f(P ) = 0 for all P in R.
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Equation 18.5.3 holds not just for the solid R but for any solid region
within R. By the Zero-Integral Principle in Space, the integrand must be zero
thoughout R, and we conclude that

∇ · F =
∂p

∂t
.

This equation tells us that div F at a point P represents the rate gas is
getting denser or lighter near P . That is why div F is called the “divergence
of F”. Where div F is positive, the gas is dissipating. Where div F is negative,
the gas is collecting.See Exercise 20 in

Section 18.3. For this reason a vector field for which the divergence is 0 is called incom-
pressible. An incompressible is also called “divergence free”.

We conclude this section with a proof of the Divergence Theorem.

Proof of the Divergence Theorem

We prove the theorem only for the special case that each line parallel to an
axis meets the surface S in at most two points and V is convex. We prove the
third equation in (18.5.1). The other two are established in the same way.

We wish to show that∫
V

R cos(γ) dS =

∫
V

∂R

∂z
dV. (18.5.4)

Let A be the projection of S on the xy plane. Its description is

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x).

The description of V is then

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Figure 18.5.4:

Then (see Figure 18.5.4)

∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

z2(x,y)∫
z1(x,y)

∂R

∂z
dz dy dx. (18.5.5)

The first integration gives

z2(x,y)∫
z1(x,y)

∂R

∂z
dz = R(x, y, z2)−R(x, y, z1),
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by the Fundamental Theorem of Calculus. We have, therefore,

∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

(R(x, y, z2)−R(x, y, z1)) dy dx,

hence ∫
V

∂R

∂z
dV =

∫
A

(R(x, y, z2)−R(x, y, z1)) dA.

This says that, essentially, on the “top half” of V , where 0 < γ < π/2, dA =
cos(γ) dS is positive. And, on the bottom half of V , where π/2 < γ < π,
dA = − cos(γ) dS. According to (17.7.1) in Section 17.7, the last integral
equals ∫

S

R(x, y, z) cos(γ) dS.

Thus ∫
V

∂R

∂z
dV =

∫
S

R cos γ dS,

and (18.5.4) is established.
Similar arguments establish the other two equations in (18.5.1).

Summary

We stated the Divergence Theorem for a single surface and for two surfaces.
They enable one to calculate the flux of a vector field F in terms of an integral
of its divergence ∇ · F over a region. This is especially useful for fields that
are incompressible (divergence free). The most famous such field in space is
the inverse-square vector field: r̂/r2. The flux across a surface of such a field
depends on whether its center is inside or outside the surface. Specifically, if

the center is at Q and the field is of the form c
−−→
QP

‖
−−→
QP‖3

, its flux across a surface

not enclosing Q is 0. If it encloses Q, its flux is 4π. This is a consequence
of the divergence theorem. It also can be explained geometrically, in terms of
solid angles.
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EXERCISES for Section 18.5 Key: R–routine,
M–moderate, C–challenging

1.[R] State the Divergence Theorem in symbols.

2.[R] State the Divergence Theorem using only words,
not using symbols, such as F, ∇ · F, n, S, or V.

3.[R] Explain why ∇·F at a point P can be expressed
as a coordinate-free limit.

4.[R] What is the two-surface version of Gauss’s the-
orem?

5.[R] Verify the divergence theorem for F(x, y, z) =
xi + yj + 0k and the surface x2 + y2 + z2 = 9.

6.[R] Verify the divergence theorem for the field
F(x, y, z) = xi and the cube whose vertices are (0, 0, 0),
(2, 0, 0), (2, 2, 0), (0, 2, 0), (0, 0, 2), (2, 0, 2), (2, 2, 2),
(0, 2, 2).

7.[R] Verify the divergence theorem for F = 2i +
3j + 4k and the tetrahedron whose four vertices are
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

8.[R] Verify the two-surface version of Gauss’s theo-
rem for F(x, y, z) = (x2 + y2 + z2)(xi + yj + zk) and
the surfaces are the spheres of radii 2 and 3 centered
at the origin.

9.[R] Let F = 2xi + 3yj + (5z + 6x)k, and let
G = (2x+ 4z2)i + (3y + 5x)j + 5zk. Show that∫

S

F · n dS =
∫
S

G · n dS,

where S is any surface bounding a region in space.

10.[R] Show that the divergence of r̂/r2 is 0.
Hint: r = xi + yj + zk.

In Exercises 11 to 18 use the Divergence Theorem.

11.[R] Let V be the solid region bounded by the xy
plane and the paraboloid z = 9 − x2 − y2. Evaluate∫
S F · n dS, where F = y3i + z3j + x3k and S is the

boundary of V.

12.[R] Evaluate
∫
V ∇ · F dV for F =√

x2 + y2 + z2(xi + yj + zk) and V the ball of ra-
dius 2 and center at (0, 0, 0).

In Exercises 13 and 14 find
∫
S F ·n dS for the given F

and S.

13.[R] F = z
√
x2 + z2i+

(y + 3)j − x
√
x2 + z2k

and S is the boundary of
the solid region between
z = x2 + y2 and the plane
z = 4x.
14.[R] F = xi + (3y +

z)j + (4x + 2z)k and S is
the surface of the cube
bounded by the planes
x = 1, x = 3, y = 2,
y = 4, z = 3 and z = 5.

15.[R] Evaluate
∫
S F·n dS, where F = 4xzi−y2j+yzk

and S is the surface of the cube bounded by the planes
x = 0, x = 1, y = 0, z = 0, and z = 1, with the face
corresponding to x = 1 removed.

16.[R] Evaluate
∫
S F ·n dS, where F = xi + yj + 2xk

and S is the boundary of the tetrahedron with vertices
(1, 2, 3), (1, 0, 1) (2, 1, 4), and (1, 3, 5).

17.[R] Let S be a surface of area S that bounds a
region V of volume V . Assume that ‖F(P )‖ ≤ 5 for
all points P on the surface S. What can be said about∫
V ∇ · F dV ?

18.[R] Evaluate
∫
S F ·n dS, where F = x3i+y3j+z3k

and S is the sphere of radius a and center (0, 0, 0).

In Exercises 19 to 22 evaluate
∫
S F ·n dS for F = r̂/r2

and the given surfaces, doing as little calculation as
possible.
19.[R] S is the sphere of radius 2 and center (5, 3, 1).

20.[R] S is the sphere of radius 3 and center (1, 0, 1).

21.[R] S is the surface of the box bounded by the
planes x = −1, x = 2, y = 2, y = 3, z = −1, and
z = 6.
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22.[R] S is the surface of the box bounded by the
planes x = −1, x = 2, y = −1, y = 3, z = −1, and
z = 4.

23.[M] Assume that the flux of F across every sphere
is 0. Must the flux of F across the surface of every
cube be 0 also?
24.[R] If F is always tangent to a given surface S
what can be said about the integral of ∇ · F over the
region that S bounds?
25.[M] Let F(r) = f(r)r̂ be a central vector field
in space that has zero divergence. Show that f(r)
must have the form f(r) = a/r2 for some constant a.
Hint: Consider the flux of F across the closed surface
in Figure 18.5.5.

Figure 18.5.5:
26.[M] Let F be defined everywhere except at the
origin and be divergence-free. Let S1 and S2 be two
closed surfaces that enclose the origin. Explain why∫
S1 F · n dS =

∫
S2 F · n dS. (The two surfaces may

intersect.)

27.[M] Provide the details for the proof of the Zero-
Integral Principle in Space. Hint: You need to consider
the two cases when f > 0 and f < 0.

28.[M] Show that the flux of an inverse-square cen-
tral field cr̂/r2 across any closed surface that bounds
a region that does not contain the origin is zero.

29.[C]

(a) Show that the proof in the text of the Divergence
Theorem applies to a tetrahedron. Hint: Choose
your coordinate system carefully.

(b) Deduce that if the Divergence Theorem holds for
a tetrahedron then it holds for any polyhedron.
Hint: Each polyhedron can be cut into tetrahe-
dra.

30.[C] In Exercise 25 you were asked to show gener-
ally that the only central fields with zero divergence
are the inverse square fields. Show this, instead, by
computing the divergence of F(x, y, z) = f(r)r̂, where
r = xi + yj + zk.

31.[C] Let F be defined everywhere in space except
at the origin. Assume that

lim
‖r‖→∞

F(r)
‖r‖2

= 0

and that F is defined everywhere except at the ori-
gin, and is divergence free. What can be said about∫
S F · n dS, where S is the sphere of radius 2 centered

at the origin?

We proved one-third of the Divergence Theorem. Ex-
ercises 32 and 33 concern the other two-thirds.
32.[C] Prove that∫

S

Q cos(β) dS =
∫
V

∂Q

∂y
dV.

33.[C] Prove that∫
S

P cos(α) dS =
∫
V

∂P

∂x
dV.

34.[C] Let f be a scalar function F(x, y, z) = f(r)r̂,
where r = ‖r} and r = xi + yj + zk. Show that if
∇ · F = 0, then f(r) = c/r2 for some constant c.
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18.6 Stokes’ Theorem

In Section 18.1 we learned that Green’s theorem in the xy-plane can be written
as ∮

C

F · dr =

∫
R

(curl F) · k dA,

where C is counterclockwise and C bounds the region R. The general Stokes’
Theorem introduced in this section extends this result to closed curves in space.
It asserts that if the closed curve C bounds a surface S, then

Figure 18.6.1:

∮
C

F · dr =

∫
S

(curl F) · n dS.

As usual, the vector n is a unit normal to the surface. There are two such
normals at each point on the surface. In a moment we describe how to decide
which unit normal vector to use. The choice depends on the orientation of C.

In words, Stokes’ theorem reads, “The circulation of a vector field around
a closed curve is equal to the integral of the normal component of the curl of
the field over any surface that the curve bounds.”

Stokes’ published his theorem in 1854 (without proof, for it appeared as a
question on a Cambridge University examination). By 1870 it was in common
use. It is the most recent of the three major theorems discussed in this chapter,
for Green published his theorem in 1828 and Gauss published the divergence
theorem in 1839.

Figure 18.6.2:

Choosing the Normal n

In order to state Stokes’ theorem precisely, we must describe what kind of
surface S is permitted and which of the two possible normals n to choose.

The typical surfaces S that we consider have the property that it is possible
to assign, at each point on S, a unit normal n in a continuous manner. On
the surface shown in Figure 18.6.2, there are two ways to do this. They are
shown in Figure 18.6.3.

(a) (b)
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Figure 18.6.3:
But, for the surface shown in Figure 18.6.4 (a Möbius band), it is impossible

to make such a choice. If you start with choice (1) and move the normal
continuously along the surface, by the time you return to the initial point on
the surface at stage (9), you have the opposite normal. A surface for which
a continuous choice can be made is called orientable or two-sided. Stokes’
theorem holds for orientable surfaces, which include, for instance, any part of
the surface of a convex body, such as a ball, cube or cylinder. Right-hand rule for choosing

n.Consider an orientable surface S, bounded by a parameterized curve C so
that the curve is swept out in a definite direction. If the surface is part of a
plane, we can simply use the right-hand rule to choose n: The direction of n
should match the thumb of the right hand if the fingers curl in the direction
of C and the thumb and palm are perpendicular to the plane. If the surface

Figure 18.6.4: Follow the
choices through all nine
stages — there’s trouble.

is not flat, we still use the right-hand rule to choose a normal at points near
C. The choice of one normal determines normals throughout the surface.
Figure 18.6.5 illustrates the choice of n. For instance, if C is counterclockwise
in the xy-plane, this definition picks out the normal k, not −k.

(a) (b)

Figure 18.6.5:

Theorem 18.6.1 (Stokes’ theorem). Let S be an orientable surface bounded
by the parameterized curve C. At each point of S let n be the unit normal
chosen by the right-hand rule. Let F be a vector field defined on some region
in space including S. Then∮

C

F · dr =

∫
S

(∇× F) · n dS. (18.6.1)

Some Applications of Stokes’ Theorem

Stokes’ theorem enables us to replace
∫
S(curl F) · n dS by a similar integral

over a surface that might be simpler than S. That is the substance of the
following special case of Stokes’ theorem.
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One way to evaluate some
surface integrals is to

choose a simpler surface.
Let S1 and S2 be two surfaces bounded by the same curve C and oriented so
that they yield the same orientation on C. Let F be a vector field defined on
both S1 and S2. Then∫

S1

(curl F) · n dS =

∫
S2

(curl F) · n dS (18.6.2)

The two integrals in (18.6.2) are equal since both equal
∮
C

F · dr.

EXAMPLE 1 Let F = xezi + (x+ xz)j + 3ezk and let S be the top half of
the sphere x2 + y2 + z2 = 1. Find

∫
S(curl F) · n dS, where n is the outward

normal. (See Figure 18.6.6.)

Figure 18.6.6: ARTIST:
Add an arrow to indicate
the unit circle in the plane
is to be oriented coun-
terclockwise. Also add
“counterclockwise” to the
text label for C.

SOLUTION Let S∗ be the flat base of the hemisphere. By (18.6.2),∫
S

(∇× F) · n dS =

∫
S∗

(∇× F) · k dS.

(On S∗ note that k, not −k, is the correct normal to use.)
A straightforward calculation shows that

∇× F = −xi + xezj + (z + 1)k,

hence (∇× F) · k = z + 1. On S∗, z = 0, so∫
S∗

(∇× F) · k dS =

∫
S∗

dS = π.

thus the original integral over S is also π. �
Just as there are two-curve versions of Green’s Theorem and of the Diver-

gence Theorem, there is a two-curve version of Stokes’ Theorem.

Stokes’ Theorem for a Surface Bounded by Two Closed CurvesTwo-curve version of
Stokes’s Theorem Let S be an orientable surface whose boundary consists of the two closed

curves C1 and C2. Give C1 an orientation. Orient S consistent with the the
right-hand rule, as applied to C1. Give C2 the same orientation as C1. (If C2

is moved on S to C1, the orientations will agree.) Then∮
C1

F · dr−
∮
C2

F · dr =

∫
S

(∇× F) · n dS. (18.6.3)
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Proof

Figure 18.6.7(a) shows the typical situation.

(a) (b) (c)

Figure 18.6.7:
The cancellation principle
was introduced in
Section 18.2.

We will obtain (18.6.3) from Stokes’s theorem with the aid of the cancella-
tion principle. Introduce lines AB and CD on S, cutting S into two surfaces,
S∗ and S∗∗. (See Figure 18.6.7(c).) Now apply Stokes’s theorem to S∗ and
S∗∗. (See Figure 18.6.7(c).)

Let C∗ be the curve that bounds S∗, oriented so that where it overlaps C1

it has the same orientation as C1. Let C∗∗ be the curve that bounds S∗∗, again
oriented to match C1. (See Figure 18.6.7(c).)

By Stokes’ theorem, ∮
C∗

F · dr =

∫
S∗

(curl F) · n dS (18.6.4)

and ∮
C∗∗

F · dr =

∫
S∗∗

(curl F) · n dS. (18.6.5)

Adding (18.6.4) and (18.6.5) and using the cancellation principle gives∮
C1

F · dr−
∮
C2

F · dr =

∫
S

(curl F) · n dS.

•
Recall, from Section 18.2,
that F is irrotational when
curl F = 0.

In practice, it is most common to apply (18.6.3) when curl F = 0. This is
so important we state it explicitly:

Calculus October 22, 2010



1346 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

Let F be a field such that curl F = 0. Let C1 and C2 be two closed curves
that together bound an orientable surface S on which F is defined. If C1 and
C2 are similarly oriented, then∮

C1

F · dr =

∮
C2

F · dr. (18.6.6)

Equation (18.6.6) follows directly from (18.6.3) since
∫
S(curl F) ·n dS = 0.

EXAMPLE 2 Assume that F is irrotational and defined everywhere except
on the z-axis. Given that

∮
C1

F · dr = 3, find (a)
∮
C2

F · dr and (b)
∮
C3

F · dr.

(See Figure 18.6.8.)

Figure 18.6.8:

SOLUTION (a) By (18.6.6),
∮
C2

F · dr =
∮
C1

F · dr = 3. (b) By Stokes’

theorem, (18.6.1),
∮
C3

F · dr = 0. �

Curl and Conservative Fields

In Section 18.1 we learned that if F = P i+Qj is defined on a simply connected
region in the xy-plane and if curl F = 0, then F is conservative. Now that we
have Stokes’ theorem, this result can be extended to a field F = P i +Qj +Rk
defined on a simply connected region in space.

Theorem 18.6.2. Let F be defined on a simply connected region in space. If
curl F = 0, then F is conservative.

Proof

We provide only a sketch of the proof of this result. Let C be a simple closed
curve situated in the simply connected region. To avoid topological com-
plexities, we assume that it bounds an orientable surface S. To show that∮
C

F · dr = 0, we use the same short argument as in Section 18.2:∮
C

F · dr =

∫
S

(∇× F) · n dS =

∫
S

0 dS = 0.

•
It follows from Theorem 18.6.2 that every central field F is conservative

because a straightforward calculation shows that the curl of a central field
is 0. (See Exercises 6 and 7 in Section 18.4.) Moreover, F is defined either
throughout space or everywhere except at the center of the field.
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Exercise 26 of Section 18.4 presents a purely geometric argument for why
a central field is conservative.

In Sections 18.7 and 18.9 we will show how Stokes’s theorem is applied in
the theory of electromagnetism.

Figure 18.6.9:

Why Curl is Called Curl

Let F be a vector field describing the flow of a fluid, as in Section 18.1. Stokes’s
theorem will give a physical interpretation of curl F.

Consider a fixed point P0 in space. Imagine a small circular disk S with
center P0. Let C be the boundary of S oriented in such a way that C and n
fit the right-hand rule. (See Figure 18.6.9)

Now examine the two sides of the equation∫
S

(curl F) · n dS =

∮
C

F ·T ds. (18.6.7)

The right side of (18.6.7) measures the tendency of the fluid to move along

Figure 18.6.10:

C (rather than, say, perpendicular to it.) Thus
∮
C

F ·T ds might be thought
of as the “circulation” or “whirling tendency” of the fluid along C. For each
tilt of the small disk S at P0 — or, equivalently, each choice of unit normal
vector n – the line integral

∮
C

F ·T ds measures a corresponding circulation.
It records the tendency of a paddle wheel at P0 with axis along n to rotate.
(See Figure 18.6.10.)

Consider the left side of (18.6.7). If S is small, the integrand is almost
constant and the integral is approximately

(curl F)P0 · n · Area of S, (18.6.8)

where (curl F)P0 denotes the curl of F evaluated at P0.
Keeping the center of S at P0, vary the vector n by tilting the disk S. For

which choice of n will (18.6.8) be largest? Answer: For that n which has the
same direction as the fixed vector (curl F)P0 . With that choice of n, (18.6.8)
becomes

‖(curl F)P0‖ Area of S .

Thus a paddle wheel placed in the fluid at P0 rotates most quickly when its The physical interpretation
of curlaxis is in the direction of curl F at P0. The magnitude of curl F is a measure

of how fast the paddle wheel can rotate when placed at P0. Thus curl F
records the direction and magnitude of maximum circulation at a given point.
If curl F is 0, there is no tendency of the fluid to rotate; that is why such
vector fields are called irrotational.
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A Vector Definition of Curl

In Section 18.1 curl F was defined in terms of the partial derivatives of the
components of F. By Stokes’ theorem, curl F is related to the circulation,∮
C

F · dr. We exploit this relation to obtain a new view of curl F, free of
coordinates.

Let P0 be a point in space and let n be a unit vector. Consider a small
disk Sn(a), perpendicular to n, whose center is P0, and which has a radius
a. Let Cn(a) be the boundary of Sn(a), oriented to be compatible with the
right-hand rule. Then ∫

Sn(a)

(curl F) · n dS =

∮
Cn(a)

F · dr.

As in our discussion of the physical meaning of curl, we see that

(curl F)(P0) · n · Area of Sn(a) ≈
∮

Cn(a)

F · dr,

or

(curl F)(P0) · n ≈

∮
Cn(a)

F · dr
Area of Sn(a)

.

Thus

(curl F)(P0) · n = lim
a→0

∮
Cn(a)

F · dr
Area of Sn(a)

. (18.6.9)

Equation (18.6.9) gives meaning to the component of (curl F)(P0) in any
direction n. So the magnitude and direction of curl F at P0 can be described
in terms of F, without looking at the components of F.

The magnitude of (curl F)P0 is the maximum value of

lim
a→0

∮
Cn(a)

F · dr
Area of Sn(a)

, (18.6.10)

for all unit vectors n.
The direction of (curl F)P0 is given by the vector n that maximizes the limit
(18.6.10).

EXAMPLE 3 Let F be a vector field such that at the origin curl F =
2i + 4j + 4k. Estimate

∮
C

F · dr if C encloses a disk of radius 0.01 in the
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xy-plane with center (0, 0, 0). C is swept out clockwise. (See Figure 18.6.11.)

Figure 18.6.11:

SOLUTION Let S be the disk whose border is C. Choose the normal to
S that is consistent with the orientation of C and the right-hand rule. That
choice is −k. Thus

(curl F) · (−k) ≈
∮
C

F · dr
Area of S

.

The area of S is π(0.01)2 and curl F = 2i + 3j + 4k. Thus

(2i + 3j + 4k) · (−k) ≈
∮
C

F · dr
π(0.01)2

.

From this it follows that ∮
C

F · dr ≈ −4π(0.01)2.

�

In a letter to the mathematician Tait written on November 7, 1870, Maxwell
offered some names for ∇× F:

Here are some rough-hewn names. Will you like a good Divinity
shape their ends properly so as to make them stick? . . .

The vector part ∇×F I would call the twist of the vector func-
tion. Here the word twist has nothing to do with a screw or helix.
The word turn . . . would be better than twist, for twist suggests
a screw. Twirl is free from the screw motion and is sufficiently
racy. Perhaps it is too dynamical for pure mathematicians, so for
Cayley’s sake I might say Curl (after the fashion of Scroll.)

His last suggestion, “curl,” has stuck.

Proof of Stokes’ Theorem

We include this proof because it reviews several basic ideas. The proof uses
Green’s theorem, the normal to a surface z = f(x, y), and expressing an inte-
gral over a surface as an integral over its shadow on a plane. The approach
is straightforward. As usual, we begin by expressing the theorem in terms of
components. We will assume that the surface S meets each line parallel to an
axis in at most one point. That permits us to project S onto each coordinate
plane in an one-to-one fashion.
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To begin we write F(x, y, z) as P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, or,
simply F = P i + Qj + Rk. We will project S onto the xy-plane, so write the
equation for S as z − f(x, y) = 0. A unit normal to S is

n =
−∂f
∂x

i− ∂f
∂y

j + k√(
∂f
∂x

)2
+
(
∂f
∂y

)2

+ 1

.

(Since the k component of n is positive, it is the correct normal, given by
the right-hand rule.) Let C∗ be the projection of C on the xy-plane, swept
out counterclockwise.See Exercise 9.

A straightforward computation shows that Stokes’ theorem, expressed in
components, reads∫

C

P dx+Q dy +R dz

=

∫
S

(
∂R
∂x
− ∂Q

∂z

) (
−∂f
∂x

)
−
(
∂R
∂x
− ∂P

∂z

) (
−∂f
∂y

)
+
(
∂Q
∂x
− ∂P

∂y

)
(1)√(

∂f
∂x

)2
+
(
∂f
∂y

)2

+ 1

dS.

As expected, this equation reduces to three equations, one for P , one for Q,
and one for R.

We will establish the result for P , namely∫
C

P dx =

∫
S

∂P
∂z

(−∂f
∂y

)− ∂P
∂y

(1)√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
dS. (18.6.11)

To change the integral over S to an integral over its projection, S∗, on
the xy-plane, we replace dS by

√
(∂f/∂x)2 + (∂f/∂y)2 + 1 dA. At the same

time we project C onto a counterclockwise curve C∗. The square roots cancel
leaving us with this equation in the xy-plane:∫

C∗

P (x, y, f(x, y)) dx =

∫
R

(
−∂P
∂z

∂f

∂y
− ∂P

∂y

)
dA. (18.6.12)

Finally, we apply Green’s theorem to the left side of (18.6.12), and obtain:∫
C∗

P (x, y, f(x, y)) dx =

∫
S∗

−∂P (x, y, f(x, y))

∂y
dA.

Be sure you understand
each of the four steps in

this proof, and why they are
valid. October 22, 2010 Calculus
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But
∂P (x, y, f(x, y))

∂y
=
∂P

∂y
+
∂P

∂z

∂f

∂y
. (18.6.13)

Combining (18.6.12) and (18.6.13) completes the proof of (18.6.11).
In this proof we assumed that the surface S has a special form, meeting

lines parallel to an axis just once. However, more general surfaces, such as the
surface of a sphere or a polyhedron can be cut into pieces of the type treated
in the proof. Exercise 48 shows why this observation then implies that Stokes’
Theorem holds in these cases also.

Summary

Stokes’ Theorem relates the circulation of a vector field over a closed curve C
to the integral over a surface S that C bounds. The integrand over the surface
is the component of the curl of the field perpendicular to the surface,∫

C

F · dr =

∫
S

(curl F) · n dS.

The normal n is the normal vector to S given by the right-hand rule.
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EXERCISES for Section 18.6 Key: R–routine,
M–moderate, C–challenging

1.[C] We dealt only with the component P . What
is the analog of (18.6.11) for Q? Prove it. Hint: The
steps would parallel the steps used for P .

2.[R] State Stokes’ Theorem (symbols permitted).

3.[R] State Stokes’ Theorem in words (symbols not
permitted).

4.[M] Explain why (18.6.5) holds if S1 and S2 to-
gether form the boundary surface S of a solid region
R. Use the Divergence Theorem, not Stokes’ Theorem.

5.[R] Let F (r) be an antiderivative of f(r). Show
that f(r)r̂ is the gradient of F (r), hence is conserva-
tive. Note: f(r)r

r = f(r)r̂.

6.[M] Show that a central field f(r)r̂ is conservative
by showing that it is irrotational and defined on a sim-
ply connected region. Hint: Express r̂ in terms of x,
y and z. Note: See also Exercise 47.

7.[R]

(a) Use the fact that a gradient, ∇f , is conservative,
to show that its curl is 0.

(b) Compute∇×∇f in terms of components to show
that the curl of a gradient is 0.

8.[C] (See also Exercises 5 and 6.)

Sam: The only conservative fields in space that I know
are the “inverse square central fields” with cen-
ters anywhere I please.

Jane: There are a lot more.

Sam: Oh?

Jane: Just start with any scalar function f(x, y, z)
with continuous partial derivation of the first and
second orders. Then its gradient will be a con-
servative field.

Sam: O.K. But I bet there are still more.

Jane: No. I got them all.

Question: Who is right?

Exercises 9 to 14 concern the proof of Stokes’ Theorem.
9.[C] Carry out the calculations in the proof that
translated Stokes’ Theorem into an equation involving
the components P , Q, and R.
10.[C] Draw a picture of S, S∗, C and C∗ that appear
in the proof of Stokes’ Theorem.
11.[C] Write the four steps involved in the proof of
Stokes’ Theorem, giving an explanation for each step.

12.[C] In the proof of Stokes’ Theorem we used a nor-
mal n. Show that it is the “correct” one, compatible
with counterclockwise orientation of C∗.
13.[C]

(a) State Stokes’ Theorem for
∫
C Q dy.

(b) Prove Stokes’ Theorem for
∫
C Q dy.

(c) State Stokes’ Theorem for
∫
C R dz.

(d) Prove Stokes’ Theorem for
∫
C R dz.

14.[C] Draw a picture of S, S∗, C and C∗ that appear
in the proof.

Exercises 15 to 17 prepare you for Exercise 18.
15.[M] Assume that G is the curl of another vector
field F, G = ∇×F. Let S be a surface that bounds a
solid region V . Let C be a closed curve on the surface
S breaking S into two pieces S1 and S2.
16.[M] Using the Divergence Theorem, show that∫
SG · n dS = 0.

17.[M] Using Stokes’ Theorem, show that
∫
SG ·

n dS = 0. Hint: Break the integral into integrals over
S1 and S2.
18.[R] Let F = exyi + tan(3yz)j + 5zk and S be

October 22, 2010 Calculus



§ 18.6 STOKES’ THEOREM 1353

the tetrahedron whose vertices are (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (0, 0, 1). Let S1 be the base of S in the
xy-plane and S2 consist of the other three faces. Find∫
S(∇ × F) · n dS. Hint: think about the preceding

two exercises.

19.[R] Assume that F is defined everywhere except
on the z-axis and is irrotational. The curves C1, C2,
C3, and C4 are as shown in Figure 18.6.12. What, if
anything, can be said about∮
C1

F· dr,
∮
C2

F· dr,
∮
C3

F· dr, and
∮
C4

F· dr.

Figure 18.6.12:

In Exercises 20 to 23 verify Stokes’ Theorem for the
given F and surface S.
20.[R] F = xy2i + y3j + y2zk; S is the top half of the
sphere x2 + y2 + z2 = 1.

21.[R] F = yi + xzj + x2k; S is the triangle with
vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).

22.[R] F = y5i + x3j + z4k; S is the portion of
z = x2 + y2 below the plane z = 1.

23.[R] F = −yi + xj + zk, S is the portion of the
cylinder z = x2 inside the cylinder x2 + y2 = 4.

24.[R] Evaluate as simply as possible
∫
S F · n dS,

where F(x, y, z) = xi − yj and S is the surface of the
cube bounded by the three coordinate planes and the
planes x = 1, y = 1, z = 1, exclusive of the surface in
the plane x = 1. (Let n be outward from the cube.)

25.[R] Using Stokes’ Theorem, evaluate
∫
S(∇ × F) ·

n dS, where F = (x2 + y − 4)i + 3xyj + (2xz + z2)k,
and S is the portion of the surface z = 4 − (x2 + y2)
above the xy plane. (Let n be the upward normal.)

In each of Exercises 26 to 29 use Stokes’ Theorem to
evaluate

∮
C F · dr for the given F and C. In each

case assume that C is oriented counterclockwise when
viewed from above.
26.[R] F = sin(xy)i; C is the intersection of the plane
x+ y + z = 1 and the cylinder x2 + y2 = 1.

27.[R] F = exj; C is the triangle with vertices (2, 0, 0),
(0, 3, 0) and (0, 0, 4).

28.[R] F = xyk; C is the intersection of the plane
z = y with the cylinder x2 − 2x+ y2 = 0.

29.[R] F = cos(x + z)j; C is the boundary of the
rectangle with vertices (1, 0, 0), (1, 1, 1), (0, 1, 1), and
(0, 0, 0).

30.[R] Let S1 be the top half and S2 the bottom half
of a sphere of radius a in space. Let F be a vector
field defined on the sphere and let n denote an ex-
terior normal to the sphere. What relation, if any, is
there between

∫
S1(∇×F)·n dS and

∫
S2(∇×F)·n dS?

31.[R] Let F be a vector field throughout space such
that F(P ) is perpendicular to the curve C at each point
P on C, the boundary of a surface S. What can one
conclude about ∫

S

(∇× F) · n dS?

32.[R] Let C1 and C2 be two closed curves in the
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xy-plane that encircle the origin and are similarly ori-
ented, as in Figure 18.6.13.

Figure 18.6.13:
Let F be a vector field defined throughout the plane
except at the origin. Assume that ∇× F = 0.

(a) Must
∮
C F · dr = 0?

(b) What, it any, relation exists between
∮
C1

F · dr
and

∮
C2

F · dr?

33.[R] Let F be defined everywhere in space except
on the z-axis. Assume also that F is irrotational,∮
C1

F ·dr = 3, and
∮
C2

F ·dr = 5. (See Figure 18.6.14.)
What if, anything, can be said about

(a)
∮
C3

F · dr,

(b)
∮
C4

F · dr?

Figure 18.6.14:

34.[R] Which of the following sets are connected?
simply connected?

(a) A circle (x2 + y2 = 1) in the xy-plane

(b) A disk (x2 + y2 ≤ 1) in the xy-plane

(c) The xy-plane from which a circle is removed

(d) The xy-plane from which a disk is removed

(e) The xy-plane from which one point is removed

(f) xyz-space from which one point is removed

(g) xyz-space from which a sphere is removed

(h) xyz-space from which a ball is removed

(i) A solid torus (doughnut)

(j) xyz-space from which a solid torus is removed

(k) A coffee cup with one handle

(l) xyz-space from which a solid doughnut is re-
moved

35.[R] Which central fields have curl 0?

36.[R] Let V be the solid bounded by z = x + 2,
x2 + y2 = 1, and z = 0. Let S1 be the portion of
the plane z = x + 2 that lies within the cylinder
x2 + y2 = 1. Let C be the boundary of S1, with a
counterclockwise orientation (as viewed from above).
Let F = yi +xzj + (x+ 2y)k. Use Stokes’ Theorem for
S1 to evaluate

∮
C F · dr.

37.[R] (See Exercise 36.) Let S2 be the curved surface
of V together with the base of V. Use Stokes’ Theorem
for S2 to evaluate

∮
C F · dr.

38.[R] Verify Stokes’ theorem for the special case
when F has the form ∇f , that is, is a gradient field.

39.[R] Let F be a vector field defined on the surface
S of a convex solid. Show that

∫
S(∇× F) · n dS = 0
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(a) by the Divergence Theorem,

(b) by drawing a closed curve on C on S and using
Stokes’ Theorem on the two parts into which C
divides S.

40.[R] Evaluate
∮
C F · dr as simply as possible if

F(x, y, z) = (−yi + xj)/(x2 + y2) and C is the inter-
section of the plane z = 2x + 2y and the paraboloid
z = 2x2+3y2 oriented counterclockwise as viewed from
above.

41.[R] Let F(x, y) be a vector field defined every-
where in the plane except at the origin. Assume that
∇× F = 0. Let C1 be the circle x2 + y2 = 1 counter-
clockwise; let C2 be the circle x2 +y2 = 4 clockwise; let
C3 be the circle (x− 2)2 + y2 = 1 counterclockwise; let
C4 be the circle(x− 1)2 + y2 = 9 clockwise. Assuming
that

∮
C1

F · dr is 5, evaluate

(a)
∮
C2

F · dr

(b)
∮
C3

F · dr

(c)
∮
C4

F · dr.

42.[M] Let F(x, y, z) = r/‖r‖a, where r = i +uj + zk
and a is a fixed real number.

(a) Show that ∇× F = 0.

(b) Show that F is conservative.

(c) Exhibit a scalar function f such that F = ∇f .

43.[M] Let F be defined throughout space and have
continuous divergence and curl.

(a) For which F is
∫
S F ·n dS = 0 for all spheres S?

(b) For which F is
∮
C F · dr = 0 for all circles C?

44.[M] Let C be the curve formed by the intersection
of the plane z = x and the paraboloid z = x2 + y2.
Orient C to be counterclockwise when viewed from
above. Evaluate

∮
C(xyz dx+ x2 dy + xz dz).

45.[M] Assume that Stokes’ Theorem is true for tri-
angles. Deduce that it then holds for the surface S
in Figure 18.6.15(a), consisting of the three triangles
DAB, DBC, DCA, and the curve ABCA.

(a) (b)

Figure 18.6.15:
46.[C] A Möbius band can be made by making a half-
twist in a narrow rectangular strip, bringing the two
ends together, and fastening them with glue or tape.
See Figure 18.6.15(b).

(a) Make a Möbius band.

(b) Letting a pencil represent a normal n to the
band, check that the Möbius band is not ori-
entable.

(c) If you form a band by first putting in a full twist
(360◦), is it orientable?

(d) What happens when you cut the bands in (a)
and (c) down the middle? one third of the way
from one edge to the other?

47.[C]

(a) Explain why the line integral of a central vector
field f(r)r̂ around the path in Figure 18.6.16(a)
is 0.

(b) Deduce from (a) and the coordinate-free view of
curl that the curl of a central field is 0.
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(a) (b)

Figure 18.6.16:
48.[C]

(a) The proof of Stokes’ Theorem we gave would
not apply to surfaces that are more complicated,
such as the “top three fourths of a sphere,” as
shown in Figure 18.6.16(b). However, how could
you cut S into pieces to each of which the proof
applies? (Describe them in general terms, in
words.)

(b) How could you use (a) to show that Stokes’ The-
orem holds for C and S in Figure 18.6.16(b)

49.[M] Sam has a different way to make the choice of
n.

Sam: I think the book’s way of choosing n is too com-
plicated.

Jane: OK. How would you do it?

Sam: Glad you asked. First, I would choose a unit
normal n at one point on the orientable surface.

Jane: That’s a good start.

Sam: Then I choose unit normals in a continuous way
everywhere on the surface starting at my initial
choice.

Jane: And how would you finish?

Sam: My last step is to orient the boundary curve to
be compatible with the right-hand rule.

Would this proposal work? If it does, would it agree
with the approach in the text.
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18.7 Connections Between the Electric Field

and r̂/‖r‖2

Even if you are not an engineer or physicist, as someone living in the 21st cen-
tury you are surrounded by devices that depend on electricity. For that reason
we now introduce one of the four equations that explain all of the phenomena of
electricity and magnetism. Later in the chapter we will turn to the other three
equations, all of which are expressed in terms of vector fields. The chapter
concludes with a detailed description of how James Clerk Maxwell, using just
these four equations, predicted that light is an electromagnetic phenomenon.
Our explanation does not assume any prior knowledge of physics.

The Electric Field Due To a Single Charge

The starting point is some assumptions about the fundamental electrical charges,
electrons and protons. An electron has a negative charge and a proton has a
positive charge of equal absolute value. Two like charges exert a force of
repulsion on each other; unlike charges attract each other.

Let C and P denote the location of charges q and q0, respectively. Let r be
the vector from C to P , as in Figure 18.7.1, so r = ‖r‖ is the distance between
the two charges.

Figure 18.7.1: ARTIST:
Please modify labeling to
reflect that the charges are
located at C and P with
charges q and q0, respec-
tively.

If both q and q0 are protons or both are electrons, the force pushes the
charges further apart. If one is a proton and the other is an electron, the
force draws them closer. In both cases the magnitude of the force is inversely
proportional to r2, the square of the distance between the charges.

Assume that q is positive, that is, is the charge of a proton. The magnitude
of the force it exerts on charge q0 is proportional to q and also proportional
to q0. It is also inversely proportional to r2. So, for some constant k, the
magnitude of the force is of the form

k
q q0

r2
.

It is directed along the vector r. If q0 is also positive, it is in the same direction
as r. If q0 is negative, it is in the direction of −r. We can summarize these
observations in one vector equation

F = k
q q0

r2
r̂ (18.7.1)

where the constant k is positive. Read ε0 as “epsilon zero” or
“epsilon null.”For convenience in later calculations, k is replaced by 1/(4πε0) The value

of ε0 depends on the units in which charge, distance, and force are measured.
Then (18.7.1) is written

F =
q q0

4πε0r2
r̂.
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Physicists associate with a charge q a vector field. This field in turn exerts
a force on other charges.

Consider a positive charge q at point C.
It “creates” a central inverse-square vector field E with center at C. It is

defined everywhere except at C. Its value at a typical point P is

E(P ) =
q r̂

4πε0r2

where −→r =
−→
CP , as in Figure 18.7.2.

(a) (b) (c)

Figure 18.7.2:

The value of E depends only on q and the vector from C to P .
To find the force exerted by charge q on charge q0 at P just multiply E by

q0, obtaining

F = q0E (18.7.2)

The field E, which is a sheer invention, can be calculated in principle by
putting a charge q0 at P , observing the force F and then dividing F by q0.
The field E enables the charge q to “act at a distance” on other charges. It
plays the role of a rubber band or a spring.

The Electric Field Due to a Distribution of Charge

Electrons and protons usually do not live in isolation. Instead, charge may be
distributed on a line, a curve, a surface or in space.

Imagine a total charge Q occupying a region R in space. The density of
the charge varies from point to point. Denote the density at P by δ(P ). Like
the density of mass it is defined as a limit as follows. Let V (r) be a small ball
of radius r and center at P . Then we have the definition

δ(P ) = lim
r→0+

charge in V (r)

volume of V (r)
.
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The charge in V (r) is approximately the volume of V (r) times δ(P ). We
will be interested only in uniform charges, where the density is constant, with
the fixed value δ. Thus the charge in a region of volume V is δV .

The field due to a uniform charge Q distributed in a region R is the sum
of the fields due to the individual point charges in Q.

To describe that field we need the concept of the integral of a vector field.
The definition is similar to the definition of the definite integral in Section 6.2.
Let F(P ) be a continuous vector field defined on some solid region R. Break
R into regions R1, R2, . . . , Rn and choose a point Pi in Ri, 1 ≤ i ≤ n.
Let the volume of Ri be Vi. The sums

∑n
i=1 F(Pi)Vi have a limit as all Ri

are chosen smaller and smaller. This limit, denoted
∫
R

F(P ) dV is called
the integral of F over R. Computationally, this integral can be computed
componentwise. For example, if F = F1i + F2j + P3k then RF(P ) then∫
R

F dV =
∫
R
F1 dV i +

∫
R
F1 dV j +

∫
R
F1 dV k. Similar definitions hold for

vector fields defined on surfaces or curves.

Figure 18.7.3:

To estimate this field we partition R into small regions R1, R2, . . .Rn and
choose a point Pi in Ri, i = 1, 2 . . . , n. The volume of Ri is Vi. The charge
in Ri is δVi, where δ is the density of the charge. Figure 18.7.3 shows this
contribution to the field at a point P .

Let ri be the vector from Pi to P , and ri = |ri|. Then the field due to the
charge in this small patch Ri is approximately

δ r̂i Vi
4πε0 r2

i

.

As an estimate of the field due to Q, we have the sum

n∑
i=1

δ r̂i Vi
4πε0r2

i

.

Taking limits as all the regions Ri are chosen smaller, we have

E(P ) = Field at P =

∫
R

δ r̂

4πε0r2
dV

Factoring out the constant δ/4πε0, we have

E(P ) =
δ

4πε0

∫
R

r̂

r2
dV

That is an integral over a solid region. If the charge is just on a surface S
with uniform surface density σ, the field would be given by

E(P ) =
σ

4πε0

∫
S

r̂

r2
dS.
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If the charge lies on a line or a curve C, with uniform density λ, then

E(P ) =
λ

4πε0

∫
C

r̂

r2
ds.

To illustrate the definition we compute one such field value directly. In
Example 2 we solve the same problem much more simply.

EXAMPLE 1 A charge Q is uniformly distributed on a sphere of radius a,
S. Find the electrostatic field E at a point B a distance b > a from the center
of the sphere.
SOLUTION We evaluate

σ

4πε0

∫
S

r̂

r2
dS. (18.7.3)

Note that σ = Q/4πa2, since the charge is uniform over an area of 4πa2.
Place a rectangular coordinate system with its origin at the center of the

sphere and the z-axis on B, so that B = (0, 0, b), as in Figure 18.7.4(a).
Before we start to evaluate an integral, let us use the symmetry of the sphere

(a) (b)

Figure 18.7.4:

to predict something about the vector E(B). Could it look like the vector v,
which is not parallel to the z-axis, as in Figure 18.7.4(b)?

If you spin the sphere around the z-axis, the vector v would change. But
the sphere is unchanged and so is the charge. So E(B) must be parallel to the
z-axis. That means we know its x- and y-components are both 0. So we must
find just its z-component, which is E(B) · k.
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Let (x, y, z) be a typical point on the sphere S. Then

r = (0i + 0j + bk)− (xi + yj− zk) = −xi− yj + (b− z)k. (18.7.4)

So

r̂

r2
=

r

r3
=

−xi− yj + (b− z)k

(
√
x2 + y2 + b2 − 2bz + z2)3

=
−xi− yj + (b− z)k

(a2 + b2 − 2bz)3/2
. (18.7.5)

We need only the z-component of this,

b− z
(a2 + b2 − 2bz)3/2

.

The magnitude of E(B) is therefore

σ

4πε0

∫
S

b− z
(a2 + b2 − 2bz)3/2

dS. (18.7.6)

We evaluate the integral in (18.7.6). To do this, introduce spherical coordi-
nates in the standard position. We have dS = a2 sin(φ)dφ dθ and z = a cos(φ).
So (18.7.6) becomes

π∫
0

2π∫
0

(b− a cosφ)a2 sinφ

(a2 + b2 − 2ab cosφ)(3/2)
dθ dφ;

which reduces, after the first integration with respect to θ, to

2πa2

π∫
0

(b− a cosφ) sinφ dφ

(a2 + b2 − 2ab cosφ)3/2
(18.7.7)

Let u = cos(φ), hence du = − sin(φ) dφ. This transforms (18.7.7) into

−2πa2

−1∫
1

(b− au) du

(a2 + b2 − 2abu)3/2
. (18.7.8)

Then we make a second substitution, v = a2 + b2 − 2abu.
As you may check, this changes (18.7.8) into

2πa2

4ab2

(b+a)2∫
(b−a)2

v + b2 − a2

v3/2
dv (18.7.9)
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Write the integrand as the sum of 1/
√
v and (b2 − a2)/v3/2, and use the

Fundamental Theorem of Calculus, to show that (18.7.8) equals 4πa2/b2.
Combining this with (18.7.9) shows that

E(B) =
σ

4πε0

4πa2

b2
k =

Q

4πε0b2
k.

�

The result in this example, Q/(4πε0b
2)k is the same as if all the charge

Q were at the center of the sphere. In other words, a uniform charge on a
sphere acts on external particles as though the whole charge were placed at its
center. This was discovered for the gravitational field by Newton and proved
geometrically in his Principia of 1687.

Using Flux and Symmetry to Find E

We included Example 1 for two reasons. First, it reviews some integration
techniques. Second, it will help you appreciate a much simpler way to find the
field E due to a charge distribution.

Picture a charge Q distributed outside the region bound by a surface S, as
in Figure 18.7.5.

Figure 18.7.5:

The flux of E associated with a point charge q over a closed surface S is∫
S

E(P ) · n dS =

∫
S

r̂ · n
4πε0r2

dS =
1

4πε0

∫
S

r · n
r2

dS.

As we saw in Section 18.5 the integral is 4π when the charge is inside the
solid bounded by the surface and 0 if the charge is outside. (See Exercise 28
in that section). Thus the total flux is q/ε0 if the charge is inside and 0 if it is
outside.
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Consider a charge Q contained wholly within the region bounded by S. We
will find the flux of a total charge Q distributed in a solid R inside a surface
S. (See Exercise 6 for the case when the charge is outside S.)

Chop the solid R that the charge occupies into n small regions R1, R2,
. . . , Rn. In region Ri select a point Pi. Let the density of charge at Pi be
δ(Pi). Thus the charge in Ri produces a flux of approximately δ(Pi)Vi/ε0.
Consequently

n∑
i=1

δ(Pi)Vi
ε0

estimates the flux produced by Q. Taking limits, we see that

Flux across S produced by Q =

∫
R

δ(Pi)

ε0
dV

But
∫
R
δ(Pi) dV is the total charge Q. Thus we have

Flux =
Q

ε0
.

Figure 18.7.6:

Thus we have one of the four fundamental equations of electrostatics:

Gauss’ Law
The flux produced by a distribution of charge across a closed surface is the
charge Q in the region bounded by the surface divided by ε0.

The charge outside of S produces no flux across S. (More precisely, the
negative flux across S cancels the positive flux.)

Let’s illustrate the power of Gauss’ Law by applying it to the case in
Example 1.

EXAMPLE 2 A charge Q is distributed uniformly on a sphere of radius a.
Find the electrostatic field E at a point B at a distance b from the center of a
sphere of radius a, with b > a.
SOLUTION We don’t need to introduce a coordinate system in Figure 18.7.6.

Figure 18.7.7:

By symmetry, the field at any point P outside the sphere is parallel to the vec-

tor
−→
CP . Moreover, the magnitude of the field is the same for all points at a

given distance from the origin C. Call this magnitude, f(r), where r is the
distance from C. We want to find f(b).

To do this, imagine another sphere S∗, with center C and radius b, as in
Figure 18.7.7.

The flux of E across S∗ is
∫
S∗

E · n dS.
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But E · n is just f(b) since E and n are parallel and E(P ) has magnitude
f(b) for all points P on S∗. Thus

∫
S∗

E · n dS =
∫
S∗
f(b) dS = f(b)

∫
S∗

dS =
f(b)4πb2.

By Gauss’ Law
Q

ε0
= f(b)(4πb2).

That tells us that

f(b) =
Q

4πε0b2
.

This is the same result as in Example 1, but compare the work in each
case. Symmetry and Gauss’ Law provide an easy way to find the electrostatic
field due to distribution of charge. �

The same approach shows that the field E produced by the spherical charge
in Examples 1 and 2 inside the sphere is 0. Let f(r) be the magnitude of E
at a distance r from the center of the sphere. For r > a, f(r) = Q/(4πε0r

2);
for 0 < r < a, f(r) = 0. The graph of f is shown in Figure 18.7.8.

Figure 18.7.8:

If you are curious about f(a) and f(0), see Exercises 8 and 9.

Summary

The field due to a point charge q at a point C is given by the formula E(P ) =
1

4πε0

qbr
r2

, where r =
−→
OP . This field produces a force q0E(P ) on a charge q0

located at P .
The field due to a distribution of charge is obtained by an integration over

a surface of solid region, depending where this charge is distributed.
We showed that a charge Q outside a surface produces a net flux of zero

across the surface. However the flux produced by a charge within the surface
is simply Q/ε0. That is Gauss’s Law.

We used Gauss’s Law to find the field produced by a spherical distribution
of charge.
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EXERCISES for Section 18.7 Key: R–routine, M–moderate, C–challenging

1.[R] The charge q is positive and produces the elec-
trostatic field E. In what direction does E point at a
charge q0 that is (a) positive and (b) negative?

2.[R] Fill in the omitted details in the calculation in
Exercise 1.

3.[R] Describe to a friend who knows no physics the
field E produced by a point charge q.

4.[R] State Gauss’s Law aloud several times.

5.[R] Why do you think that the constant k was re-
placed by 1/4πε0. Note: Later we will see why it is
convenient to have ε0 in the denominator.

6.[R] Show that a charge Q distributed in a solid
region R outside a closed surface S induces zero-flux
across S.

7.[R] A charge is distributed uniformly over an infi-
nite plane. For any part of this surface of area A the
charge is kA, where k is a constant. Find the field E
due to the charge at any point P not in the plane.

(a) Use symmetry to say as much as you can about
it. Be sure to discuss its direction.

(b) Show that the magnitude is constant by apply-
ing Gauss’s Theorem to a cylinder whose axis is
perpendicular to the plane and which does not
intersect the plane.

(a) (b)

Figure 18.7.9:

(c) Find the magnitude of E by applying Gauss’s
Theorem to the cylinder in Figure 18.7.9(b). Let
the area of the circular cross section be A and
the area of its curved side be B.

8.[R] Find the field E of the charge in Example 1 at a
point on the surface of the sphere. Why is Gauss’s Law
not applicable here? Hint: Let the point be (0, 0, a).

9.[R] Find the field E of the charge in Example 1 at
the center of the sphere. Hint: Use symmetry, don’t
integrate.

10.[R] Complete the graph in Figure 18.7.8. That is,
fill in the function values corresponding to r = 0 and
r = a.

11.[R] A charge is distributed uniformly along an in-
finite straight wire. The charge on a section of length
l is kl. Find the field E due to this charge.

(a) Use symmetry to say as much as you can about
the direction and magnitude of E.

(b) Find the magnitude by applying Gauss’s Law to
the cylinder of radius r and height h shown in
Figure 18.7.10

(c) Find the force directly by an integral over the
line, as in Example 1.
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Figure 18.7.10:
12.[R] Figure 18.7.11(a) shows four surfaces. Inside
S1 is a total charge Q1, and inside S2 is a total charge
Q2. Find the total flux across each of the four surfaces.

(a) (b)

Figure 18.7.11:

13.[R] Imagine that there is a uniform distribution
of charge Q throughout a ball of radius a. Use Gauss’
Law to find the electrostatic field E produced by this
charge

(a) at points outside the ball,

(b) at points inside the ball.

14.[R] Let f(r) be the magnitude of the field in Ex-
ercise 13 at a distance r from the center of the ball.
Graph f(r) for r ≥ 0.

15.[R] A charge Q lies partly inside a closed surface
S and partly outside. Let Q1 be the amount inside
and Q2 the amount outside, as in Figure 18.7.11(b).
What is the flux across S of the charge Q?

16.[R] In Exercise 11 you found the field E due to
a charge uniformly spread on an infinite line. If the
charge density is λ, E at a point at a distance a from
the line is (λ/(2πaε0)) j.
Now assume that the line occupies only the right half
of the x-axis, [0,∞).

(a) Using the result in Exercise 11, show that the
j-component of E(0, a) is (λ/4πaε0)j.

(b) By integrating over [0,∞), show that the i-
component of E at (0, a) is λ/(4πaε0)i.

(c) What angle does E(0, a) make with the y-axis?

(d) Why is Gauss’ Law of no use in determining the
i-component of E in this case.

17.[M] We showed that E(P ) = δ
4πε0

∫
R
br
r2

dV if
the charge density is constant. Find the correspond-
ing integral for E(P ) when the charge density varies.

18.[C] In Example 1, we used an integral to find the
electrostatic field outside a uniformly charged sphere.
Carry out similar calculation to find the field inside the
sphere. Hint: Is the square root of (b−a)2 still b−a?

19.[C] Use the approach in Example 2 to find the
electrostatic field inside a uniformly charged sphere.

20.[C] Graph the magnitude of the field in Exam-
ple 1 as a function of the distance from the center of
the sphere. This will need the results of Exercises 18
and 19.

21.[C] Find the field E in the Exercise 7 by inte-
grating over the whole (infinite) plane. (Do not use
Gauss’s Theorem.)
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18.8 Expressing Vector Functions in Other Co-

ordinate Systems

We have expressed the gradient, divergence, and curl in terms of rectangular
coordinates. However, students who apply vector analysis in engineering and
physics courses will see functions expressed in polar, cylindrical, and spherical
coordinates. This section shows how those expressions are found.

The Gradient in Polar Coordinates

Figure 18.8.1:

Let g(r, θ) be a scalar function expressed in polar coordinates. Its gradient

has the form A(r, θ)r̂ + B(r, θ)θ̂, where r̂ and θ̂ are the unit vectors shown in
Figure 18.8.1. The unit “radial vector” r̂ points in the direction of increasing r.
The unit “tangential vector” θ̂ points in the direction determined by increasing
θ. Note that θ̂ is tangent to the circle through (r, θ) with center at the pole.

Our goal is to find A(r, θ) and B(r, θ), which wedenote simply as A and B.
One might guess, in analogy with rectangular coordinates, that A(r, θ)

would be ∂g/∂r and B(r, θ) would be ∂g/∂θ. That guess is part right and
part wrong, for we will show that

grad g =
∂g

∂r
r̂ +

1

r

∂g

∂θ
θ̂ (18.8.1)

We reserve the use of ∇ for
rectangular coordinates, and
use grad in all other
coordinate systems.

Note the appearance of 1/r in the θ̂ component.
One way to obtain (18.8.1) is labor-intensive and not illuminating: express

g, r̂, and θ̂ in terms of x, y, i, j and use the formula for gradient in terms
of rectangular coordinates, then translate back to polar coordinates. This
approach, whose only virtue is that it offers good practice applying the chain
rule for partial derivatives, is outlined in Exercises 17 and 18.

We will use a simpler way, that easily generalizes to the cylindrical and
spherical coordinates. It exploits the connection between a gradient and direc-
tional derivative of g at a point P in the direction u. In particular, it shows
why the coefficient 1/r appears in (18.8.1).

Recall that if u is a unit vector, the directional derivative of g in the
direction u is the dot product of grad g with u:

Dug = grad g · u.

In particular,
Dbrg = (Ar̂ +Bθ̂) · r̂ = A
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and
Dbθg = (Ar̂ +Bθ̂) · θ̂ = B.

So all we need to do is find Dbrg and Dbθg.
First,

Dbr(g) = lim
∆r→0

g(r + ∆r, θ)− g(r, θ)

∆r
=
∂g

∂r
.

So A(r, θ) = ∂g/∂r(r, θ). That explains the expected part of (18.8.1).
Now we will see why B is not simply the partial derivation of g with respect

to θ.
If we want to estimate a directional derivative at P of g in the direction u

we pick a nearby point Q a distance ∆s away in the direction of u and form
the quotient

g(Q)− g(P )

∆s
(18.8.2)

Then we take the limit of (18.8.2) as ∆s→ 0.

Now let u be θ̂, and let’s examine (18.8.2) in the case hwere P = (r, θ) and
Q = (r, θ + ∆θ). The numerator in (18.8.2) is

g(r, θ + ∆θ)− g(r, θ).

We draw a picture to find ∆s, as in Figure 18.8.2.

Figure 18.8.2:

The distance between P and Q is not ∆θ. Rather it is approximately r∆θ
(when ∆θ is small). That tells us that ∆s in (18.8.2) is not ∆θ but r∆θ.
Therefore

Dθg = lim
∆θ→0

g(r, θ + ∆θ)− g(r, θ)

r∆θ
=

1

r
lim

∆θ→0

g(r, θ + ∆θ)− g(r, θ)

∆θ
=

1

r

∂g

∂θ
.

Note r ∆θ in the denominator.
That is why there is a 1/r in the formula (18.8.1) for the gradient of g.

It occurs because a change ∆θ in the parameter θ causes a point to move
approximately the distance r∆θ.

Divergence in Polar Coordinates

The divergence of F(x, y) = P (x, y)i + Q(x, y)j is simply ∂P/∂x + ∂Q/∂y.
But what is the divergence of a vector field described in polar coordinates,
G(r, θ) = A(r, θ)r̂ +B(r, θ)θ̂. By now you are on guard, ∇ ·G is not the sum
of ∂A/∂r and ∂B/∂θ).

To find ∇ ·G, use the relation between ∇ ·G at P = (r, θ) and the flux
across a small curve C that surrounds P .

∇ ·G = lim
length of C→0

∮
C

G · n ds

Area within C
(18.8.3)
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Note that (18.8.3) provides a coordinate-free description of divergence in the
plane.

Figure 18.8.3: C is the
curve QRSTQ

We are free to choose the small closed curve C to make it easy to estimate
the flux across it. A curve C that corresponds to small changes ∆r and ∆θ is
convenient is shown in Figure 18.8.3. We will use (18.8.3) to find the divergence
at P = (r, θ). Now, P is not inside C; rather it is on C. However, since G is
continuous, G(P ) is the limit of values of G at points inside, so we may use
(18.8.3).

To estimate the flux across C, we estimate the flux across each of the four
parts of the curve. Because these sections are short when ∆r and ∆θ are small,
we may estimate the integral over each part by multiplying the value of the
integrand at any point of the section (even at an end point) by the length of
the section. As usual, n̂ denotes an exterior unit vector perpendicular to C.

On QR and ST , Bθ contributes to the flux (on RS and TQ it does not
since n · θ is 0). On QR, θ is parallel to n, as shown in Figure 18.8.4.

Figure 18.8.4:

However, on ST it points in the opposite direction, θ̂ · n̂ is −1. So, across
ST , the flux contributed by Bθ̂ is approximately

(Bθ̂ · n̂)∆r = −B(r, θ)∆r.

(We would get a better estimate by using B(r + ∆r
2
, θ) but B(r, θ) is good

enough since B is continuous.)

On QR, θ̂ and n̂ point in almost the same direction, hence θ · n̂ is close to
1 when ∆θ is small. So on ST , Bθ̂ contributes approximately B(r, θ+ ∆θ)∆r
to the flux.

All told, the total contribution of Bθ to the flux across C is

B(r, θ + ∆θ)∆r −B(r, θ)∆r (18.8.4)

The contribution of Ar̂ to the flux is negligible on QR and ST because there
r̂ and n̂ are perpendicular. On TQ, r̂ and n̂ point in almost directly opposite
directions, hence r̂ · n̂ is near −1. The flux of Ar̂ there, is approximately

A(r, θ)(r̂ · n̂)r∆θ = −A(r, θ)r∆θ. (18.8.5)

On RS, which has radius r + ∆r, r̂ and n̂ are almost identical, hence r̂ · n̂ is
near 1. The contribution on RS, which has radius r + ∆r is approximately

A(r + ∆r, θ)(r + ∆r)∆θ. (18.8.6)

Combining (18.8.4), (18.8.5) and (18.8.6), we see that the limit in (18.8.3)
is the sum of two limits:

lim
∆r,∆θ→0

A(r + ∆r, θ)(r + ∆r)∆θ − A(r, θ)r∆θ

r∆r∆θ
(18.8.7)
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andThe area within C is
approximately, r∆r∆θ.

lim
∆r,∆θ→0

B(r, θ + ∆θ)∆r −B(r, θ)∆r

r∆r∆θ
(18.8.8)

The first limit (18.8.7) equals

lim
∆r,∆θ→0

1

r

(r + ∆r)A(r + ∆r,∆θ)− rA(r, θ)

∆r
,

which is
1

r

∂(rA)

∂r
.

Note that r appears in the coefficient, 1/r, and also in the function, rA,
being differentiated.

The second limit (18.8.8) equals

lim
∆r,∆θ→0

1

r

B(r, θ + ∆θ)−B(r, θ)

∆θ
,

hence is
1

r

∂B

∂θ
.

Here r appears only once, in the coefficient.
All told, we have the desired divergence formula:Note the use of div, not ∇·.

div(Ar̂ +Bθ) =
1

r

∂(rA)

∂r
+

1

r

∂B

∂θ
. (18.8.9)

Curl in the Plane

The curl of F(x, y) = P (x, y)i + Q(x, y)j + 0k, a vector field in the plane, is
given by the formula

curl F =

(
∂Q

∂x
− ∂P

∂y

)
k.

What is the formula for the curl when the field is described in polar coordinates:
G(r, θ) = A(r, θ)r̂ + B(r, θ)n̂? To find out we will reason as we did with
divergence. This time we use

(curl G) · n̂ = lim
length of C→0

∮
C

G · k ds

Area bounded by C
.
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where C is a closed curve around a fixed point in the (r, θ) plane, and the See (18.6.9) on page 1348.

limit is taken as the length of C approaches 0. The curl is evaluated at a fixed
point, which is on or within C.

We compute the circulation of G = Ar̂ + Bθ around the same curve used
in the derivation of divergence in polar coordinates.

On TQ and RS, Ar̂, being perpendicular to the curve, contributes nothing
to the circulation of G around C. On QR it contributes approximately

A(r, θ)(r̂ ·T)∆r = A(r, θ)∆r.

On ST , since there r̂ ·T = −1, it contributes approximately

A(r, θ + ∆θ)(r ·T)∆r = −A(r, θ + ∆θ)∆r.

A similar computation shows that Bθ̂ contributes to the total circulation
approximately

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ.

Therefore (∇×G·)k in the sum of two limits:

lim
∆r,∆θ→0

A(r, θ)∆r − A(r, θ + ∆θ)∆r

r∆r∆θ
= −1

r

∂A

∂θ

and

lim
∆r,∆θ→0

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ

r∆r∆θ
=

1

r

∂(rB)

∂r
.

All told, we have Note the use of curl, not
∇×.

curl(Ar̂ +Bθ) =

(
−1

r

∂A

∂θ
+

1

r

∂(rB)

∂r

)
k. (18.8.10)

EXAMPLE 1 Find the divergence and curl of F = rθ2r̂ + r3 tan(θ)θ.
SOLUTION The calculations are direct applications of (18.8.9) and (18.8.10).
First, the divergence:

div F =
1

r

∂

∂r

(
r · rθ2

)
+

1

r

∂

∂θ

(
r3 tan(θ)

)
=

1

r

(
2rθ2

)
+

1

r

(
r3 sec2(θ)

)
= 2θ2 + r2 sec2(θ).
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And, the curl:

curl F =

(
−1

r

∂

∂θ

(
rθ2
)

+
1

r

∂

∂r

(
r · r3 tan(θ)

))
k

=

(
−1

r
(2rθ) +

1

r

(
4r3 tan(θ)

))
k =

(
−2θ + 4r2 tan(θ)

)
k.

�

Cylindrical Coordinates

In cylindrical coordinates the gradient of g(r, θ, z) is

grad g =
∂g

∂r
r̂ +

1

r

∂g

∂θ
θ̂ +

∂g

∂z
ẑ (18.8.11)

Here ẑ is the unit vector in the positive z direction, denoted k in Chapter 14.
Note that (18.8.11) differs from (18.8.1) only by the extra term (∂g/∂z)ẑ. You

can obtain (18.8.11) by computing directional derivatives of g along r̂, θ̂, and
ẑ. The derivation is similar to the one that gave us the formula for the gradient
of g(r, θ).

The divergence of G(r, θ, z) = Ar̂ +Bθ̂ + Cẑ is given by the formula

div G =
1

r

∂(rA)

∂r
+
∂B

∂θ
+
∂(rC)

∂z
. (18.8.12)

Note that the partial derivatives with respect to r and z are similar in that the
factor r is present in both ∂(rA)/∂r and ∂(rC)/∂r. You can obtain (18.8.12)
by using the relation between ∇ · G and the flux across the small surface
determined by small changes ∆r, ∆θ, and ∆z.

The curl of G = Ar̂ +Bθ + Cẑ is given by a formal determinant:

curl G =
1

r

∣∣∣∣∣∣
r̂ rθ̂ k
∂
∂r

∂
∂θ

∂
∂z

A rB C

∣∣∣∣∣∣ (18.8.13)
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To obtain this formula consider the circulation around three small closed curves
lying in planes perpendicular to r̂, θ̂ and k.

Figure 18.8.5:

Spherical Coordinates

In mathematics texts, spherical coordinates are denoted ρ, φ, θ. In physics and
engineering a different notation is standard. There ρ is replaced by r, θ is the
angle with z-axis, and φ plays the role of the mathematicians’ θ, switching the
roles of φ and θ. The formulas we state are in the mathematicians’ notation.

The three basic unit vectors for spherical coordinates are denoted ρ, φ, θ.
For instance, ρ points in the direction of increasing ρ. See Figure 18.8.5. Note
that, at the point P , φ and θ are tangent to the sphere through P and center
at the origin, while ρ is perpendicular to that sphere. Also, any two of ρ, φ, θ
are perpendicular.

Figure 18.8.6:

To obtain the formulas for ∇ · G and ∇ × G, we would use the region
corresponding to small changes ∆ρ, ∆φ, and ∆θ, shown in Figure 18.8.6.
That computation yields the following formulas:

If g(ρ, φ, θ) is a scalar function,

grad g =
∂g

∂ρ
ρ+

1

ρ

∂g

∂φ
φ+

1

ρ sin(φ)

∂g

∂θ
θ. (18.8.14)

If G(ρ, φ, θ) = Aρ+Bφ+ Cθ

div G =
1

ρ2

∂(ρ2A)

∂r
) +

1

ρ sin(φ)

∂(sin(φ)B)

∂φ
+

1

ρ sin(φ)

∂C

∂θ
. (18.8.15)

and

curl G =
1

ρ

(
1

sin(φ)

∂(sin(φ))C)

∂φ
− 1

ρ sin(φ)

∂B

∂θ

)
ρ

+
1

ρ

(
1

sin(φ)

∂A

∂θ
− ∂(ρC)

∂ρ

)
φ+

1

ρ

(
∂(ρB)

∂ρ
− ∂A

∂φ

)
θ

Each of these can be obtained by the method we used for polar coordinates.
In each case, keep in mind that the change in φ or θ is not the same as the
distance the corresponding point moves. However, a change in ρ is the same
as the distance the corresponding point moves. For instance, the distance
between (ρ, φ, θ) and (ρ, φ + ∆φ,∆θ) is approximately ρ∆φ and the distance
between (ρ, φ, θ) and (ρ, φ, θ + ∆θ) is approximately ρ sin(φ)∆θ.
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An Application to Rotating Fluids

Consider a fluid rotating in a cylinder, for instance, in a centrifuge. If it rotates
as a rigid body, then its velocity at a distance r from the axis of rotation has
the form

G(r, θ) = crθ,

where c is a positive constant.
Then

curl G =
1

r

∂(cr2)

∂r
k = 2ck.

The curl is independent of r. That means that an imaginary paddle held with
its axis held in a fixed position would rotate at the same rate no matter where
it is placed.

Now consider the more general case with

G(r, θ) = crnθ,

and n is an integer. Now

curl G =
1

r

∂(crn+1)

∂r
k = c(n+ 1)rn−1k.

We just considered the case n = 1. If n > 1, the curl increases as r increases.
The paddle wheel rotates faster if placed farther from the axis of rotation. The
direction of rotation is the same as that of the fluid, counterclockwise.

Next consider the case n = −2. The speed of the fluid decreases as r
increases. Now

curl G = c(−2 + 1)r−2−1k = −cr−3k.

The minus sign before the coefficient c tells us that the paddle wheel spins
clockwise even though the fluid rotates counterclockwise. The farther the
paddle wheel is from the axis, the slower it rotates.

Summary

We expressed gradient, divergence, and curl in several coordinate systems.
Even though the basic unit vectors in each system may change direction from
point to point, they remain perpendicular to each other. That simplified the
computation of flux and circulation. The formulas are more complicated than
those in rectangular coordinates because tha amount a parameter changes is
not the same as the distance the corresponding point moves.
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EXERCISES for Section 18.8 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 through 4 find and draw the gradient of
the given functions of (r, θ) at (2, π/4).

1.[R] r

2.[R] r2θ

3.[R] e−rθ

4.[R] r3θ2

In Exercises 5 through 8 find the divergence of the
given function

5.[R] 5r̂ + r2θθ̂

6.[R] r3θr̂ + 3rθθ̂
7.[R] rr̂ + r3θ̂

8.[R] r sin(θ)r̂ +
r2 cos(θ)θ̂

In Exercises 9 through 12 compute the curl of the given
function.

9.[R] rθ̂

10.[R] r3θr̂ + erθ̂

11.[R] r cos(θ)r̂ + rθθ̂

12.[R] 1/r3θ̂

13.[R] Find the directional derivative of r2θ3 in the
direction

(a) r̂

(b) θ̂

(c) i

(d) j

14.[R] What property of rectangular coordinates
makes the formulas for gradient, divergence, and curl
in those coordinates relatively simple?

15.[R] Estimate the flux of rθvrhat = r2θ3θ̂ around
the circle of radius 0.01 with center at (r, θ) = (2, π/6).

16.[R] Estimate the circulation of the field in the
preceding exercise around the same circle.

When translating between rectangular and polar co-
ordinates, it may be necessary to express r̂ and θ̂ in
terms of i and j and also i and j in terms of r and θ̂.
Exercise 17 and 18 concern this matter.

17.[R] Let (r, θ) be a
point that has rectangular
coordinates (x, y).

(a) Show that r̂ =
cos(θ)i + sin(θ)j,
which equals
x/
√
x2 + y2i +

y/
√
x2 + y2j =

xi+yj√
x2+y2

(b) Show that θ =
− sin(θ)i + cos(θ)j,
which equals
−y/

√
x2 + y2i +

x/
√
x2 + y2j.

(c) Draw a picture to
accompany the cal-
culations done in
(a) and (b).

So we have r̂ and θ in
terms of i and j: r̂ = xi+yj√

x2+y2

θ = −yi+xj√
x2+y2

(18.8.16)

18.[R] Show that if
(x, y) has polar coordi-
nates (r, θ), then{

i = cos(θ)θr̂− sin(θ)θ
j = sin(θ)θr̂ + cos(θ)θ

by solving the simultane-
ous equations (18.8.16) in
the preceding exercise for
i and j.

In exercises 19 through 22

I. find the gradient of the given function, using the
formula for gradient in rectangular coordinates,

II. find it by first expressing the function in polar
coordinates and again for gradient in polar coor-
dinates. (18.8.1),

show that the two results agree.

19.[R] x2 + y2

20.[R]
√
x2 + y2

21.[R] 3x+ 2y

22.[R] x/
√
x2 + y2

In Exercises 23 through 26

I. find the gradient of the given function, using its
formula in polar coordinates, that is (18.8.1),
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II. find it by first expressing the function in rectan-
gular coordinates,

III. show that the two results agree.

23.[R] r2

24.[R] r2 cos(θ)
25.[R] r sin(θ)

26.[R] er

In Exercise 27 and 28

I. find the divergence of the given vector field in
rectangular coordinates,

II. find it by first expressing the function in polar
coordinates and using (18.8.9),

III. show that the results agree.

27.[R] x2i + y2j 28.[R] xyi

In Exercises 29 and 30

I. find the curl of the given vector field in rectan-
gular coordinates,

II. find it by first expressing the function in polar
coordinates and using (18.8.10),

III. show that the two results agree.

29.[R] xyi + x2y2j
30.[R] (x/

√
x2 + y2)i

The next two exercises are useful in developing the
formula for the gradient in cylindrical and spherical
coordinates.
31.[R] Approximately how far is it from the points
(r, θ, z) to

(a) (r + ∆r, θ, z),

(b) (r, θ + ∆θ, z),

(c) (r, θ, z + ∆z).

32.[R] Approximate the distance from the point
(ρ, φ, θ) to

(a) (ρ+ ∆ρ, φ, θ),

(b) (ρ, φ+ ∆φ, θ),

(c) (ρ, φ, θ + ∆θ).

33.[M] Using the formulas for the gradient of
g(r, φ, θ), find the directional derivative of g in the di-
rection

(a) ρ̂,

(b) φ̂,

(c) θ̂.

34.[M] Using the formulas for the gradient of
g(r, θ, z), find the directional derivative of g in the di-
rection

(a) r̂,

(b) θ,

(c) k.

35.[M] Without using the formula for the gradient,
do Exercise 33.

36.[M] Without using the formula for the gradient,
do Exercise 34.

37.[M] Using as few mathematical symbols as you
can, state the formula for the divergence of a vector
field given relative to r̂ and θ.

38.[M] Using as few mathematical symbols as you
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can, state the formula for the curl of a vector field
given relative to r̂ and θ.

39.[M] In the formula for the divergence of Ar̂ +Bθ̂,
why do the terms rA and 1/r appear in (1/r)(∂(rA)/∂r
and rA? Explain in detail why 1/r appears.

40.[M] Obtain the formula for the gradient in cylin-
drical coordinates.

41.[M] Obtain the formula for curl in cylindrical co-
ordinates.

42.[M] Obtain the formula for divergence in cylindri-
cal coordinates.

43.[M] Obtain the formula for the gradient in spher-
ical coordinates.

44.[M] Where did we use the fact that r̂ and θ̂ are
perpendicular when developing the expression for di-
vergence in polar coordinates?

45.[M] Obtain the formula for the gradient of g(r, θ)
in polar coordinates by starting with the formula for
the gradient of f(x, y) in rectangular coordinates. Dur-
ing the calculations you will have some happy mo-
ments as complicated expressions cancel and the iden-
tity cos2(θ) + sin2(θ) = 1 simplifies expressions. (See
Exercise 18.8.16.)
Assume g(r, θ) = f(x, y), where x = r cos(θ) and
y = r sin(θ). To express ∇f = ∂f/∂xi + ∂f/∂yj in

terms of polar coordinates, it is necessary to express
∂f/∂x, ∂f/∂y, i, and j in terms of partial derivative
of g(r, θ) and r̂ and θ.

(a) Show that ∂r/∂x = cos(θ), ∂r/∂y = sin(θ),
∂θ/∂x = −(sin(θ))/r, ∂θ/∂y = (cos θ)/r.

(b) Use the chain rule to express ∂f/∂x and ∂f/∂y
in terms of partial derivatives of g(r, θ).

(c) Recalling the expression of i and j in terms of r̂
and θ̂ in Exercise 18 obtain the gradient of g(r, θ)
in polar coordinates.

46.[M] In Exercise 26 of Section 18.3, we found the
divergence of F = rnr̂ using rectangular coordinates.
Find the divergence using polar coordinates formally.
Note: The second way is much easier.

47.[M] In Exercise 6 of Section 18.6 we used rect-
angular coordinates to show that an irrotational pla-
nar central field is symmetric. Use the formula for
curl in polar coordinates to obtain the same result.
Note: This way is much easier.

48.[M] In Exercise 21 in Section 18.4 we used rect-
angular coordinates to show that an incompressible
symmetric central field in the plane must have the
form F(r) = (k/r)r̂. Obtain this result using the for-
mula for divergence in polar coordinates.
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18.9 Maxwell’s Equations

At any point in space there is an electric field E and a magnetic field B. The
electric field is due to charges (electrons and protons) whether stationary or
moving. The magnetic field is due to moving charges.

To assure yourself that the magnetic field B is everywhere, hold up a pocket
compass. The magnetic field, produced within the Earth, makes the needle
point north.

All of the electrical phenomena and their applications can be explained
by four equations, called Maxwell’s equations. These equations allow B
and E to vary in time. We state them for the simpler case when B and E
are constant: ∂B/∂t = 0 and ∂E/∂t = 0. We met the first equation in the
previous section. Here is the complete list

I.
∫
S

E · n dS = Q/ε0, where S is a surface bounding a spatial region and
Q is the change in that region. (Gauss’s Law for Electricity)

II.
∮
C

E · dr = 0 for any closed curve C. (Faraday’s Law of Induction)

III.
∫
S

B ·n dS = 0 for any surface S that bounds a spatial region. (Gauss’s
Law for Magnetism)

IV.
∮
C

B · dr = µ0

∫
S

J · n dS, where C bounds the surface S and J is the
electric current flowing through S. (Ampere’s Law)

The constants ε0 and µ0 (“myoo zero”) depend on the units used. They
will be important in the CIE on Maxwell’s Equations.

Each of the four statements about integrals can be translated into infor-
mation about the behavior of E or B at each point.

In derivative or “local” form the four principles read:

I’. div E = q/ε0, where q is the charge density (Coulomb’s Law)

II’. curl E = 0

III’. div B = 0

IV’. curl B = µ0J

It turns out that 1
µ0ε0

equals the square of the speed of light. Why that is
justified is an astonishing story told in CIE 23.
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Going Back and Forth Between “Local” and “Global.”

Examples 1 and 2 show that Gauss’s Law is equivalent to Coulomb’s.

EXAMPLE 1 Obtain Gauss’s Law for Electricity (I) from Coulomb’s Law
(I’).
SOLUTION Let V be the solid region whose boundary is S. Then∫

S E · n dS =
∫
V ∇ · E dV Divergence Theorem

=
∫
V

q
ε0
dV Coulomb’s Law

= 1
ε0

∫
V q dV = Q

ε0
.

Recall that the total charge in V is Q =
∫
V q dV . �

Does Gauss’s law imply Coulomb’s law? Example 2 shows that the answer
is yes.

EXAMPLE 2 Deduce Coulomb’s law (I’) from Gauss’s law for electricity
(I).
SOLUTION Let V be any spatial region and let S be its surface. Let Q be
the total charge in V . Then

Q

ε0
=

∫
S

E · n dS Gauss’s law

=

∫
V

∇ · E dV Divergence Theorem.

On the other hand,

Q =

∫
V

q dV,

where q is the charge density. Thus∫
V

q

ε0
dV =

∫
V

∇ · E dV, or

∫
V

(
q

ε0
−∇ · E

)
dV = 0,

for all spatial regions. Since the integrand is assumed to be continuous, the
“zero-integral principle” tells us that it must be identically 0. That is,

q

ε0
−∇ · E = 0,

which give us Coulomb’s law. �

EXAMPLE 3 Show that II implies II’. That is,
∮
C

E · dr = 0 for closed
curves implies curl E = 0.

Calculus October 22, 2010



1380 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

SOLUTION By Stokes’ theorem, for any orientable surface S bounded by a
closed curve, ∫

S

(curl E) · n dS = 0

The zero-integral principle implies that (curl E) · n = 0 at each point on the
surface. Choosing S such that n is parallel to curl E (if curl E is not 0),
implies that the magnitude of curl E is 0, hence curl E is 0. �

Maxwell, by studying the four equations, I’, II’, III’, IV’, deduced that
electromagnetic waves travel at the speed of light, and therefore light is an
electromagnetic phenomenon. In CIE 23 at the end of this chapter we show
how he accomplished this, in one of the greatest creative insights in the history
of science.

The exercises present the analogy of the four equations in integral form
for the general case where B and E vary with time. It is here that B and E
became tangled with each other; both appearing in the same equation. In this
generality they are known as Maxwell’s equations, in honor of James Clerk
Maxwell (1831-1879), who put them in their final form in 1865.

Mathematics and Electricity
Benjamin Franklin, in his book Experiments and Observations Made in
Philadelphia, published in 1751, made electricity into a science. For his ac-
complishments, he was elected a Foreign Associate of the French Academy of
Sciences, an honor bestowed on no other American for over a century. In 1865,
Maxwell completed the theory that Franklin had begun.

At the time that Newton Published his Principia on the gravitational field
(1687), electricity and magnetism were the subjects of little scientific study.
But the experiments of Franklin, Oersted, Henry, Ampère, Faraday, and oth-
ers in the eighteenth and early nineteenth centuries gradually built up a mass
of information subject to mathematical analysis. All the phenomena could be
summarized in four equations, which in their final form appeared in Maxwell’s
Treatise on Electricity and Magnetism, published in 1873. For a fuller treat-
ment, see The Feynman Lectures on Physics, vol. 2, Addison-Wesley, Reading,
Mass., 1964.

Summary

We stated the four equations that describe electrostatic and magnetic fields
that do not vary with time. Then we showed how to use the divergence theorem
or Stokes’ theorem to translate between their global and local forms. The
exercises include the four equations in their general form, where E and B vary
with time.
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EXERCISES for Section 18.9 Key: R–routine,
M–moderate, C–challenging

1.[R] Obtain II from II’.

2.[R] Obtain III’ from III.

3.[R] Obtain III from III’.

4.[R] Obtain IV’ from IV.

5.[R] Obtain IV from IV’.

In Exercises 6 to 9 use terms such as “circulation,”
“flux,” “current,” and “charge density” to express the
given equation in words.

6.[R] I
7.[R] II

8.[R] III
9.[R] IV

10.[R] Which of the four laws tell us that an electric
current produces a magnetic field?

11.[R] Which of the four laws tells us that a magnetic
field produces an electric current?

In this section we assumed that the fields E and B do
not vary in time, that is, ∂E/∂t = 0 and ∂B/∂t = 0.
The general case, in empty space, where E and B
depend on time, is also described by four equations,
which we call 1, 2, 3, 4. Numbers 1 and 3, do not in-
volve time; they are similar to I ′ and III ′.

1. ∇ ·E = q/ε0

2. ∇×E = −∂B/∂t

3. ∇ ·B = 0

4. ∇×B = µ0J + µ0ε0
dE
dt

(Here J is the current.)
12.[R] Which equation implies that a changing mag-
netic field creates an electric field?

13.[R] Which equation implies that a changing elec-
trostatic field creates a magnetic field?

14.[R] Show that 2. is equivalent to∮
C

E · dt = − ∂

∂t

∫
S

B · n dS

Here, C bounds S. Hint: You may assume that
∂
∂t

∫
S B · n dS equals

∫
S(∂B/∂t) · n dS.

15.[R] Show that 4. is equivalent to∮
C

B · dr = µ0

∫
S

J · n dS + µ0ε0
∂

∂t

∫
S

E · n dS

(The circulation of B is related to the total current
through the surface S that C bounds and to the rate
at which the flux of E through S changes.)
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18.S Chapter Summary

The first six sections developed three theorems: Green’s Theorem, Gauss’
Theorem (also called the Divergence Theorem), and Stokes’ Theorem. The
final four sections applied them to geometry and to physics and to expressing
various functions in terms of non-rectangular coordinate systems. These four
sections offer a way to deepen your understanding of the first six.

Name Mathematical Expression Physical Description
Green’s Theorem

∮
C

F · n ds =
∫
R∇ · F dA flux of F across C∮

C
(−Qdx+ Pdy) =

∫
R

(
∂P
∂x

+ ∂Q
∂y

)
dA differential form∮

C
F ·T ds =

∮
C

F · dr =
∫
R (∇× F) · k dA circulation of F around C∮

C
(Pdx+Qdy) =

∫
R

(
∂Q
∂x
− ∂P

∂y

)
dA

Gauss’ Theorem
(Divergence The-
orem)

∫
S F ·N dS =

∫
R
∇ · F dV

Stokes’ Theorem
∮
C

F ·T ds =
∫
S(∇× F) · n dS

(S is a surface bounded by C with n compat-
ible by orientation of C)

Green’s Theorem can be viewed as the planar version of either the Diver-
gence Theorem or Stokes’ Theorem.

Though div F and curl F were defined in terms of rectangular coordinates,
they also have a meaning that is independent of any coordinates. For instance,
if F is a vector field in space, the divergence of F at a point multiplied by the
volume of a small region containing that point approximates the flux of F
across the surface of that small region. More precisely,

div F at P equals the limit of

∫
S F · n ds

volume of R
as the diameter of R approaches 0

The curl of F at P is a vector, so it’s a bit harder to describe physically.
Let n be a unit vector and C a small curve that lies in a plane through P , is
perpendicular to n, and surrounds P . Then the scalar component of curl F at
P is the direction n multiplied by the area of the surface bounded by C gives
the circulation of F along C.

A field whose curl is 0 is called irrotational. A field whose divergence is 0
is called incompressible (or divergence-free).

Of particular interest are conservative fields. A field F is conservative if
its circulation on a curve depends only on the endpoints of the curve. If the
domain of F is simply connected, F is conservative if and only if its curl is 0.
A conservative field is expressible as the gradient of a scalar function.
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Among the conservative fields are the symmetric central fields. If, in addi-
tion, they are divergence-free, they take a very special form that depends on
the dimension of the problem.

General Form of Divergence-Free
Geometry Symmetric Central Fields Description

R2 (plane) cbr
r

inverse radial

R3 (space) c br
r2

inverse square radial

Rn c br
rn−1

In the case where curl F = 0 one can replace an integral
∫ B
A

F · dr by an
integral over another curve joining A and B. This is most beneficial when the
new line integral is easier to evaluate than the original one. Similarly, in a
region where ∇ · F = 0 we can replace an integral

∫
S F · n dSover the surface

S with a more convenient integral over a different surface.
In applications in space the most important field is the inverse square

central field, F = br
r2

. The flux of this field over a closed surface that does not
enclose the origin is 0, but its flux over a surface that encloses the origin is
4π. If one thinks in terms of steradians, it is clear why the second integral
is 4π: the flux of r̂/r2 also measures the solid angle subtended by a surface.
Also, the first case becomes clear when one distinguishes the two parts of the
surface where n · r is positive and where it is negative.

EXERCISES for 18.S Key: R–routine, M–moderate, C–challenging

1.[R] Match the vector fields given in mathematical
symbols (a.-e.) with the written description (1.-5.)

a. F(r) 1. an inverse cube central field
b. f(r)r̂ 2. a central field (center at origin)
c. f(r)r̂ 3. an arbitrary vector field
d. r̂/r2 4. a symmetric central field (center at origin)
e. r/r3 5. an inverse square central field

Note: There is not a one-to-one relation between the
two columns.

2.[R] Use Green’s theorem to evaluate
∮
C(xy dx +

ex dy), where C is the curve that goes from (0, 0) to
(2, 0) on the x-axis and returns from (2, 0) to (0, 0) on
the parabola y = 2x− x2.

3.[R] A curve C bounds a region R of area A.

(a) If
∮
C F ·dr = −2, estimate ∇×F at points in R.

(b) Would you use � or ⊕ to indicate the curl?

4.[R] A curve C bounds a region R of area A.

(a) If
∮
C F · n ds = −2, estimate ∇ · F at points in

R.

(b) How did you decide whether ∇ · F is positive or
negative?

5.[R] A field F is called uniform if all its vectors are
the same. Let F(x, y, z) = 3i.

(a) Find the flux of F across each of the six faces of
the cube in Figure 18.S.1 of side 3.
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(b) Find the total flux of F across the surface of the
box.

(c) Verify the divergence theorem for this F.

Figure 18.S.1:

6.[R] Let F be the uniform field F(x, y, z) =
2i + 3j + 0k. Repeat Exercise 5 Carry out the pre-
ceding exercise for this field.

7.[R] See Exercise 8. Suppose you placed the point at
which E is evaluated at (a, 0, 0) instead of at (0, 0, a).

(a) What integral in spherical coordinates arises?

(b) Would you like to evaluate it?

In Exercises 8 to 11, F is defined on the whole plane
but indicated only at points on a curve C bounding a
region R. What can be said about

∫
R∇·F dA in each

case?

(a) (b)

(c) (d)

Figure 18.S.2:

8.[R] See Fig-
ure 18.S.2(a).
9.[R] See Fig-
ure 18.S.2(b).
10.[R] See Fig-

ure 18.S.2(c).

11.[R] See Fig-
ure 18.S.2(d).

Exercises 12 to 15, F concern the same F as in Exer-
cises 8 to 11. What can be said about

∫
S ∇×F dA in

each case?

12.[R] See Fig-
ure 18.S.2(a).
13.[R] See Fig-
ure 18.S.2(b).
14.[R] See Fig-

ure 18.S.2(c).

15.[R] See Fig-
ure 18.S.2(d).

16.[R] Let C be the circle of radius 1 with center
(0, 0).

(a) What does Green’s theorem say about the line
integral∮

C

(
(x2 − y3) dx+ (y2 + x3) dy

)
?
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(b) Use Green’s theorem to evaluate the integral in
(a).

(c) Evaluate the integral in (a) directly.

17.[M] Let F(x, y) = (x + y)i + x2j and let C be
the counterclockwise path around the triangle whose
vertices are (0, 0), (1, 1), and (−1, 1).

(a) Use the planar divergence theorem to evaluate∫
C F · nds, where n is the outward unit normal.

(b) Evaluate the line integral in (a) directly.

18.[M] Let b and c be positive numbers and S the
“infinite rectangle” parallel to the xy-plane, consisting
of the points (x, y, c) such that 0 ≤ x ≤ b and b ≥ 0.

(a) If b were replaced by ∞, what is the solid angle
S subtends at the origin? Hint: No integration
is needed.

(b) Find the solid angle subtended by S when b is
finite. Hint: See Exercise 94.

(c) Is the limit of your answer in (b) as b → ∞ the
same as your answer in (a)? Hint: It should be!

19.[M] Look back at the Fundamental Theorem
of Calculus (Section 6.4), Green’s Theorem (Sec-
tion 18.2), the Divergence Theorem (Section 18.6), and
Stokes’ Theorem (Section 18.4). What single theme
runs through all of them?
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Calculus is Everywhere # 23

How Maxwell Did It

In a letter to his cousin, Charles Cay, dated January 5, 1965, Maxwell wrote:

I have also a paper afloat containing an electromagnetic the-
ory of light, which, till I am convinced to the contrary, I hold to
be great guns. [Everitt, F., James Clerk Maxwell: a force for
physics, Physics World, Dec 2006, http://physicsworld.com/

cws/article/print/26527]

It indeed was “great guns,” for out of his theory has come countless in-
ventions, such as television, cell phones, and remote garage door openers. In
a dazzling feat of imagination, Maxwell predicted that electrical phenomena
create waves, that light is one such phenomenon, and that the waves travel at
the speed of light, in a vacuum.

In this section we will see how those predictions came out of the four
equations (I’), (II’), (III’), and (IV’) in Section 18.9.

First, we take a closer look at the dimensions of the constants ε0 and µ0

that appear in (IV’),
1

µ0ε0

∇×B =
J
ε0

.

The constant ε0 makes its appearance in the equation

Force = F =
1

4πε0

qq0

r2
. (C.23.1)

Since the force F is “mass times acceleration” its dimensions are

mass · length

time2 ,

or, in symbols

m
L

T 2
.

The number 4π is a pure number, without any physical dimension.
The quantity qq0 has the dimensions of “charge squared,” q2, and R2 has

dimensions L2, where L denotes length.
Solving (C.23.1) for ε0, we find the dimensions of ε0. Since

ε0 =
q2

4πFr2
,
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its dimensions are (
T 2

mL

)(
q2

L2

)
=
T 2q2

mL3
.

To figure out the dimensions of µ0, we will use its appearance in calculating
the force between two wires of length L each carrying a current I in the same
direction and separated by a distance R. (Each generates a magnetic field that
draws the other towards it.) The equation that describes that force is

µ0 =
2πRF

I2L
.

Since R has the dimensions of length L and F has dimensions mL/T 2, the
numerator has dimensions mL2/T 2. The current I is “charge q per second,”
so I2 has dimensions q2/T 2. The dimension of the denominator is, therefore,

q2L

T 2
.

Hence µ0 has the dimension

mL2

T 2
· T

2

q2L
=
mL

q2
.

The dimension of the product µ0ε0 is therefore

mL

q2
· T

2q2

mL3
=
T 2

L2
.

The dimension of 1/µ0ε0, the same as the square of speed. In short,
1/
√
µ0ε0 has the dimension of speed, “length divided by time.”

Now we are ready to do the calculations leading to the prediction of waves
traveling at the speed of light. We will use the equations (I’), (II’), (III’),
and (IV’), as stated on page 1378, where the fields B and E vary with time.
However, we assume there is no current, so J = ′. We also assume that there
is no charge q.

Recall the equation (IV’)

∇×B = µ0ε0
∂E

∂t
.

Differentiating this equation with respect to time t we obtain

∂

∂t
(∇×B) = µ0ε0

∂2E

∂t2
. (C.23.2)

As is easy to check, the operator ∂
∂t

can be moved past the ∇× to operate
directly on B. Thus (C.23.2) becomes

∇× ∂B

∂t
= µ0ε0

∂2E

∂t2
. (C.23.3)
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Recall the equation (II’)

∇× E = −∂B

∂t
.

Taking the curl of both sides of this equation leads to

∇ (−∇× E) = ∇× ∂B

∂t
. (C.23.4)

Combining (C.23.3) and (C.23.4) gives us an equation that involves E alone:

∇× (−∇× E) = µ0ε0
∂2E

∂t2
. (C.23.5)

An identity concerning “the curl of the curl,” which tells us that

∇× (∇× E) = ∇ (∇ · E)− (∇ · ∇) E. (C.23.6)

But∇·E = 0 is one of the four assumptions, namely (I), on the electromagnetic
fields. By (C.23.5) and (C.23.6), we arrive at

(∇ · ∇) E = µ0ε0
∂2E

∂t2

or
∂2E

∂t2
− 1

µ0ε0

∇2E = 0. (C.23.7)

The expression ∇2 in (C.23.7) is short for

∇ · ∇ =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
·
(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(C.23.8)

In (∇ · ∇)E we apply (C.23.8) to each of the three components of E. Thus
∇2E is a vector. So is ∂2E/∂t2 and (C.23.8) makes sense.

For the sake of simplicity, consider the case in which E has only an x-
component, which depends only on x and t, E(x, y, z, t) = E(x, t)i, where E
is a scalar function. Then (C.23.8) becomes

∂2

∂t2
E(x, t)i− 1

µ0ε0

(
∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2

)
i = 0,

from which it follows

∂2

∂t2
E(x, t)− 1

µ0ε0

∂2E

∂x2
= 0. (C.23.9)
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Multiply (C.23.9) by −µ0ε0 to obtain

∂2E

∂x2
− µ0ε0

∂2E

∂t2
= 0.

This looks like the wave equation (see (16.3.11) on page 1101). The solutions
are waves traveling with speed 1/

√
µ0ε0.

Maxwell then compares
√
µ0ε0 with the velocity of light:

In the following table, the principal results of direct observation
of the velocity of light, are compared with the principal results of
the comparison of electrical units (1/

√
µ0v0).

Velocity of light (meters per second) Ratio of electrical units

Fizeau 314,000,000 Weber 310,740,000
Sun’s Parallax 308,000,000 Maxwell 288,000,000
Foucault 298,360,000 Thomson 282,000,000

Table C.23.1:

It is magnificent that the velocity of light and the ratio of the
units are quantities of the same order of magnitude. Neither of
them can be said to be determined as yet with such a degree of
accuracy as to enable us to assert that the one is greater or less
than the other. It is to be hoped that, by further experiment, the
relation between the magnitude of the two quantities may be more
accurately determined.

In the meantime our theory, which asserts that these two quan-
tities are equal, and assigns a physical reason for this equality, is
certainly not contradicted by the comparison of these results such
as they are. [reference?]

On this basis Maxwell concluded that light is an “electromagnetic dis-
turbance” and predicted the existence of other electromagnetic waves. In
1887, eight years after Maxwell’s death, Heinrich Hertz produced the predicted
waves, whose frequency placed them outside what the eye can see.

By 1890 experiments had confirmed Maxwell’s conjecture. First of all,
experiments gave the velocity of light as 299,766,000 meters per second and√

1/µ0ε0 as 299,550,000 meters per second.
Newton, in his Principia of 1687 related gravity on earth with gravity in the

heavens. Benjamin Franklin, with his kite experiments showed that lightning
was simply an electric phenomenon. From then through the early nineteenth
century, Faraday, ???, . . . showed that electricity and magnetism were insepa-
rable. Then Maxwell joined them both to light. Einstein, in 1905(?), also by a
mathematical argument, hypothesized that mass and energy were related, by
his equation E = mc2.
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Calculus is Everywhere # 24

Heating and Cooling

Engineers who design a car radiator or a home air conditioner are interested in
the distribution of temperature of a fin attached to a tube. We present one of
the mathematical tools they use. Incidentally, the example shows how Green’s
Theorem is applied in practice.

A plane regionA with boundary curve C is occupied by a sheet of metal. By
various heating and cooling devices, the temperature along the border is held
constant, independent of time. Assume that the temperature in A eventually
stabilizes. This steady-state temperature at point P in A is denoted T (P ).
What does that imply about the function T (x, y)?

First of all, heat tends to flow “from high to low temperatures,” that is, in
the direction of −∇T . According to Fourier’s law, flow is proportional to the
conductivity of the material k (a positive constant) and the magnitude of the
gradient ‖∇T‖. Thus ∮

C

(−k∇T ) · nds

measures the rate of heat loss across C.
Since the temperature in the metal is at a steady state, the heat in the

region bounded by C remains constant. Thus∮
C

(−k∇T ) · nds = 0.

Now, Green’s theorem then tells us that∫
A

∇ · (−k∇T )dA = 0

for any region A in the metal plate. Since ∇ ·∇T is the Laplacian of T and k
is not 0, we conclude that∫

A

(
∂2T

∂x2
+
∂2T

∂y2

)
dA = 0. (C.24.1)

By the “zero integrals” theorem, the integrand must be 0 throughout A,

∂2T

∂x2
+
∂2T

∂y2
= 0.
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This is an important step, since it reduces the study of the temperature dis-
tribution to solving a partial differential equation.

The expression
∂2T

∂x2
+
∂2T

∂y2
,

which is ∇·∇T , the divergence of the gradient of T , is called the Laplacian of
T . If T is a function of x, y, and z, then its Laplacian has one more summand,
∂2T/∂z2. However, the vector notation remains the same, ∇ · ∇T . Even
more compactly, it is often reduced to ∇2T . Note that in spite of the vector
notation, the Laplacian of a scalar field is again a scalar field. A function
whose Laplacian is 0 is called “harmonic.”

EXERCISES
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Summary of Calculus III
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