High-Level Programming Tools for Interactive Mathematics

Douglas B. Meade
University of South Carolina
meade@math.sc.edu

Phillip B. Yasskin
Texas A&M University
yasskin@math.tamu.edu

Communicating Mathematics in the Digital Era
Aveiro, Portugal
15 – 18 August 2006
Lecturers are best suited to preparing the most appropriate materials for their students.

More specifically …
The Bottom Line

- Mathematics lecturers are best suited to preparing *mathematically* appropriate materials for their *mathematics* students.
Outline

- Disclaimers
- Traditional Tools
- Higher-Level Tools
- Immediate Needs
- Examples
- Final Remarks
Disclaimers

- We are mathematicians who want to use digital media to communicate mathematics to the world
- We want to communicate research results to a wider audience
- We want to utilize the benefits of the digital era to improve my teaching
Traditional Tools

- **Computer Algebra (CAS)**
 - Excellent tools for *doing* mathematics
 - Far from optimal for *communicating* mathematics
 - Not universally available, not intuitive, not robust

- **Examples**
 - Maple (http://www.maplesoft.com)
 - Mathematica (http://www.wolfram.com)
 - ...
Traditional Tools

- CGI scripts and forms
 - Requires extensive knowledge of CGI / HTML / …
 - Non-trivial to connect CAS to web applications
 - License and security concerns

- Example
 - irreducibility test for lacunary polynomials
 [http://www.math.sc.edu/~filaseta/irreduc.html]

 424 lines of CGI + 327 lines of Maple + …
Traditional Tools

- **Java**
 - Requires programming expertise
 - Much greater control over effects and actions
 - Same concerns about CAS connectivity, license, and security

- **Example**
 - Tracing the locus of the vertex of a parabola
 [ParabolaVertex.html]

225 lines of Java code
Higher-Level Tools

- Maplets
 - front-end to Java
 - still problematic to program

- Example
 - Antiderivative calculator
 [Antideriv.mw] [Antideriv.maplet]
 16 lines of Maple
Higher-Level Tools

- **Embedded Components**
 - more intuitive and graphical
 - weak on features

- **Example**
 - Irreducibility test for lacunary polynomials
 (w/ Michael Filaseta, J Algorithms, 2005; support from NSA)
 [http://maplenet.math.sc.edu/research/Irreduc.mw] [MapleNet]

 0 lines of visible Maple code
Higher-Level Tools

● Geometry Expressions
 - typical dynamic geometry interface
 - with built-in symbolics

● Example
 - Shrinking circle
 [ShrinkCircle.gx]
 0 commands (<5 minutes total time)
 *** add symbolic formula for distance
 *** copy to Maple worksheet
Immediate Needs

- User-Interface: Layout Design
 - Graphical
 - Intuitive
 - Flexible
 - Robust
 - ...

Immediate Needs

- User-Interface: Functionality
 - Dynamic layout
 - Full use of traditional Java effects
 - Color and image effects
 - Default text as instruction
 - Popups
 - ...

Immediate Needs

- Full integration with Internet via hyperlinks
 - to external webpages
 - to online documents

- Inter-application communication
 - grading / course management software

- Universal availability
Examples

- Maplets for Calculus
 [http://www.math.sc.edu/calclab/M4C/] [MapleNet]
 - Textbook independent (both + and -)
 - Nearly complete coverage
 - No grading capability

- 32,327 lines of Maple programming in 70 files
 (not counting the HTML, …)
Examples

- WebALT
 - http://www.webalt.net/
 - http://www.webalt.com/
 - Complete online courses
 - Affordable
 - Multilingual
Examples

- Maplets for WebALT Calculus (secure)
 - Currently in pre-alpha version
 - For additional information, including access, contact WebALT or the authors
Mathematics lecturers are best suited to preparing mathematically appropriate materials for their mathematics students.

- Good mathematics requires good communication
- Development tools must support mathematical communication
- No intrusive overhead
- Expectations increase as technology improves