>   

Maple Lab -- Supplement

Limits, Infinity, and Asymptotes

>    restart;

>    with( plots );

Warning, the name changecoords has been redefined

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, displ...
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, displ...
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, displ...
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, displ...
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, cylinderplot, densityplot, display, displ...

>    with( Student[Calculus1] );

[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...

>   

Example 1: Asymptotes  Command

>    w := x -> (2*x^5+3*x^3-2*x-2)/(x^4-1);

w := proc (x) options operator, arrow; (2*x^5+3*x^3-2*x-2)/(x^4-1) end proc

>    Pw := plot( w(x), x=-10..10,
            y=-20..20, discont=true ):

>    Pw;

[Maple Plot]

>    asym := Asymptotes( w(x), x );

asym := [y = 2*x, x = -1, x = 1]

>    Pa1 := implicitplot( asym[1], x=-10..10,
                 y=-20..20, linestyle=2 ):

>    Pa2 := implicitplot( {asym[2],asym[3]},
        x=-10..10, y=-20..20, linestyle=3 ):

>    display( [ Pw, Pa1, Pa2 ] );

[Maple Plot]

>   

Example 2: Horizontal Asymptotes

>    g := x -> (x^4-2*x^3+2*x-1)/(x^4+1);

g := proc (x) options operator, arrow; (x^4-2*x^3+2*x-1)/(x^4+1) end proc

>    Pg := plot( g(x), x=-20..20 ):

>    Pg;

[Maple Plot]

>    q1 := limit( g(x), x=infinity );

q1 := 1

>    q2 := limit( g(x), x=-infinity );

q2 := 1

>    horiz := { q1, q2 };

horiz := {1}

>    Ph := plot( horiz, x=-20..20, color=cyan ):

>    display( [ Pg, Ph ] );

[Maple Plot]

>   

Example 3: Vertical Asymptotes

>    f := x -> (sin(x)-cos(x)+1)/(x^3-3*x+2);

f := proc (x) options operator, arrow; (sin(x)-cos(x)+1)/(x^3-3*x+2) end proc

>    Pf := plot( f(x), x=-4..4,
            y=-10..10, discont=true ):

>    Pf;

[Maple Plot]

>    q1 := denom( f(x) );

q1 := x^3-3*x+2

>    q2 := solve( q1=0, {x} );

q2 := {x = -2}, {x = 1}, {x = 1}

>    vert := { x=-2, x=1 };

vert := {x = 1, x = -2}

>    Pv := implicitplot( vert, x=-2*Pi..2*Pi,
                    y=-20..20, color=blue ):

>    display( [ Pf, Pv ] );

[Maple Plot]

>   

Note:

Demonstrate adding legend manually.

>   

>   

Example 4: Oblique Asymptotes (for Rational Functions)

>    u := x -> (3*x^3-4*x^2-5*x+3)/(x^2+1);

u := proc (x) options operator, arrow; (3*x^3-4*x^2-5*x+3)/(x^2+1) end proc

>    Pu := plot( u(x), x=-10..10 ):

>    Pu;

[Maple Plot]

>    q1 := numer( u(x) );

q1 := 3*x^3-4*x^2-5*x+3

>    q2 := denom( u(x) );

q2 := x^2+1

>    q3 := quo( q1, q2, x );

q3 := 3*x-4

>    q4 := rem( q1, q2, x );

q4 := 7-8*x

>    u2 := q3 + q4/q2;

u2 := 3*x-4+(7-8*x)/(x^2+1)

>    u(x) = simplify( u2 );

(3*x^3-4*x^2-5*x+3)/(x^2+1) = (3*x^3-4*x^2-5*x+3)/(x^2+1)

>    Po := plot( q3, x=-10..10, color=pink ):

>    display( [ Pu, Po ] );

[Maple Plot]

>   

>   

>