Walter at Asilomar, 1987
Some Varieties are Finitely Based

George F. McNulty

Department of Mathematics
University of South Carolina

WalterFest 2004
Boulder, Colorado
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Outline

Varieties of Algebras

Algebra is About Finitary Operations
Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
Generating Principal Congruences
Subdirectly Irreducible and Finitely Subdirectly Irreducible
Weakening the Finite Residual Bound

What We Found Out
Play It Again
Variations on a Theme
Behind the Scenes
Two Temptations
A Flat Graph Algebra D

Characteristics

A system $\langle V \cup \{0\}, \cdot, \wedge \rangle$ where

- $\langle V, E \rangle$ is a graph with vertex set V and edge set E.
- $0 \notin V$.
- \cdot and \wedge are two-place operations on $V \cup \{0\}$.
- \cdot is determined by adjacency in $\langle V, E \rangle$.
- \wedge is a height 1 semilattice operation with least element 0.
An Automatic Algebra \(L \)

Characteristics

A system \(\langle Q \cup \Sigma \cup \{0\}, \cdot \rangle \) where

- \(Q, \Sigma, \) and \(\{0\} \) are disjoint sets.
- \(\cdot \) is two-place operation on \(Q \cup \Sigma \cup \{0\} \).
- \(\cdot \) is determined by a partial automaton with alphabet \(\Sigma \) and state set \(Q \).
Outline

Varieties of Algebras

Algebra is About Finitary Operations

Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
Generating Principal Congruences
Subdirectly Irreducible and Finitely Subdirectly Irreducible
Weakening the Finite Residual Bound

What We Found Out
Play It Again
Variations on a Theme
Behind the Scenes
Two Temptations
Some Things We Know

Theorem (Cayley, 1854)

The variety of groups is finitely based.

Theorem (Lyndon, 1951)

Every two-element algebra with finitely many fundamental operations is finitely based.

Theorem (Lyndon, 1954)

That seven-element automatic algebra L is not finitely based.
Some Things We Know

Theorem (Cayley, 1854)
The variety of groups is finitely based.

Theorem (Lyndon, 1951)
Every two-element algebra with finitely many fundamental operations is finitely based.

Theorem (Lyndon, 1954)
That seven-element automatic algebra L is not finitely based.
Some Things We Know

Theorem (Cayley, 1854)
The variety of groups is finitely based.

Theorem (Lyndon, 1951)
Every two-element algebra with finitely many fundamental operations is finitely based.

Theorem (Lyndon, 1954)
That seven-element automatic algebra L is not finitely based.
What We Didn’t Know

Tarski’s Finite Basis Problem (1955-65)

Is there an algorithm which determines whether a finite algebra with finitely many fundamental operations is finitely based?
What We Didn’t Know

McKenzie’s Resolution of Tarski’s Finite Basis Problem (1996)

There is no algorithm which determines whether a finite algebra with finitely many fundamental operations is finitely based!
Some More Things We Know

Theorem (Oates and Powell, 1964)

Every finite group is finitely based.

Theorem (McKenzie, 1970)

Every finite lattice with finitely many operators is finitely based.

Theorem (Kruse and L'vov, 1973)

Every finite ring is finitely based.

Theorem (Perkins, 1966)

A certain semigroup of six 2×2 matrices under matrix multiplication is not finitely based.
Some More Things We Know

Theorem (Oates and Powell, 1964)
Every finite group is finitely based.

Theorem (McKenzie, 1970)
Every finite lattice with finitely many operators is finitely based.

Theorem (Kruse and L'vov, 1973)
Every finite ring is finitely based.

Theorem (Perkins, 1966)
A certain semigroup of six 2×2 matrices under matrix multiplication is not finitely based.
Some More Things We Know

Theorem (Oates and Powell, 1964)
Every finite group is finitely based.

Theorem (McKenzie, 1970)
Every finite lattice with finitely many operators is finitely based.

Theorem (Kruse and L’vov, 1973)
Every finite ring is finitely based.

Theorem (Perkins, 1966)
A certain semigroup of six 2×2 matrices under matrix multiplication is not finitely based.
Some More Things We Know

Theorem (Oates and Powell, 1964)
Every finite group is finitely based.

Theorem (McKenzie, 1970)
Every finite lattice with finitely many operators is finitely based.

Theorem (Kruse and L’vov, 1973)
Every finite ring is finitely based.

Theorem (Perkins, 1966)
A certain semigroup of six 2×2 matrices under matrix multiplication is not finitely based.
Varieties

\(K_{si} \) and \(K_{fsi} \)

Then We Found Out

Theorem (Baker, 1977)

Let \(\mathcal{V} \) be a variety of finite signature.

If

- \(\mathcal{V} \) is congruence \textbf{distributive}.
- \(\mathcal{V} \) has a finite residual bound.

then \(\mathcal{V} \) is finitely based.
Theorem (McKenzie, 1987)

Let \mathcal{V} be a variety of finite signature. If

- \mathcal{V} is congruence modular.
- \mathcal{V} has a finite residual bound.

then \mathcal{V} is finitely based.
Then We Found Out

Theorem (Willard, 2000)

Let \mathcal{V} be a variety of finite signature.

If

- \mathcal{V} is congruence meet semidistributive.
- \mathcal{V} has a finite residual bound.

then \mathcal{V} is finitely based.
Anyone’s Guess

Park’s Conjecture/ Jónsson’s Speculation 1974

Let \mathcal{V} be a variety of finite signature. If

- \mathcal{V} has a finite residual bound.

then \mathcal{V} is finitely based.
Good, But …

The Group \mathbb{Q} of Quaternions

The variety generated by \mathbb{Q}

- Is congruence modular.
- Has no residual bound.

Nevertheless it is finitely based.
Good, But ...

The Flat Graph Algebra D

The variety generated by D

- Is congruence meet semidistributive.
- Has no residual bound.

Nevertheless it is finitely based.
Bjarni Gets Beyond a Residual Bound

Theorem (Jónsson 1979)

Let \mathcal{V} be a variety of finite signature. Let

- \mathcal{V} is congruence distributive.
- \mathcal{V}_{fsi} is finitely axiomatizable.

then \mathcal{V} is finitely based.
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Translational Varieties

\[K_{\text{si}} \text{ and } K_{\text{fsi}} \]

What We Found Out

Translations

Definition
Let \(A \) be an algebra. A function \(\lambda : A \rightarrow A \) is a

Basic translation provided \(\lambda \) arises from a basic operation of \(A \) by evaluating all but one of its arguments with elements of \(A \).

\(k \)-translation provided \(\lambda \) can be realized as the composition of a sequence of \(k \) or fewer basic translations.

Translation provided \(\lambda \) is a \(k \)-translation for some natural number \(k \).
Translations

Definition
Let A be an algebra. A function $\lambda : A \rightarrow A$ is a

Basic translation provided λ arises from a basic operation of A by evaluating all but one of its arguments with elements of A.

k-translation provided λ can be realized as the composition of a sequence of k or fewer basic translations.

Translation provided λ is a k-translation for some natural number k.
Translations

Definition
Let A be an algebra. A function $\lambda : A \to A$ is a

Basic translation provided λ arises from a basic operation of A by evaluating all but one of its arguments with elements of A.

k-translation provided λ can be realized as the composition of a sequence of k or fewer basic translations.

Translation provided λ is a k-translation for some natural number k.
Translations

Definition
Let A be an algebra. A function $\lambda : A \to A$ is a

Basic translation provided λ arises from a basic operation of A by evaluating all but one of its arguments with elements of A.

k-translation provided λ can be realized as the composition of a sequence of k or fewer basic translations.

Translation provided λ is a k-translation for some natural number k.

Observe that the identity function is the only 0-translation.
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]
According to Dilworth and Mal’cev

\(\langle a, b \rangle \in Cg^A(c, d) \)

\(\{ \lambda_0(c), \lambda_0(d) \} = \{ a_0, a_1 \} \)
According to Dilworth and Mal’cev

\[
\langle a, b \rangle \in \mathcal{C}_g^A(c, d)
\]

\[
\{ \lambda_0(c), \lambda_0(d) \} = \{ a_0, a_1 \}
\]

\[
\{ \lambda_1(c), \lambda_1(d) \} = \{ a_1, a_2 \}
\]
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

\[\{ \lambda_0(c), \lambda_0(d) \} = \{ a_0, a_1 \} \]
\[\{ \lambda_1(c), \lambda_1(d) \} = \{ a_1, a_2 \} \]
\[\{ \lambda_2(c), \lambda_2(d) \} = \{ a_2, a_3 \} \]
According to Dilworth and Mal’cev

\[(a, b) \in Cg^A(c, d) \]

\[
\begin{align*}
\{ \lambda_0(c), \lambda_0(d) \} &= \{ a_0, a_1 \} \\
\{ \lambda_1(c), \lambda_1(d) \} &= \{ a_1, a_2 \} \\
\{ \lambda_2(c), \lambda_2(d) \} &= \{ a_2, a_3 \} \\
\{ \lambda_3(c), \lambda_3(d) \} &= \{ a_3, a_4 \}
\end{align*}
\]
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

\[
\begin{align*}
\{ \lambda_0(c), \lambda_0(d) \} &= \{ a_0, a_1 \} \\
\{ \lambda_1(c), \lambda_1(d) \} &= \{ a_1, a_2 \} \\
\{ \lambda_2(c), \lambda_2(d) \} &= \{ a_2, a_3 \} \\
\{ \lambda_3(c), \lambda_3(d) \} &= \{ a_3, a_4 \} \\
&\vdots \\
\{ \lambda_{n-1}(c), \lambda_{n-1}(d) \} &= \{ a_{n-1}, a_n \}
\end{align*}
\]
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

We write \(\{ c, d \} \xrightarrow{n}_k \{ a, b \} \)

provided

\(\lambda_i \) is a \(k \)-translation for each

\[i < n \]

\[\langle a, b \rangle \in Cg^A(c, d) \]

if and only if

\(\{ c, d \} \xrightarrow{n}_k \{ a, b \} \)

for some natural numbers \(k \) and

\[n \]
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

We write \(\{c, d\} \not\to_k \{a, b\} \) provided \(\lambda_i \) is a \(k \)-translation for each \(i < n \)

\[\langle a, b \rangle \in Cg^A(c, d) \] if and only if \(\{c, d\} \not\to_k \{a, b\} \) for some natural numbers \(k \) and \(n \)
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in \mathbb{C}g^A(c, d) \]

We write \(\{c, d\} \leadsto^k_n \{a, b\} \)

provided

\(\lambda_i \) is a \(k \)-translation for each

\(i < n \)

if and only if

\[\langle a, b \rangle \in \mathbb{C}g^A(c, d) \]

for some natural numbers \(k \) and \(n \)
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

We write \(\{c, d\} \leftrightarrow^n_k \{a, b\} \) provided \(\lambda_i \) is a \(k \)-translation for each \(i < n \)

\[\langle a, b \rangle \in Cg^A(c, d) \]

if and only if \(\{c, d\} \leftrightarrow^n_k \{a, b\} \) for some natural numbers \(k \) and \(n \)
According to Dilworth and Mal’cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

We write \(\{c, d\} \mapsto^n_k \{a, b\} \)
provided
\(\lambda_i \) is a \(k \)-translation for each
\(i < n \)

\[\langle a, b \rangle \in Cg^A(c, d) \]
if and only if
\(\{c, d\} \mapsto^n_k \{a, b\} \)
for some natural numbers \(k \) and \(n \)
According to Dilworth and Mal'cev

\[\langle a, b \rangle \in Cg^A(c, d) \]

We write \(\{c, d\} \xrightarrow{n} \{a, b\} \)
provided
\(\lambda_i \) is a k-translation for each
\(i < n \)

\[\langle a, b \rangle \in Cg^A(c, d) \]
if and only if
\(\{c, d\} \xrightarrow{n} \{a, b\} \)
for some natural numbers \(k \) and \(n \)
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Definition

An algebra A is **subdirectly irreducible** provided there is distinct elements $p, q \in A$ such that for all $a, b \in A$ with $a \neq b$ \[\{ a, b \} \overset{n}{\leftrightarrow}_{k} \{ p, q \} \] for some n and k. In this case $\langle p, q \rangle$ is called a **critical pair**. \mathcal{K}_{si} denotes the class of all subdirectly irreducible algebras belonging to the class \mathcal{K} of algebras.
Definition

An algebra A is **finitely subdirectly irreducible** if it has at least two elements and for all $a, b, c, d \in A$ with $a \neq b$ and $c \neq d$ there is are two distinct elements p and q of A so that $\{a, b\} \mapsto^n_k \{p, q\}$ and $\{c, d\} \mapsto^m_\ell \{p, q\}$ for some natural numbers $k, \ell, m,$ and n. \mathcal{K}_{fsi} denotes the class of all finitely subdirectly irreducible algebras belonging to the class \mathcal{K} of algebras.
Outline

Varieties of Algebras
Algebra is About Finitary Operations
Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
Generating Principal Congruences
Subdirectly Irreducible and Finitely Subdirectly Irreducible
Weakening the Finite Residual Bound

What We Found Out
Play It Again
Variations on a Theme
Behind the Scenes
Two Temptations
When a Variety \mathcal{V} Has a Finite Residual Bound We Know

- \mathcal{V} is locally finite.
When a Variety \mathcal{V} Has a Finite Residual Bound We Know

- \mathcal{V} is locally finite.
- \mathcal{V}_{si} is a finitely axiomatizable elementary class.
When a Variety \mathcal{V} Has a Finite Residual Bound We Know

- \mathcal{V} is locally finite.
- \mathcal{V}_{si} is a finitely axiomatizable elementary class.
- $\mathcal{V}_{si} = \mathcal{V}_{fsi}$.
When a Variety \mathcal{V} Has a Finite Residual Bound We Know

- \mathcal{V} is locally finite.
- \mathcal{V}_{si} is a finitely axiomatizable elementary class.
- $\mathcal{V}_{si} = \mathcal{V}_{fsi}$.
- \mathcal{V}_{fsi} is a finitely axiomatizable elementary class.
Definition of Bounded Critical Depth

Definition
A class \mathcal{K} of algebras of the same finite signature is said to have **bounded critical depth** provided there is a natural number ℓ so that for every $A \in \mathcal{K}_{\text{si}}$ and all $a, b, c, d \in A$ such that $c \neq d$ and $\langle a, b \rangle$ is a critical pair of A we have $\{c, d\} \rightarrow_{\ell}^{n} \{a, b\}$ for some natural number n.
When a Variety \mathcal{V} Has a Finite Residual Bound We Know

- \mathcal{V} is locally finite.
- \mathcal{V}_{si} is a finitely axiomatizable elementary class.
- $\mathcal{V}_{si} = \mathcal{V}_{fsi}$.
- \mathcal{V}_{fsi} is a finitely axiomatizable elementary class.
- \mathcal{V} has bounded critical depth.
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Theorem (Willard, 2000)

Let \mathcal{V} be a variety of finite signature.

If

- \mathcal{V} is congruence meet semidistributive.
- \mathcal{V} has a finite residual bound.

then \mathcal{V} is finitely based.
Theorem (Jónsson 1979)

Let \mathcal{V} be a variety of finite signature.

If

- \mathcal{V} is congruence distributive.
- \mathcal{V}_{fsi} is finitely axiomatizable.

then \mathcal{V} is finitely based.
Theorem (With Kirby Baker and Ju Wang)

Let \(\mathcal{V} \) be a variety of finite signature.

If

- \(\mathcal{V} \) is congruence meet semidistributive.
- \(\mathcal{V}_{\text{fsi}} \) is finitely axiomatizable.
- \(\mathcal{V} \) is locally finite.
- \(\mathcal{V} \) has bounded critical depth.

then \(\mathcal{V} \) is finitely based.
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
Definition

A class \mathcal{K} of algebras of some finite signature has term-finite principal congruences provided there is a natural number ℓ so that for every $A \in \mathcal{K}$ and all $a, b, c, d \in A$ we have

$$\langle a, b \rangle \in Cg^A(c, d) \text{ if and only if } \{c, d\} \trans_{\ell}^n \{a, b\} \text{ for some } n.$$
Corollary

Let \mathcal{V} be a variety of finite signature. If

- \mathcal{V} is congruence meet semidistributive.
- \mathcal{V}_{fsi} is finitely axiomatizable.
- \mathcal{V} is locally finite.
- \mathcal{V}_{si} has term-finite principal congruences.

then \mathcal{V} is finitely based.
Definition

A class \mathcal{K} of algebras of some finite signature has **bounded critical diameter** provided there is a natural number ℓ so that for every $A \in \mathcal{K}_{si}$ and all $a, b, c, d \in A$ such that $\langle a, b \rangle$ and $\langle c, d \rangle$ are critical pairs we have $\{c, d\} \rightarrow_\ell^n \{a, b\}$ for some n.
Corollary

Let \mathcal{V} be a variety of finite signature.
If

- \mathcal{V} is congruence meet semidistributive.
- \mathcal{V}_{fsi} is finitely axiomatizable.
- \mathcal{V} is locally finite.
- \mathcal{V}_{si} is an elementary class.
- \mathcal{V} has bounded critical diameter.

then \mathcal{V} is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra \mathcal{D}. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra \mathcal{D}. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra \textbf{D}. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra D. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.
Example

Let \(\mathcal{D} \) be the variety generated by the flat graph algebra \(\mathcal{D} \). Then

- \(\mathcal{D} \) is congruence meet semidistributive.
- \(\mathcal{D} \) is locally finite.
- \(\mathcal{D}_{si} \) is finitely axiomatizable.
- \(\mathcal{D}_{fsi} \) is finitely axiomatizable.
- \(\mathcal{D} \) has bounded critical diameter.
- \(\mathcal{D} \) is residually large.
- \(\mathcal{D} \) is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra \mathcal{D}. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra \mathbf{D}. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.
Example

Let \mathcal{D} be the variety generated by the flat graph algebra \mathcal{D}. Then

- \mathcal{D} is congruence meet semidistributive.
- \mathcal{D} is locally finite.
- \mathcal{D}_{si} is finitely axiomatizable.
- \mathcal{D}_{fsi} is finitely axiomatizable.
- \mathcal{D} has bounded critical diameter.
- \mathcal{D} is residually large.
- \mathcal{D} is finitely based.

Most of these items were pointed out by Zoltán Székely (1998) and Dejan Delić (2001). In particular, Delić showed that \mathcal{D} is finitely based by a different method.
Varieties of Algebras

Algebra is About Finitary Operations
Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
Generating Principal Congruences
Subdirectly Irreducible and Finitely Subdirectly Irreducible
Weakening the Finite Residual Bound

What We Found Out
Play It Again
Variations on a Theme
Behind the Scenes
Two Temptations
Definition
An elementary formula $\Phi(x, y, z, w)$ is said to define nontrivial principal meets in an algebra A provided for all $a, b, c, d \in A$ with $a \neq b$ and $c \neq d$

$$Cg^A(a, b) \cap Cg^A(c, d) \text{ is nontrivial if and only if } A \models \Phi(a, b, c, d)$$
Definition
An elementary formula $\Phi(x, y, z, w)$ is said to define nontrivial principal meets in a class \mathcal{K} of algebras if and only if $\Phi(x, y, z, w)$ defines nontrivial principal meets is every algebra belonging to \mathcal{K}.
We regard $\{x, y\} \vdash^n_k \{u, v\}$ as an elementary formula with free variables x, y, u and v.

A more elaborate elementary formula is $\{x, y\} \vdash^m_\ell \circ \vdash^n_k \{u, v\}$.
The elementary formula

$$\exists u, v \ [u \neq v \land \{x, y\} \mapsto^m_\ell \circ \mapsto^n_k \{u, v\} \land \{z, w\} \mapsto^m_\ell \circ \mapsto^n_k \{u, v\}]$$

is built from $$\{x, y\} \mapsto^m_\ell \circ \mapsto^n_k \{u, v\}$$.
Definition

We say \(\{x, y\} \Leftrightarrow^m \circ \Leftrightarrow^n_{K} \{u, v\} \) supports nontrivial principal meets provided

\[
\exists u, v [u \neq v \land \{x, y\} \Leftrightarrow^m \circ \Leftrightarrow^n_{K} \{u, v\} \land \{z, w\} \Leftrightarrow^m \circ \Leftrightarrow^n_{K} \{u, v\}]
\]

defines nontrivial principal meets.
Defining Nontrivial Principal Meets

Theorem (With Kirby Baker and Ju Wang)

Let \mathcal{V} be a variety of finite signature.

If

- \mathcal{V} is congruence meet semidistributive.
- \mathcal{V} is locally finite.
- \mathcal{V} has critical depth bounded by ℓ.

then there are natural numbers k and n such that

$\{x, y\} \xleftarrow{\ell} \circ \xrightarrow{k} \{u, v\}$ supports nontrivial principal meets in \mathcal{V}.
Supporting Nontrivial Principal Meets
Theorem (with Kirby Baker and Ju Wang)

Let \(\mathcal{V} \) be a variety with a finite signature. If there are natural numbers \(\ell, n, k \) and an elementary sentence \(\Psi \) such that

- \(\mathcal{V}_{\text{fsi}} \) is finitely axiomatizable;
- \(\Psi \) is true in \(\mathcal{V} \);
- \(\{x, y\} \rightarrow_{\ell} \circ \rightarrow_{n} \{u, v\} \) supports nontrivial principal meets in \(\mathcal{V} \);
- For all algebras \(B \models \Psi \) and all \(a, b, c, d \in B \) if \(\text{Cg}^B(a, b) \cap \text{Cg}^B(c, d) \) is nontrivial, then there are \(q, r \in B \) with \(q \neq r \) and there is a natural number \(m \) so that \(\{a, b\} \rightarrow_{m} \circ \rightarrow_{n} \{q, r\} \) and \(\{c, d\} \rightarrow_{m} \circ \rightarrow_{n} \{q, r\} \);

then \(\mathcal{V} \) is finitely based.
Outline

Varieties of Algebras
 Algebra is About Finitary Operations
 Varieties of Algebras, Finitely Based or Not

What Can Be Said About Irreducibles?
 Generating Principal Congruences
 Subdirectly Irreducible and Finitely Subdirectly Irreducible
 Weakening the Finite Residual Bound

What We Found Out
 Play It Again
 Variations on a Theme
 Behind the Scenes
 Two Temptations
The Congruence Modular Temptation

Let \mathcal{V} be a variety of finite signature. If

- \mathcal{V} is congruence modular.
- \mathcal{V}_{fsi} is finitely axiomatizable.
- \mathcal{V} is locally finite.
- \mathcal{V} has bounded critical depth.
-

then is \mathcal{V} is finitely based?
The Blatant Temptation

Let \(\mathcal{V} \) be a variety of finite signature. If

- \(\mathcal{V}_{\text{fsi}} \) is finitely axiomatizable.
- \(\mathcal{V} \) is locally finite.
- \(\mathcal{V} \) has bounded critical depth.

then is \(\mathcal{V} \) is finitely based?
<table>
<thead>
<tr>
<th>Varieties</th>
<th>K_{si} and K_{fsi}</th>
<th>What We Found Out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Varieties

- K_{si} (Si Varieties)
- K_{fsi} (Fsi Varieties)

What We Found Out

- Information about K_{si} and K_{fsi}, possibly related to their properties or behavior in specific conditions.