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Preamble

In 1993 Ralph McKenzie resolved several of the most intriguing and challenging problems
concerning varieties generated by finite algebras with only finitely many basic operations. These
accomplishments can be summarized as follows.

Accomplishment 1. There is a finite algebra generating a residually countable inherently
nonfinitely based variety.

This refutes the R-S Conjecture that every finitely generated residually small variety should be
residually very finite. It also refutes an old and provocative speculation that the finite algebras of
finite type which generate residually small varieties might all be finitely based.

Accomplishment 2. There is no algorithm for deciding which finite algebras generate residu-
ally finite varieties.

Accomplishment 3. There is no algorithm for deciding which finite algebras are finitely based.

So Ralph McKenzie settled Tarski’s celebrated Finite Basis Problem. Until McKenzie’s break-
through, no algbraically reasonable property of finite algebras was known to be undecidable. Indeed,
a number of properties (generating a minimal variety, generating a congruence modular variety, etc.)
were long known to be decidable.

Ralph McKenzie invented a robust technique for interpreting an arbitrary Turing machine T

into a finite algebra A(T) so that the machine computations would be available in the variety
generated by A(T). It seems likely that it can be used to demonstrate the undecidability of a
wide assortment properties of varieties generated by finite algebras. Indeed, further undecidability
results have already to obtained by Charles Latting, Ralph McKenzie, and Ross Willard.

These lectures are intended to provide a path to these accomplishments. There are only two
main differences between McKenzie’s exposition and the one found here. First, I organized the
material into lectures which are each, more or less, amenable to presentation in fifty-minutes. The
second and more significant deviation is that I followed the work of Ross Willard to prove that
A(T) is finitely based when T halts. I added no new results (and I hope no errors either). This
presentation is intended to be concrete, and to reveal how the ideas develop toward the ultimate
results. See Ross Willard’s work for a more abstract perspective.

These notes arose from five occasions on which I gave series of lectures on this material. My
colleagues at LaTrobe University (1994), at the University of South Carolina (1994–95,1996–97),
at the University of Hawaii (1995–96), at the Beijing Workshop in Logic, Universal Algebra, and
Computer Science (1998), and in the Ulam Seminar at the University of Colorado (1998) all endured
my struggles to talk reasonably about these results. Their criticisms and ideas have become part of
these notes. Ralph McKenzie and Ross Willard both shared early drafts of their work with me. Of
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PREAMBLE ii

course, these lectures owe a large debt to Ralph McKenzie (say about 98%) who originated these
spectacular results.



A Toolbox of Background Material

An algebra is conceived as a nonempty set equipped with a system of operations, each of finite
rank.

Let A be a nonempty set and X be a set. We use AX to denote the set of all functions from
X into A. In particular when n = {0, 1, . . . , n − 1} is a natural number, then An denotes the set
of all n-tuples (or n-termed sequences) of elements of A. We refer to a function F : An → A as an
operation on A of rank n. As long as A is not empty, every operation has a unique rank.

So an algebra is a system A = 〈A,Fi〉i∈I where A is nonempty and Fi is an operation on A of
finite rank, whenever i ∈ I. The set A is called the universe of A, the each Fi is referred to as a
basic operation of A. The index set I is called the set of operation symbols of A. For each
algebra A the function ρ : I → ω defined by setting ρ(i) to the rank of Fi, for each i ∈ I, is called
the similarity type or the language of A. Algebras with the same similarity type are said to be
similar.

For example, the symbols +,−, ·, 0, 1 are the ones ordinarily encountered in ring theory. The
language of ring theory consists of these symbols and the information that + and · have rank 2,
that − has rank 1, and that 0 and 1 have rank 0. Given particular symbols like these and an
algebra A of the appropriate similarity type, we tend to write

+A in place of F+ ·A in place of F· −A in place of F−

0A in place of F0 1A in place of F1

and to display A as 〈A,+A,−A, ·A, 0A, 1A〉.
The notions of subalgebra, homomorphism, and direct product of systems of algebras are com-

monplace in familiar branches of algebra. Below we frame them in a general setting.
Let A be an algebra and B ⊆ A. We say that B is a subuniverse of A if B is closed with

respect to all be basic operations of A. This means that if F is a basic operation of A and r is the
rank of F , and b0, b1, . . . , br−1 ∈ B, then F (b0, b1, . . . , br−1) ∈ B. If B is a nonempty subuniverse
of A, then the algebra B similar to A obtained by restricting each of the basic operations of A to
B is said to be a subalgebra of A. Notice that it is possible for the empty set to be a subuniverse
of certain algebras. But no subalgebra is permitted to have an empty universe.

Let A and B be similar algebras, and let h : A → B. The function h is a homomorphism
from A into B provided for every operation symbol Q and all a0, a1, . . . , ar−1 ∈ A

h
(
QA(a0, a1, . . . , ar−1)

)
= QB(h(a0), h(a1), . . . , h(ar−1))

where r is the rank of Q. If, in addition, h is one-to-one then h is an embedding of A into B. If,
on the other hand, h is onto B, then B is a homomorphic image of A. In the event that h is
both one-to-one and onto B, then h is an isomorphism and A and B are said to be isomorphic.
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Homomorphisms from A into A are called endomorphisms of A, and isomorphisms from A onto
A are called automorphisms of A.

Let I be any set and let 〈Ai : i ∈ I〉 be a system of nonempty sets. By a choice function
for this system we mean a function f : I →

⋃
I Ai such that the value of f at i (which we denote

both as f(i) and fi) must belong to Ai for each i ∈ I. The direct product
∏
I Ai of the system

〈Ai : i ∈ I〉 of sets is the set of all choice functions for the system. Now suppose 〈Ai : i ∈ I〉 is a
system of similar algebras. By the direct product A =

∏
I Ai we mean the algebra with universe

A =
∏
I Ai and with the basic operations defined coordinatewise as follows: Let Q be an operation

symbol. Let r be the rank of Q, and let f (0), f (1), . . . , f (r−1) ∈ A. Then

QA(f (0), f (1), . . . , f (r−1)) = 〈QAi(f (0)
i , f

(1)
i , . . . , f

(r−1)
i ) : i ∈ I〉.

Observe that it is possible to take I to be empty. The direct product of an empty system of sets
is the set {0} = {∅} = 1. The product of the empty system of similar algebras is an algebra with
only one element.

Let K be a class of similar algebras. By H K we mean the class of all homomorphic images of
algebras belonging to K. By S K we mean the class of all algebras isomorphic to subalgebras of
algebras belong to K. By P K we mean the class of all algebras isomorphic to direct products of
systems of algebras belonging to K.

The syntax appropriate to a given language, in this setting, begins with the concept of terms.
We reserve a denumberably infinite sequence of distinct variables: x0, x1, x2, . . . and we will
always suppose that the variables and operation symbols of our languages can be concatenated in
an unambiguous manner. More precisely, we suppose that no variable or operation symbol can be
obtained as a finite string of other symbols chosen from among the variables and the operation
symbols of the language. Then the set of terms is defined by the following recursion:

i. Every variable is a term.
ii. If Q is an operation symbol, r is the rank of Q, and t0, t1, . . . , tr−1 are terms, then Qt0t1 . . . tr−1

is a term.
Just as the operation symbols denoted the basic operations of an algebra, so the terms denote

certain functions on an algebra. Let A be an algebra. The set of term functions of A is defined
by the following recursion:

i. If t is xi, then tA : Aω → A is the ith projection function.
ii. If t = Qt0t1 . . . tr−1, where Q is an operation symbol of rank r and t0, t1, . . . , tr−1 are terms,

then tA : Aω → A is defined so that for all a = 〈a0, a1, a2, . . .〉 ∈ Aω

tA(a) = QA(tA0 (a), tA1 (a), . . . , tAr−1(a)).

Notice that while tA has been defined as an operation on A of rank ω, it can really only depend
on finitely many inputs, since only finitely many variables actually occur in t.

An equation is just an ordered pair of terms. For terms s and t we use the suggestive notation
s ≈ t for the ordered pair (s, t) of terms. Given an algebra A and terms s and t, all of the same
similarity type, we say that s ≈ t is true in A and that A is a model of s ≈ t if and only if
sA = tA. To denote this important relationship between algebras and equations we use

A |= s ≈ t.
Let K be any class of similar algebras and let Σ be any set of equations of the same similarity type
as K. We say that Σ is true in K, and that K is a class of models of Σ provided A |= s ≈ t for
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every algebra A ∈ K and every equation s ≈ t ∈ Σ. Our notation in this case is K |= Σ. The class
of all models of Σ is denoted by Mod Σ.

A class V of similar algebras is a variety if and only if it is closed with respect to the formation
of homomorphic images, subalgebras, and direct products.

Theorem A (Birkhoff’s HSP Theorem). Let K be a class of similar algebras. The following
are equivalent:

i. K is a variety.
ii. K = HSP K.

iii. There is a set Σ of equations so that K = Mod Σ.

An algebra is locally finite if each of its finitely generated subalgebras is finite. A variety is
locally finite if each of its algebras is locally finite.

Theorem B. Every variety generated by a finite algebra is locally finite.

Theorem C. An infinite locally finite algebra A generates a locally finite variety if and only
if for each natural number n there is a finite upper bound on the cardinalities of the n-generated
subalgebras of A.

A set Σ of equations is a base for the variety V (or the algebra A) provided V (or HSP A) is
the class of all models of Σ. An algebra or a variety is said to be finitely based if and only if it
has a finite base.

Let V be a variety and let n be a natural number. We denote by V(n) the variety based on the
following set of equations:

{s ≈ t : no more than n distinct variables occur in s ≈ t and V |= s ≈ t}.

Theorem D. Let V be a variety and let n be a natural number. A ∈ V(n) if and only if every
subalgebra of A with no more than n generators belongs to V.

Theorem E (Birkhoff). If V is a locally finite variety of finite type and n is a natural number,
then V(n) is finitely based.

An algebra A is inherently nonfinitely based provided:
i. A has only finitely many basic operations,

ii. A belongs to some locally finite variety,
iii. A belongs to no locally finite variety which is finitely based.
Likewise, a variety V is inherently nonfinitely based provided it has a finite similarity type, is
locally finite, and is included in no finitely based locally finite variety. As a consequence, if A is
inherently nonfinitely based and A ∈ HSP B, where B is a finite algebra, then B is also inherently
nonfinitely based. This property is a strong, even contagious, failure of an algebra to be finitely
based.

The concept of an inherently nonfinitely based variety can be framed in an entirely algebraic
way, as the next theorem demonstrates.

Theorem F. For a locally finite variety V of a finite similarity type, the following conditions
are equivalent:

i. V is inherently nonfinitely based.
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ii. The variety V(n) is not locally finite for any natural number n.
iii. For arbitrarily large natural numbers n, there is a non-locally-finite algebra Bn whose n-

generated subalgebras belong to V.

Let A be an algebra and 0 ∈ A. 0 is an absorbing element provided F (a0, a1, . . . , ar−1) = 0,
whenever F is a basic operation of A, r is the rank of F , and 0 ∈ {a0, a1, . . . , ar−1} ⊆ A. Any
element of A which is not an absorbing element is called a proper element of A. Every basic
operation F of A of rank r can be construed as a set of r + 1-tuples. Those r + 1 tuples which
belong to F and which have no absorbing element among their entries comprise the proper part
of F . Notice that an algebra can have at most one absorbing element, if the algebra has a basic
operation of rank at least 2.

Theorem G (Baker, McNulty, and Werner). Let A be an infinite locally finite algebra with
finitely many basic operations, with an absorbing element 0, and with an automorphism σ such that

i. {0} is the only σ-orbit of A which is finite,
ii. the proper part of every basic operation of A is partitioned by σ into only finitely many orbits,

and
iii. σ(a) = λ(a) for some proper element a and some nonconstant unary polynomial λ of A.
Then A is inherently nonfinitely based.

Let A and h be a homomorphism with domain A. By the kernel of h we mean

kerh = {(a, b) : a, b ∈ A and h(a) = h(b)}
It is easy to see that the kernel of a homomorphism is an equivalence relation on A such that for
each basic operation F of A and all a0, b0, a1, b1, . . . , ar−1, br−1 ∈ A where r is the rank of F ,

If (ai, bi) ∈ kerh for all i < r, then (F (a0, a1, . . . , ar−1), F (b0, b1, . . . , br−1)) ∈ kerh.

By a congruence relation on A we means any θ such that
• θ is an equivalence relation on A, and
• for each basic operation F of A and all a0, b0, a1, b1, . . . , ar−1, br−1 ∈ A where r is the rank

of F ,

If (ai, bi) ∈ θ for all i < r, then (F (a0, a1, . . . , ar−1), F (b0, b1, . . . , br−1)) ∈ θ.
Thus, the kernel of each homomorphism is a congruence relation. It turns out that, conversely,
every congruence relation is also the kernel of some homomorphism.

Suppose A is a algebra, that θ is a congruence on A, and that a ∈ A. We denote the equivalence
class of a with respect to θ by a/θ := {a′ : a θ a′}. We call such equivalence classes congruence
classes. By A/θ we mean {a/θ : a ∈ A}, which is the partition of A into congruences classes
with respect to θ. Operations can be imposed on A/θ in a natural way, leading to the quotient
algebra denoted by A/θ. The universe of this algebra is A/θ and for any operation symbol Q and
any a0, a1, . . . , ar−1 ∈ A (where r is the rank of Q) we put

QA/θ (a0/θ, a1/θ, . . . , ar−1/θ) = QA(a0, a1, . . . , ar−1)/θ.

It is necessary to check that this definition is independent of the choice of the representatives ai
within each congruence class. But this independence is immediate from the definition of congruence
relation. The map η : A→ A/θ defined by

η(a) = a/θ,
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is called the quotient map.
The next few theorems are familiar in the context of groups and rings.

Theorem H (The Homomorphism Theorem). Let A and B be similar algebras, let h be a
homomorphism from A onto B, let θ be a congruence on A, and let eta be the quotient map from
A onto A/θ. Then

i. The kernel of h is a congruence on A.
ii. The quotient map η is a homomorphism from A onto A/θ.

iii. If θ = kerh, then the unique function f from A/θ onto B satisfying f ◦η = h is an isomorphism
from A/θ onto B.

Theorem I (The Second Isomorphism Theorem). i. Let f : A → B and g : A → C be
homomorphisms such that ker f ⊆ ker g and f is onto B. Then there is a unique homomorphism
h : B→ C satisfying g = h ◦ f . Moreover, h is an embedding if and only if ker f = ker g.

ii. Let θ and φ be congruences of A with θ ⊆ φ. Then

φ/θ := {〈x/θ, y/θ : 〈x, y〉 ∈ φ}
is a congruence of A/θ, and the formula

h ((a/θ)/(φ/θ)) = a/φ

defines an isomorphism from (A/θ)/(φ/θ) onto A/φ.

We use Con A to denote the set of all congruence relations on A. Con A is an (algebraic)
lattice with respect to the ordering by set inclusion. The largest element of this lattice, denoted
by 1A, is A× A, while the smallest congruence relation, denoted by 0A, is the identity relation on
A. The meet in this lattice is just intersection. The join of a set W of congruence relations is the
intersection of all congruence relations which include each of the congruences in W . Another way
to say this is that

∨
W is the congruence relation of A generated by

⋃
W .

Theorem J (The Correspondence Theorem). Let A be an algebra and let θ be a congruence
of A. Let L denote the sublattice of Con A with universe {φ : θ ⊆ φ ∈ Con A}. Define F : L →
Con A/θ via

F (φ) = φ/θ

for all φ ∈ L. Then the map F is an isomorphism from L onto Con A/θ.

Let A be an algebra and let X ⊆ A×A. The congruence relation generated by X, which
we denote by CgAX, is just the intersection of all congruence relations on A which include X.
The following characterization of CgAX is very useful.

Let A be an algebra. By a basic translation on A we mean a function of the form

FA(a0, a1, . . . , ai−1, x, ai+1, . . . , ar−1)

where F is a basic operation symbol of A, r is the rank of F , 0 ≤ i < r, and a0, . . . , ar−1 ∈ A.
For each natural number k, by a k-translation on A we mean a composition of k or fewer basic
translations. A translation on A is simply a k-translation on A for some natural number k. The
identity map on A is the only 0-translation. Every basic translation is a 1-translation.

For any set X we use
(
X
2

)
to denote the collection of all two-element subsets of X. Let A be an

algebra and let {a, b}, {c, d} ∈
(
A
2

)
. We write {a, b}#k {c, d} to denote that there is a k-translation
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λ(x) on A such that {c, d} = {λ(a), λ(b)}. {a, b} # {c, d} means that {a, b} #k {c, d} for some
natural number k.

Theorem K (The Congruence Generation Theorem). Let A be an algebra and let X ⊆ A2.
For all a, b ∈ A, 〈a, b〉 ∈ CgA(X) if and only if there is some finite sequence c0, . . . , cn ∈ A such
that

i. a = c0 and cn = b, and
ii. for all i < n there is 〈x, y〉 ∈ X with x 6= y so that {x, y}# {ci, ci+1}.

Let A be an algebra and let I be any set. For each i ∈ I let hi be a homomorphism with
domain A. The system 〈hi : i ∈ I〉 separates points provided for all a, b ∈ A with a 6= b, there
is i ∈ I such that hi(a) 6= hi(b). Likewise, a system 〈θi : i ∈ I〉 of congruences of A separates
points provided for all a, b ∈ A with a 6= b, there is i ∈ I such that 〈a, b〉 /∈ θi.

Theorem L. Let A be an algebra and let I be any set. For each i ∈ I let Bi be an algebra, hi
be a homomorphism from A onto Bi with kernel θi. Let B =

∏
I Bi and let ρi be the projection of

B onto Bi. Let h : A→ B be defined via

h(a) = 〈hi(a) : i ∈ I〉
for all a ∈ A. Further, let gi : A/ kerh→ Bi be defined via

gi (a/ kerh) = hi(a)

for all a ∈ A and all i ∈ I. Then
i. h is a homomorphism,

ii. hi = ρi ◦ h,
iii. kerh =

⋂
I θi,

iv. gi is a homomorphism from A/ kerh onto Bi for every i ∈ I, and
v. 〈gi : i ∈ I〉 separates points.

Let A be any algebra and let I be any set. For each i ∈ I let Bi be an algebra similar to A and
let hi be a homomorphism from A onto Bi. The system 〈hi : i ∈ I〉 of homomorphisms is said to be a
subdirect representation of A provided it separates points. For such a subdirect representation,
the algebras Bi are referred to as subdirect factors of A. The subdirect representation 〈hi : i ∈ I〉
is trivial if hi is an isomorphism for some i ∈ I. An algebra A is subdirectly irreducible if each
of its subdirect representations is trivial.

The next theorem is of fundamental importance.

Theorem M (Birkhoff’s Subdirect Representation Theorem). Every algebra has a subdirect
representation with all the factors subdirectly irreducible.

Corollary N. If V and W are varieties which have the same subdirectly irreducible members,
then V = W.

The next theorem characterizes subdirectly irreducible algebras.

Theorem O. Let A be an algebra. The following are equivalent:
i. A is subdirectly irreducible.

ii. There are elements a, b ∈ A with a 6= b such that a θ b for every θ ∈ Con A such that 0A < θ.
iii. There is µ ∈ Con A such that 0A < µ and mu ≤ θ for every θ ∈ Con A such that 0A < θ.
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iv. 0A is strictly meeting irreducible in Con A.

Pairs of elements 〈a, b〉 which fulfill condition (ii) are called critical for A and A is said to be
〈a, b〉-critical. The congruence µ in condition (iii) is the monolith of A.

Let A be an algebra and let κ be a cardinal number. We say that A is residually less than
κ if and only if for each pair of distinct elements a and b of A, there is an algebra B with |B| < κ
and a homomorphism h from A onto B such that h(a) 6= h(b).

Let K be a class of algebras. The residual bound or the residual character of K is the
least cardinal κ (if such exists) so that every algebra in K is residually less than κ. In the event
that no such κ exists we say, following Walter Taylor, that K is residually large. On the other
hand, if such a κ exists we say that K is residually small. If κ = ω1 we say that K is residually
countable. If κ = ω we say that K is residually finite. If κ is finite we say that K is residually
very finite.

Theorem P. Suppose that K is a class of algebras closed under the formation of homomorphic
images. Then K has residual character κ if and only if κ is the smallest cardinal which is larger
than the cardinality of every subdirectly irreducible algebra in K.

Theorem Q (Quackenbush and Dziobiak). Let V be a locally finite variety, and let S ∈ V be
a subdirectly irreducible algebra. Every finite subalgebra of S is embeddable into a finite subdirectly
irreducible algebra in V.

Corollary R. Every locally finite variety with an infinite subdirectly irreducible algebra must
have arbitrarily large finite subdirectly irreducible algebras.

Theorem S (Taylor). Fix a similarity type with no more than λ operation symbols, where λ is
an infinite cardinal. Let V be any variety. V is residually small if and only if every algebra in V is
residually less than (2λ)+.

Theorem T (McKenzie and Shelah). Fix a similarity type with only countably many opera-
tion symbols. Every variety that has an uncountable subdirectly irreducible algebra, must have a
subdirectly irreducible algebra of cardinality at least 2ω.

So, for a similarity type with only countably many operation symbols, only the following cardi-
nals can be residual characters of varieties: 1, 3, 4, 5, ..., ω, ω1, and 2ω. It is also possible for a variety
to be residually large. All these possibilities occur, even among varieties generated by algebras with
no more than four elements, as shown by McKenzie.

By constraining the residual character of a finitely generated variety and insisting that the
congruence lattice of each algebra in the variety is sufficiently nice, it is sometimes possible to
draw the conclusion that the variety is finitely based. Here is one broad condition on (congruence)
lattices that serves this purpose:
SD∧ If x ∧ y = x ∧ z, then (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z)
A lattice satisfying this condition is said to be meet-semidistributive. A variety V is con-
gruence meet-semidistributive provided the congruence lattice of each algebra in V is meet-
semidistributive.

Theorem U (Willard). Let V be a congruence meet-semidistributive variety of finite type. If
V is residually finite, then V is finitely based.



LECTURE 0

An Interesting Locally Finite Algebra

During the course of developing this material we will deal with algebras that have many basic
operations. Among them will always be three denoted by ·,∧, and 0. ∧ will always be a meet-
semilattice operation and 0 will always denote the least element with respect to ≤, the underlying
semilattice order. Meet semilattices of height one are referred to as flat semilattices. 0 is an
absorbing element for the product · in the sense that 0 · x ≈ x · 0 ≈ 0 always holds. The product
also satisfies (x · y) · z ≈ 0 ≈ x · x. Therefore, only right associated products can produce results
other than 0. For this lecture we assume that the remaining operations are term operations built
up from ∧, ·, and 0.

Let QZ = {0} ∪ {ap : p ∈ Z} ∪ {bp : p ∈ Z}, where all the ap’s and bq’s are distinct and different
from 0. The algebra 〈QZ,∧, 0〉 is a height 1 semilattice with least element 0. The product in QZ is
defined so that ap · bp+1 = bp for all p ∈ Z, with all other products 0. Here is a picture that might
help: q�

b3
a2

q�
b2

a1

q�
b1

a0

q�
b0

a−1

q�
b−1

a−2

q�
b−2

a−3

qb−3

q
0

· · · · · ·

The operation · could be referred to as an edge operation and the algebra 〈QZ, ·, 0〉 as an edge
algebra. Any directed labelled graph gives rise to an edge algebra provided no two edges directed
away from the same vertex have the same label. Specifically, for such a directed graph, · is an
edge operation on A provided the elements of A fall into three disjoint sets—vertex elements, edge
labels, and a default element 0—and b = a · d holds when a labels an edge directed from vertex
d to vertex b, with all other · products producing the default element 0. Such edge algebras are
related to Shallon’s graph algebras. They might also be called “automatic algebras” since they are
clearly related to finite automata. However, the term “automatic group” is already in use. In later
lectures more complicated ternary operations rooted in digraphs with doubly labelled edges will be
used to encode Turing machines and their computations.

Qω denotes the subalgebra of QZ with universe {0} ∪ {ap : p ∈ ω} ∪ {bp : p ∈ ω}. Likewise, for
each natural number n, Qn denotes the subalgebra with universe {0}∪ {ap : 0 ≤ p < n}∪ {bp : 0 ≤
p ≤ n}. This algebra has 2n+ 2 elements.

Theorem 0. Let QZ be an algebra as described above (in particular with the given basic oper-
ations 0,∧, and · and with all other basic operations being term operations built from these). The
following hold:

i. Qω is subdirectly irreducible, as is each Qn;
ii. QZ generates a locally finite variety;
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iii. QZ is inherently nonfinitely based.

Proof: Indeed, for (i) we have that (0, b0) belongs to every nontrivial congruence. To see this, let
θ be a nontrivial congruence. First, suppose that b0 θ c with b0 6= c. Then b0 = b0 ∧ b0 θ b0 ∧ c = 0.
Next, suppose that 0 < p and that θ collapses bp to c where bp 6= c. We obtain bp−1 = ap−1 · bp θ
ap−1 · c = 0. So, inductively we have b0 θ 0. Finally, suppose that θ collapses ap to c where ap 6= c.
Then we obtain bp = ap · bp+1 θ c · bp+1 = 0, and so also b0 θ 0.

For (ii), note that no ap results from the product operation and that bp can only result from
the product ap · bp+1. So if S is any subset of QZ, then S ∪ {0} ∪ {bp : ap ∈ S} is a subuniverse of
QZ. Thus the subuniverse of QZ generated by a set of n elements will have no more than 2n + 1
elements, and usually a lot less. Hence QZ generates a locally finite variety.

To establish (iii) for each large enough natural number N we build an algebra Q(N)
Z . The

algebra Q(6)
Z is pictured below:
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The product · in Q(N)
Z is defined differently, while the meet and 0 retain their old meanings

(and the remaining operations are still defined by the same terms). The universe Q(N)
Z = {0} ∪

{a−1, . . . , a−N} ∪ {bp : p ≤ 0}. The algebra Q(N)
Z is infinite but finitely generated. Let B be a
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subalgebra of Q(N)
Z generated by fewer than N elements. It follows that some ap is not in B. Let

C be the subalgebra of Q(N)
Z whose universe consists of all elements except ap. Below is a picture

of C where N = 6 and a−4 is the omitted element.

...
...

...
...

...
...
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�qb−20
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qb−10

a−5

�qb−11

a−6
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a−1

�qb−13

a−2

�qb−14

a−3

�qb−15

qb−4

a−5

�qb−5

a−6

�qb−6

a−1

�qb−7

a−2

�qb−8

a−3

�qb−9

qb0
a−1

�qb−1

a−2

�qb−2

a−3

�qb−3

q
0

Thus Q(N)
Z is made from C by a helical wrapping and the addition of a new element.

Now in C the bp’s are arranged in rows. Select a row. Let θ be the equivalence relation
that isolates each bp on the selected row, as well as each aq, but collapses all the other br’s to 0.
Evidently, θ is a congruence relation of C. It is also clear that C/θ is isomorphic to a subalgebra
of QZ. Since by selecting different rows we arrive at a family of congruences that separates the
points of C, we conclude that C belongs to the variety generated by QZ. Hence, every subalgebra
of Q(N)

Z generated by fewer than N elements belongs to the variety generated by QZ. Since this
variety is locally finite, we have that it is inherently nonfinitely based. �

Theorem 1. Suppose that the only basic operation symbols are ·,∧, and 0. There is a finite
algebra A0 so that QZ belongs to the variety generated by A0.

Proof: Our approach is to let A0 denote an unknown finite algebra, set up the obvious conditions
based on Birkhoff’s HSP Theorem, and then try to solve for A0.

So we want B ⊆ AZ
0 and also θ ∈ ConB so that QZ ∼= B/θ. To make this as easy as possible we

would like B to be very much like QZ. We need to have in AZ
0 elements like ap and bp. So we want
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αp, βp ∈ AZ
0 so that βp = αpβp+1 for all p ∈ Z. Writing this coordinatewise, we obtain conditions

on A0:

αp(i)βp+1(i) = βp(i) for all i ∈ Z
An easy way to satisfy this is to provide A0 with five elements 1, H, 2, C, and D. Then we can let

αp:= . . . 1 1 1 H 2 2 2 . . .

βp:= . . . C C C D D D D . . .

where the change is taking place at the pth position. Then our condition looks like:

αp: . . . 1 1 1 H 2 2 2 . . .

βp+1: . . . C C C C D D D . . .

βp: . . . C C C D D D D . . .

This imposes conditions on the product in A0. Indeed,

1 · C = C

H · C = D

2 ·D = D

To complete the description of A0 we make all the other products 0, a new element, and insist
that ∧ make it into a flat semilattice. A0 has six elements. It is an edge algebra for the digraph
below:

W W

q
qq�

D C

H

0

2 1

To finish, we take B to be the subalgebra of AZ
0 generated by all the α’s and the β’s. Let θ

collapse all the Z-tuples in B except the α’s and the β’s. Then it is easy to check that θ ∈ Con B
and everything works. �

It would be ideal if we could arrange for a finitely generated variety whose subdirectly irre-
ducibles were exactly Qω and the Qn’s. The surprising thing is that this is almost possible. With
this in mind, the next lecture developes properties of finite subdirectly irreducible algebras in vari-
eties generated by algebras like A0 above. However, by Lecture 2, we will see that it is convenient
to add more elements and even more operations to A0. Additional elements do not interfere much
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with the construction above, but care is needed with the additional operations—we must ensure
that in QZ they turn out to be term operations built up from ·,∧, and 0. Thus, in Lecture 3 we
will revisit the constructions above.



LECTURE 1

Finite Subdirectly Irreducibles Generated by Finite Flat Algebras

In this lecture we will suppose that A is a finite flat algebra (that is, an algebra among whose
operations ∧ and 0 can be found which provide the algebra with the structure of a meet-semilattice
of height one with least element 0) and that S is a finite subdirectly irreducible algebra in the
variety generated by A. Of course, we have in mind for A the flat algebra described at the end of
Lecture 0, although we should be willing to modify that algebra if the need arises. And we hope
to show that S is one of the Qn’s.

Now according to Birkhoff’s HSP Theorem, S will always arise as a quotient of some B, which
is in turn a subalgebra of AT for some T . Since S is subdirectly irreducible, we know that there
is a strictly meet irreducible θ ∈ Con B such that S ∼= B/θ. It is more convenient to work with B
than with S. Since S is finite, we can choose T to be finite. Indeed, in this lecture we assume the
following:

• B ⊆ AT

• θ ∈ Con B
• θ is strictly meet-irreducible in Con B.
• S ∼= B/θ
• T is as small as possible for representing S in this way.

In particular this last condition entails that if t ∈ T , then there must be u, v ∈ B so that (u, v) /∈ θ
but u(s) = v(s) for all s ∈ T − {t}. Our effort at understanding the finite subdirectly irreducible
S is largely focussed on θ.

First, we locate an element in B which is like the element b0 in Qn. Since B is a semilattice,
there are elements u, v ∈ B with u < v and (u, v) critical over θ. Using the finiteness of B pick p
to be minimal among all those v ∈ B such that (u, v) is critical over θ for some u < v.

Fact 0. If w < p, then (w, p) /∈ θ.

Proof: Suppose w < p but w θ p. Pick u < p with (u, p) critical over θ. Then w = p ∧wφu ∧w,
for all φ ∈ Con B with θ < φ. But this means that either (w, u ∧ w) ∈ θ or that (w, u ∧ m) is
critical over θ. So by the minimality of p, we have u ∧ w θ w. But then u = u ∧ p θ u ∧ w θ w θ p,
contradicting (u, p) /∈ θ. �

Now for each t ∈ T pick (x, y) ∈ B2 − θ so that x(t) 6= y(t) but x(s) = y(s) for all s ∈
T − {t}. Pick u < p so that (u, p) is critical over θ. So (u, p) ∈ θ ∨ CgB(x, y). Then according
to Mal’cev’s Congruence Generation Theorem there is a finite sequence e0, e1, . . . , en of elements
of B, of translations λ0, . . . , λn−1 of B, and of two-element subsets {z0, w0}, . . . , {zn−1, wn−1} each
belonging the θ ∪ {x, y} such that

u = e0 {ei, ei+1} = {λi(zi), λi(wi)} for all i < n en = p.

13
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But now, meeting every element in the sequence with p, we have

u = u ∧ p = e0 ∧ p {ei ∧ p, ei+1 ∧ p} = {λi(zi) ∧ p, λi(wi) ∧ p} for all i < n en ∧ p = p ∧ p = p

Since u < p there must be some i < n so that p ∈ {λi(zi)∧p, λi(wi)∧p} where λi(zi)∧p 6= λi(wi)∧p.
Let χt denote the element of {λi(zi)∧p, λi(wi)∧p} which is different from p. Evidently χt < p. By
Fact 0 we see that (χt, p) /∈ θ. Hence, (zi, wi) = (x, y) and {p, χt} = {λi(x) ∧ p, λi(y) ∧ p}. From
this construction we obtain:

• χt(s) = p(s) for all s ∈ T − {t}.
• χt(t) < p(t) for all t ∈ T .
• χt(t) = 0 and 0 < p(t) for all t ∈ T .

The last item listed above is a consequence of the flatness of A. Thus, χt agrees with p at all
coordinates with the exception of t, where χt is 0 while p is not 0. So χt is uniquely determined by
p and t (and is independent of the choices of x, y, and λi made above). We will eventually see—once
enough is specified about A—that p is also uniquely determined.

Fix t0 ∈ T so that u ≤ χt0 for some u < p for which (u, p) is critical over θ. Let q = χt0 .

Fact 1. p is a maximal element of AT . χt ∈ B and p covers χt in AT for all t ∈ T . (q, p) is
critical over θ. Finally, if u ∈ AT and u < p, then u ∈ B.

Proof: Essentially, Fact 1 gathers the conclusions we drew above. To see that (q, p) is critical,
notice (q, p) /∈ θ according to Fact 0. Let u ≤ q < p with (u, p) critical over θ. Then we have
pφu = q ∧ uφq ∧ p = q, for all φ > θ. The elements of AT less than or equal to p form a Boolean
algebra in which every element is a meet of the coatoms χt. �

Fact 2. If p θ x, then p = x

Proof: Suppose p θ x. Meeting both sides with p we also get p θ p∧x. From Fact 0, we conclude
that p ≯ p ∧ x. Thus p ≤ x. But since p is a maximal element, we arrive at p = x. �

Fact 3. x θ y if and only if µ(x) = p⇔ µ(y) = p for all translations µ of B.

Proof: In the forward direction the result follows from Fact 2.
Now for the converse direction, suppose (x, y) /∈θ. By Fact 1, we know (q, p) ∈θ ∨CgB(x, y).

Now repeating the analysis that led to the χt’s we obtain a translation µ = λ∧p so that µ(x) 6= µ(y)
but p ∈ {µ(x), µ(y)}. �

Fact 4. If x < p, then (x, x ∧ q) ∈ θ.

Proof: (q, p) is critical over θ by Fact 1, so x = x ∧ pφx ∧ q, for all φ > θ. Hence, either
(x, x ∧ q) ∈ θ or (x, x ∧ q) is critical over θ. Since p > x ≥ x ∧ q, it follows from the minimality of
p that x θ x ∧ q. �

Suppose that x, y, and z ∈ B. Then (x∧ y) and (x∧ z) also belong to B and the element x is a
common upper bound. Recalling that B has the structure of a finite ∧-semilattice, it follows that
(x ∧ y) and (x ∧ z) must have a least upper bound—we denote it by (x ∧ y) ∨ (x ∧ z).

Fact 5. S ∈ HSA or (x ∧ y) ∨ (x ∧ z) is not a polynomial of B.
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Proof: Suppose S /∈ HSA. Then T has at least two elements. Let t1 ∈ T with t0 6= t1. Let
q′ = χt1 . Since q′ < p we have by Fact 4 that q′ θ q′ ∧ q. But then, were (x ∧ y) ∨ (x ∧ z) a
polynomial of B, we would have p = (p ∧ q) ∨ (p ∧ q′) θ (p ∧ q) ∨ (p ∧ q ∧ q′) = q. Since (p, q) /∈ θ,
we conclude that (x ∧ y) ∨ (x ∧ z) is not a polynomial. �

Fact 5 reveals that our investigation of (finite) subdirectly irreducible algebras can be split in
two. Since A is finite, a complete description of the subdirectly irreducible algebras in HSA can
be devised given a description of A. We only note the obvious upper bound on their cardinality.
Most of our effort will concern the alternative case when (x∧ y)∨ (x∧ z) is not a polynomial of B.
It is th subdirectly irreducible algebras arising from these algebras that we want to show must be
isomorphic to our Qn’s.

Here is a lemma that simply gathers together the most salient of the facts just listed.

Lemma 0. Suppose that A is a finite flat algebra and that S is a finite subdirectly irreducible
algebra in HSPA. Choose T , B, and θ ∈ Con B so that

• B is a subalgebra of AT ,
• θ is (strictly) meet irreducible in Con B.
• S ∼= B/θ, and
• T is as small as possible subject to fulfilling the conditions above.

Then there is an element p ∈ B such that
i. (0, p) is critical over θ,
ii. p/θ = {p},

iii. p is a maximal element of AT (so p(s) > 0 for all s ∈ T ), and
iv. for all x, y ∈ B, x θ y if and only if µ(x) = p⇔ µ(y) = p for all translations µ of B.

Moreover, S ∈ HSA or (x ∧ y) ∨ (x ∧ z) is not a polynomial of B.



LECTURE 2

The Eight Element Algebra A

The six element algebra which was constructed at the end of Lecture 0 generates a variety with
a lot of finite subdirectly irreducible algebras in addition to the Qn’s. An example is the flat edge
algebra S8 described next. For each i < 8, define the following elements of the 8-fold direct power
of the algebra constructed in Lecture 0:

c = 〈D,D,. . . ,D,D,D,. . . 〉
di = 〈D,D,. . . ,D,C,D,. . . 〉
ri = 〈 2,2, . . . ,2, H,2, . . . 〉

where the sole C in di and the sole H in ri occur at position i. Let B8 be the subset of the 8-fold
direct power consisting of c, all the di’s, all the ri’s, and all the 8-tuples which have 0 in at least
one position. Then

ri · di = c

for every i < 8, but any other product of elements of B8 results in an 8-tuple with 0 in at least
one position. This means that B8 is a subuniverse. Let θ8 be the equivalence relation on B8 which
collapses into one big block all the 8-tuples in B8 which have 0 in at least one position, but which
isolates all the other members into singletons. It is easy to see that θ8 is a congruence relation of
B8. Let S8 = B8/θ8. S8 is displayed below in Figure 1.

s� d4r4 s@@@I
d5

r5s
6
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r6s����
d7

r7

s -d0
r0

s
@
@
@R

d1

r1

s
?

d2

r2
s
�

�
�	

d3

r3sc

Figure 1. The directed graph for S8

Plainly, S8 is an algebra in the variety. A routine calculation shows that (c, 0) is a critical pair
in S8. Consequently, S8 is subdirectly irreducible, as desired. Evidently, there is nothing special in
the choice of 8. A similar construction can be carried out for any cardinal in place of 8.

We must modify our little 6-element algebra from Lecture 0 to eliminate subdirectly irreducible
algebras like S8, whose diagrams are not (finite) directed paths. Evidently, for our subdirectly

16
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irreducible algebras, we need a kind of unique factorization property:

a · b = c · d 6= 0⇒ a = c and b = d.

To accomplish this we are going to add some new basic operations and some new elements to
our algebra, but we need to have some care since we want QZ to remain essentially unchanged and
still to belong to the variety generated by the finite algebra we are trying to devise.

To obtain the unique factorization property we introduce the new basic 4-ary operation U0:

U0(x, y, z, w) =


xy if xy = zw 6= 0 and x = z and y = w,

xy if xy = zw 6= 0 and either x 6= z or y 6= w,

0 otherwise.

At the moment, we should understand that the first case corresponds to the situation when the
unique factorization property prevails, the second case corresponds to the failure of the unique
factorization property, and the remaining case is just a default. For the moment, xy is simply a
reminder that the output in this case should depend on xy but differ from xy. Our hope is to
obtain the unique factorization property by forcing the first case to happen. In essence, this means
preventing the second case. For this purpose we introduce a new basic 5-ary operation S2:

S2(u, v, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u = v,

0 otherwise.

Recall the algebra B from Lecture 1. In B we know from Fact 5 that (x ∧ y) ∨ (x ∧ z) cannot
be a polynomial. So S2 is designed to prevent B from having elements u and v so that u = v. This
in turn will prevent the second case in the definition of U0 from arising.

To give more sense to this, notice that in six element algebra from Lecture 0, a product xy
could have only C,D, or 0 as a value. So we introduce two elements C and D in addition to the six
with which we have been dealing. Further, we stipulate that u = C if u = C and likewise u = D
if u = D. In this way, both U0 and S2 have unambiguous definitions, once the product and meet
have been extended to operations on the new set with eight elements.

These two additional operations and two additional elements are not quite enough.

S1(u, v, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u ∈ {1, 2},
0 otherwise.

The role of S1, as we will see, is ensure that our finite subdirectly irreducible algebra S has another
property that each Qn has—namely, that the labels of the edges are not repeated. Last, here are
the operations J and J ′ which are ternary:

J(x, y, z) =


x if x = y 6= 0,
x ∧ z if x = y,

0 otherwise.
J ′(x, y, z) =


x ∧ z if x = y 6= 0,
x if x = y,

0 otherwise.

The role of these operations is less forthright. Since we are really working inside a subalgebra of
a direct power, we have to contend with coordinate-wise properties. The role of these last two
operations is to ensure that we fall into the “good” case at every coordinate.

We are led to an algebra A with eight elements and eight basic operations.



2. THE EIGHT ELEMENT ALGEBRA A 18

The universe is A = {0}∪{1, H, 2}∪{C,C,D,D}. We set U = {1, H, 2} and W = {C,C,D,D}.
We regard as an involution on W . The basic operations of A are denoted by 0,∧, ·, J, J ′, U0, S1,
and S2. 〈A,∧, 0〉 is a flat semilattice with least element 0. The operation · is defined to give the
default value 0 except when

1 · C = C 1 · C = C

H · C = D H · C= D

2 ·D = D 2 ·D = D

This is an edge operation. Ordinarily, we represent the product · simply by juxtiposition. Here is
the diagram of the edge algebra:

W W

q
qq�

D C

H

0

2 1

W Wqq�
D C

H

2 1

The following fact is evident from the definition of the product.

Fact 6. If λ is a basic translation on A associated with the product ·, and λ(a) = λ(b) 6= 0,
then a = b. The same is true for every translation built using only the product.



LECTURE 3

Properties of B based on the Eight Element Algebra A

With the description of our eight element algebra A in hand, we continue to develop facts about
B and its congruence θ. Denote by B1 the set consisting of p and all its factors with respect to the
product ·. That is

B1 = {u : λ(u) = p for some nonconstant translation λ of B built only from the product}

So u ∈ B1 if and only if u = p or u = ci for some factorization p = c0c1 . . . cm (where this latter
product is associated to the right).

Let B0 denote that set of those tuples in B which contain at least one 0. Plainly B0 ⊆ B−B1.
It is also clear that if S /∈ HSA, then the ranges of the operations S1 and S2 are contained in B0

and hence in B −B1.
The basic operation J of A is monotone in the sense that if a ≤ a′, b ≤ b′ and c ≤ c′ where

all these elements belong to A, then J(a, b, c) ≤ J(a′, b′, c′).

Fact 7. Let f be a monotone unary polynomial of B. If x < p and f(x) = p, then f(q) = p.

Proof: By Fact 4 we have x θ x ∧ q. This entails p = f(x) θ f(x ∧ q). So by Fact 2 we get
p = f(x ∧ q). But then p ≤ f(q) by the monotonicity of f . Thus p = f(q) by the maximality of
p. �

Proviso: The facts below are established under the assumption that the ranges of S1 and S2

are contained in B −B1.

Fact 8. If u ∈ B1 and v ∈ B so that for all s ∈ T either u(s) = v(s) or u(s) = v(s) ∈W , then
u = v.

Proof: First suppose u = p.
Let Y = {s : p(s) = v(s)}.

Claim: Y is empty.
Proof of the Claim: Since the range of the operation S2 is disjoint from B1, it follows that T 6= Y .
Pick t′ ∈ T − Y and let q′ = χt′ . So for each s ∈ T we have

J(p(s), v(s), q′(s)) =

{
p(s) if s /∈ Y ,
p(s) ∧ q′(s) if s ∈ Y .

But this entails J(p, v, q′) = p, since q′(s) = p(s) for all s ∈ Y because t′ /∈ Y . Therefore, by Fact 7
and the monotonicity of J , we have J(p, v, q) = p. But then the definition of J gives us q(s) = p(s)
for all s ∈ Y . Since q(t0) = 0, it follows that t0 /∈ Y .

19
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Now observe that J ′(p(t0), v(t0), q(t0)) = p(t0)∧0 = 0. Hence, J ′(p, v, q) 6= p. So by Fact 7 and
the monotonicity of J ′, we conclude that J ′(p, v, χt) 6= p for all t ∈ T . But for all s, t ∈ T

J ′(p(s), v(s), χt(s)) =

{
p(s) ∧ χt(s) if s /∈ Y ,
p(s) if s ∈ Y .

It follows that t /∈ Y for all t ∈ Y . This means Y is empty. So the Claim is established.
Since Y is empty, we also know that p(s) = v(s) for all s ∈ T . Hence u = v as desired.
Now suppose u ∈ B1−{p}. There are two kinds of elements in B1−{p}—those in UT and those

in W T . Clearly, we can restrict our attention to the case when u ∈W T . Let λ be a translation built
from the product such that λ(u) = p. Set p′ = λ(v). Since the product respects bars on elements,
we see that for each s ∈ T , either p(s) = p′(s) or p(s) = p′(s). So by the claim just established, we
have λ(u) = p = p′ = λ(v). But then u = v by Fact 6 �

Our basic strategy calls for θ to isolate the members of B1 and to lump all the elements of
B −B1 together. To see that this really does happen, in view of Fact 3 we need the following.

Fact 9. If u ∈ B and λ(u) ∈ B1 for some nonconstant translation λ, then u ∈ B1.

Proof: The proof is by induction on the complexity of λ. The initial step of the induction is
obvious, since the identity function is the only simplest nonconstant translation. The inductive
step breaks down into seven cases, one for each basic operation of positive rank.
Case ∧: λ(x) = µ(x) ∧ r, where r ∈ B.

We have λ(u) ≤ µ(u). But every element of B1 is maximal with respect to the semilattice
order. So λ(u) = µ(u) ∈ B1. Now µ must be nonconstant. Invoking the induction hypothesis, we
get u ∈ B1.
Case ·: λ(x) = µ(x)r or λ(x) = rµ(x).

Under the first alternative we have µ(u)r = λ(u) ∈ B1. So µ(u), r ∈ B1. Since µ must
be nonconstant, we can invoke the induction hypothesis to conclude that u ∈ B1. The other
alternative is similar.
Case J : λ(x) = J(µ(x), r, s) or λ(x) = J(r, µ(x), s) or λ(x) = J(r, s, µ(x)).

Consider the first alternative. We have λ(u) = J(µ(u), r, s) ≤ µ(u). By the maximality of λ(u)
we get

λ(u) = J(µ(u), r, s) = µ(u) ∈ B1.

Now µ cannot be constant. Hence we can invoke the inductive hypothesis to conclude that u ∈ B1.
The second alternative is similar, except that Fact 8 comes into play. Under the last alternative,
since r ≥ J(r, s, µ(u)) = λ(u) is maximal, we see that r and s fulfill the hypotheses of Fact 8.
Consequently, r = s ∈ B1. But then, λ(x) = J(r, s, µ(x)) = r according to the definition of J . This
means the third alternative is impossible, since λ(x) is not constant.
Case J ′: λ(x) = J ′(µ(x), ν(x), ρ(x)).

This case is easier than the last one and is omitted.
Cases S1 and S2: Too easy.
Case U0: λ(x) = U0(µ(x), s, r′, s′) or λ(x) = U0(r, µ(x), r′, s′) or λ(x) = U0(r, s, µ(x), s′) or
λ(x) = U0(r, s, r′, µ(x)).

Consider the first alternative. We have λ(u) = U0(µ(u), s, r′, s′) ∈ B1. Evidently, λ(u) and
µ(u)s satisfy the hypotheses of Fact 8. So λ(u) = µ(u)s. Since λ(u) ∈ B1, we know that µ(u) ∈ B1
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by the definition of B1. Now µ is nonconstant. So u ∈ B1 by the inductive hypothesis. The second
alternative is similar.

Consider the third alternative. We have λ(u) = U0(r, s, µ(u), s′). Evidently, λ(u) and rs satisfy
the hyopetheses of Fact 8. So λ(u) = rs. Then by the definition of T , we have λ(u) = rs = µ(u)s′.
But then µ(u) ∈ B1 and the induction hypotheses applies to yield u ∈ B1. The fourth alternative
is similar. �

Fact 10. u/θ = {u} for each u ∈ B1 and 0/θ = B −B1.

Proof: Suppose u ∈ B1 and that u θ v. Let λ(u) = p for some translation λ built just using ·.
It follows that λ(v) = p by Fact 3. By Fact 6, we conclude that u = v.

Fact 9 says that B − B1 is closed with respect to nonconstant translations. Since p ∈ B1, we
have that λ(u) 6= p for all u ∈ B−B1 and all nonconstant translations λ. Hence, by Fact 3, B−B1

is collapsed by θ. But, as we just saw, B1 is the union of (singleton) θ-classes. Hence B − B1 is a
θ-class. Clearly, 0 ∈ B −B1. �

To establish that S ∼= Qn for some natural number n we need to analyze each of our basic
operations. We deal with the product first.

Here is the unique factorization property for the product that we require.

Fact 11. If ab = cd ∈ B1, then a = c and b = d.

Proof: Let u = ab and v = U0(a, b, c, d). From the definition of the operation U0, we see that
u and v satisfy the hypotheses of Fact 8. Hence, ab = U0(a, b, c, d). But then the definition of U0

gives a = c and b = d. �

In QZ none of the labels of the edges were repeated. We need this property as well. It is the
reason why we introduced the operation S1. The relevant fact is next.

Fact 12. No factorization of p has repeated factors.

Proof: It is clear that if d0d1 . . . dm−1e = p then e ∈ W T while d0, . . . , dm−1 ∈ UT . Suppose
that di = dj with i < j. Since the range of the operation S1 is disjoint from B1, we conclude that
B contains no elements from {1, 2}T . So pick s ∈ T so that di(s) = dj(s) = H. Now we see

p(s) = d0(s) . . . di−1(s)Hdi+1(s) . . . dj−1(s)Hdj+1(s) . . . dm−1(s)e(s)
So p(s) = 0, violating the maximality of p. �

We are now in a position to describe B1 more explicitly. Consider the following factorization
of p:

p = b0

= a0b1

= a0a1b2

...
= a0a1 . . . an−1bn

...
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Evidently, ai ∈ UT for all i and according to Fact 12 all the ai’s are distinct. But B1 is finite,
so we suppose without loss of generality that bn cannot be factored. But the unique factorization
property Fact 11 entails that the factorization of p displayed above is the only way p can be factored.
Consequently,

B1 = {a0, a1, . . . , an−1} ∪ {b0, b1, . . . , bn}
It is also evident that bi ∈W T for all i. Were bi = bj for some i 6= j, it would be easy to construct
a factorization of p with repeated factors, in violation of Fact 12. This means that B1 has 2n + 1
elements, and that bi = aibi+1 for each i < n. That all the other products of elements chosen from
B1 will belong to B0, follows easily from the unique factorization property Fact 11. Consequently,
at least with respect to the product operation, S and Qn are isomorphic.

Now consider the operation ∧. Since ∧ is obviously a semilattice operation on S, what we need
is that S is flat.

Fact 13. If x, y ∈ B1 and x 6= y, then x ∧ y ∈ B −B1.

Proof: Since x 6= y there is t ∈ T with x(t) 6= y(t). But then ((x∧y)(t) = 0. So x∧y ∈ B−B1. �

Finally, we need to know that the remaining basic operations on S can be construed as term
operations built up from ·,∧, and 0 in a manner dependent only on the hypotheses that S is a
finite subdirectly irreducible algebra in HSPA and that S /∈ HSA. That is the content of the next
sequence of facts.

Fact 14. U0(x, y, z, w) θ (xy) ∧ (zw) for all x, y, z, w ∈ B.

Proof: We must show that either U0(x, y, z, w) and (xy) ∧ (zw) both belong to B − B1 or else
U0(x, y, z, w) = (xy) ∧ (zw) ∈ B1. Since B − B1 is a θ-class, Fact 8 forces U0(x, y, z, w) ∈ B − B1

except in the case that xy = zw ∈ B1. In that case, U0(x, y, z, w) = xy = zw = (xy) ∧ (zw) ∈ B1.
But also, (xy)∧ (zw) ∈ B−B1 except in the case that xy = zw ∈ B1. In that case, U0(x, y, z, w) =
xy = (xy) ∧ (zw) ∈ B1. Therefore, U0(x, y, z, w) θ (xy) ∧ (zw). �

Fact 15. J(x, y, z) θ x ∧ y for all x, y, z ∈ B.

Proof: Again, we must show that either J(x, y, z) and x ∧ y both belong to B − B1 or else
J(x, y, z) = x ∧ y ∈ B1. Now again using that B −B1 is a θ-class and Fact 8, J(x, y, z) ∈ B −B1,
except in the case that x = y ∈ B1. In that case, J(x, y, z) = x = y = x ∧ y ∈ B1. But also,
x ∧ y ∈ B − B1, except in the case that x = y ∈ B1. In that case, x ∧ y = x = J(x, y, z) ∈ B1.
Therefore, J(x, y, z) θ x ∧ y. �

Fact 16. J ′(x, y, z) θ x ∧ y ∧ z for all x, y, z ∈ B.

Proof: This is too easy. �

Fact 17. S1(u, v, x, y, z) θ 0 θ S2(u, v, x, y, z) for all u, v, x, y, z ∈ B.

For each natural number n, we take Qn to be an algebra on 2n + 2 elements with the basic
operations ·,∧, and 0 as described in Lecture 0, and the remaining basic operations determined by
the stipulation that the following equations are true in Qn:
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U0(x, y, z, w) ≈ (xy) ∧ (zw)
J(x, y, z) ≈ x ∧ y S1(u, v, x, y, z) ≈ 0

J ′(x, y, z) ≈ x ∧ y ∧ z S2(u, v, x, y, z) ≈ 0

Thus we arrive at the desired conclusion.

Lemma 1. Let S be a finite subdirectly irreducible algebra in HSPA. Either S ∈ HSA or else
there is a natural number n such that S ∼= Qn.

What we haven’t done in this lecture is prove that any of these expanded Qn’s belong to the
variety generated by our 8-element algebra A.



LECTURE 4

A is Inherently Nonfinitely Based and Has Residual Character ω1

The algebra QZ and its subalgebras Qω, and Qn for each n ∈ ω, were introduced in Lecture 0.
The operations 0,∧, and · were examined in detail, but the only stipulation about any remaining
operations was that they must be defined as term operations of these first three. In Lecture 2, five
more operation symbols were introduced: U0, J, J ′, S1, and S2. In the algebras QZ,Qω, and Qn

these five further basic operations are defined so that the following equations are true:

U0(x, y, z, w) ≈ (xy) ∧ (zw)

J(x, y, z) ≈ x ∧ y S1(u, v, x, y, z) ≈ 0

J ′(x, y, z) ≈ x ∧ y ∧ z S2(u, v, x, y, z) ≈ 0

The whole discussion of these algebras in Lecture 0 goes through in this expanded setting, with
the exception of the last phase. The five new operations were not defined on the six element algebra
A0 in Lecture 0. We now want to replace that algebra with the eight element algebra A introduced
in Lecture 2. What we need is the following theorem to replace Theorem 1 of Lecture 0.

Theorem 2. QZ belongs to the variety generated by A.

Proof: We retrace the proof of Theorem 1. First, for each p ∈ Z we designate elements αp and
βp of AZ as before:

αp:= . . . 1 1 1 H 2 2 2 . . .

βp:= . . . C C C D D D D . . .

where the change is taking place at the pth position. Next we let B1 = {αp : p ∈ Z} ∪ {βp : p ∈ Z}
and we let B be the subalgebra of AZ generated by B1. B0 be the set of all elements of B in which
0 occurs. Now let Φ be the map defined from B to QZ via

Φ(x) =


ap if x = αp for some p ∈ Z,
bp if x = βp for some p ∈ Z,
0 otherwise

We contend that B0 ∪ B1 is a subuniverse of B (and so B = B0 ∪ B1) and also that Φ is a
homomorphism from B onto QZ. Checking either of these contentions can be done by examining
the behavior of each baisc operation case by case. We will do this simultaneously.
Case 0. Plainly, 0 ∈ B0 and Φ(0) = 0. So this case is secure.
Case ∧. Suppose that u, v ∈ B0 ∪ B1. Then either u = v and u ∧ v = u ∈ B0 ∪ B1 or else u 6= v
and u ∧ v ∈ B0. Hence, B0 ∪B1 is closed under ∧. But also, Φ(u ∧ v) = Φ(u) ∧ Φ(v).

24
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Case ·. Suppose that u, v ∈ B0 ∪B1. Then either uv ∈ B0 or for some p we have u = αp, v = βp+1

and uv = βp ∈ B1. It follows that B0 ∪B1 is closed under · and that Φ preserves ·.
To handle the remaining cases, the following property of x, y ∈ B0 ∪B1 proves useful:

(?) If for each s ∈ Z, either x(s) = y(s) 6= 0 or x(s) = y(s), then x = y.

Since any x, y ∈ B0 ∪ B1 for which the hypothesis of ? holds must both belong to B1, and since
bars occur in no member of B1, ? is true.
Case J . For J(x, y, z) /∈ B0, observe that the inputs x and y must satisfy the hypothesis of ?.
Hence, either J(x, y, z) ∈ B0 or x = y ∈ B1 and J(x, y, z) = x ∈ B1. So B0 ∪B1 is closed under J
and Φ preserves J .
Case J ′. This case is very similar to the last case.
Case U0. Let x, y, z, w ∈ B0 ∪ B1. Let u = U0(x, y, z, w) and v = xy. Then U0(x, y, z, w) ∈ B0

unless u and v fulfill the hypothesis of ?. In that case, we must have U0(x, y, z, w) = u = v ∈ B1.
Consequently, B0 ∪B1 is closed under U0 and Φ preserves U0.
Case S1. Let u, v, x, y, z ∈ B0∪B1. Then S1(u, v, x, y, z) ∈ B0 unless u ∈ {1, 2}Z. But {1, 2}Z and
B0 ∪B1 are disjoint. Consequently, B0 ∪B1 is closed under S1 and Φ preserves S1.
Case S2. Let u, v, x, y, z ∈ B0 ∪ B1. Then S2(u, v, x, y, z) ∈ B0 unless u(s) = v(s) for all s ∈ Z.
But no element of B1 has a bar at any of its entries. Consequently, B0 ∪B1 is closed under S2 and
Φ preserves S2.

�

At this point we know that the eight element algebra A, which has eight basic operations, is
inherently nonfinitely based, that the finite subdirectly irreducible algebras in the variety generated
by A are the subdirectly irreducible algebras in HSA and the algebras Qn for each n ∈ ω, and
that Qω is a countably infinite subdirectly irreducible member of the variety.

We will demonstrate that our variety has no other infinite subdirectly irreducible algebras.
Let S be any infinite subdirectly irreducible algebra in the variety generated by A. According

to the Theorem of Dziodiak and Quackenbush (see the Toolbox), any finite subalgebra of S can
be embedded into arbitrarily large finite subdirectly irreducible algebras in the variety generated
by A, i.e. into Qn for all large enough n. This means that every finitely generated (= finite)
subalgebra of S is embeddable into Qω. Consequently, every universal sentence true in Qω must
be true in S.

Here are some interesting properties of Qω which can be expressed with universal sentences:

• Any equation true in QZ. For example: U0(x, y, z, w) ≈ (xy) ∧ (zw).
• The height is no bigger than 1: x 6≈ y → x ∧ y ≈ 0.
• xy ≈ zw 6≈ 0→ (x ≈ z & y ≈ w).
• xy 6≈ 0 6≈ xz → y ≈ z.
• xy 6≈ 0 6≈ zy → x ≈ z.
• xy 6≈ 0→ zx ≈ 0 ≈ yw.

Consequently, in S, the operations U0, J, J ′, S1, and S2 are term functions (using the same
terms as in Qω) in 0,∧, and ·. We ignore them from now on. With respect to ∧ and 0, S is a
height 1 meet-semilattice with least element 0. So the balance of our analysis depends primarily
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on the product ·. Since (xy)z ≈ 0 is true in Qω, we see that in S, just as in Qω, only right-
associated products can differ from 0. The last four properties itemized above put further and
severe restrictions on the product in S.

We make S − {0} into a labelled directed graph as follows. We take as the vertex set those
elements which are right factors, outputs or do not occur in nonzero products. We take as the set
of labels those elements which are left factors in nonzero products. Our itemized properties entail
that the set of vertices and the set of labels are disjoint. We put an edge from b to c and label it
with a provided ab = c in S. Our itemized assertions ensure that a vertex can have outdegree at
most 1, indegree at most 1, and that every edge has a uniquely determined label which occurs as
a label of exactly one edge in the whole graph.

Let C be a connected component of our graph. Let θC be the equivalence relation that collapses
all the vertices and labels in C to 0, but which isolates every other point. θC is a congruence of S.
Since S is subdirectly irreducible, it follows that our graph has only one component. This already
implies that S is countably infinite. But more is true. There are only three possible countable
connected graphs of this kind: the one associated with Z (and then we would have S ∼= QZ), the
one associated with ω (and then we would have S ∼= Qω), and the one associated with the set of
nonnegative integers (and then S would be isomorphic to an algebra we might as well call Q−ω).
But neither QZ nor Q−ω is subdirectly irreducible. So S must be isomorphic to Qω.

We summarize the results in the following theorem.

Theorem 3. The eight element algebra A, which has only eight basic operations, is inherently
nonfinitely based. The subdirectly irreducible algebras in the variety generated by A are, up to iso-
morphism, exactly the subdirectly irreducible homomorphic images of subalgebras of A, the algebra
Qω, and the algebra Qn for each n ∈ ω.

This theorem settles in the negative some outstanding problems. We will say that a variety is
finitely generated provided it is generated by a finite algebra with only finitely many fundamental
operations. It is residually small if there is an upper bound on the cardinalities of its subdirectly
irreducible algebras. It is residually finite if all its subdirectly irreducible algebras are finite. It is
residually very finite if there is a finite upper bound on the cardinalities of its subdirectly irreducible
algebras.
The R-S Conjecture: Every finitely generated residually small variety is residually very finite.

The Broader Finite Basis Speculation: Every finitely generated residually small variety is
finitely based.

Theorem 3 is a counterexample to both of these. However, the two problems below are closely
related and still open.
The Quackenbush Conjecture: Every finitely generated residually finite variety is residually
very finite.

Park’s Conjecture: Every finitely generated residually finite variety is finitely based.



LECTURE 5

How A(T) Encodes The Computations of T

In this lecture we describe, in part, McKenzie’s machine algebras and show how they capture
the computations of Turing machines. Turing machines are finite objects, but the computations
that they produce can be endless. So it is reasonable to expect to use a finite algebra to convey
the information of any particular Turing machine. However, finite algebras are too small to hold
arbitrary computations. The algebra QZ, however, suggests a way to grapple with arbitrary com-
putations. The idea is to designate certain elements of the algebra as configurations of a Turing
machine and draw labeled directed edges between configurations to represent the transitions of the
machine computation. Then we try to realize these directed edges by new operations applied to
certain elements. Next we try to find a finite algebra so that the whole thing is happening coor-
dinatewise inside a big direct power. Finally, we will have to add further operations to control all
the finite subdirectly irreducible algebras.

For a Turing machine T, we devise a finite algebra A(T) which enlarges A (in order to have
enough distinct elements to code configurations) by adding finitely many elements and which ex-
pands A by adjoining operations to emulate the transitions between configurations, as well as to
keep control of the finite subdirectly irreducible algebras. But the analysis of computation itself
will go on in A(T)X for some large set X [think of X = Z].

We conceive of a Turing machine T as having finitely many internal states 0, 1, . . . ,m. The
machine is always launched in state 1 and we take 0 to be the unique halting state. The Turing
machine T has a tape alphabet consisting of the symbols 0 and 1. The Turing machine itself is a
finite collection of 5-tuples each of the form:

[i, γ, δ,M, j]

This 5-tuple is the instruction, “If you are in state i and you are examining a tape square
containing the symbol γ, then write the symbol δ on that square, move one square in the direction
M (M must be either L for left or R for right), and pass into internal state j”. We insist that
no 5-tuple begin with 0 and that otherwise the machine must have exactly one instruction which
begins [i, γ, . . . ] for each state i other than the halting state 0 and each tape symbol γ.

We say Q is a configuration for a Turing machine T provided Q = 〈t, n, i〉 where t ∈ {0, 1}Z,
n ∈ Z, and i is one of the states of T. The idea is that at some stage of a computation, the tape of
the machine looks like t, the machine is focussed on square n and is itself in state i.

A significant problem we have to resolve comes from the fact that machine computations, at
any given stage, happen at a particular location on the tape, and that these locations are arranged
in a sequence with only the adjacent locations available for the next step in the computation. Thus
some elements of our “computation algebra” which are used to label those directed edges must also
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fall into a sequence of “tape locations”. To make short work of this point we take the elements ap
of QZ as a model of how elements fall into sequence. Looking at what we had to have in A to get
these ap’s we recall:

αp: . . . 1 1 1 H 2 2 2 . . .
αp+1: . . . 1 1 1 1 H 2 2 . . .
αp+2: . . . 1 1 1 1 1 H 2 . . .

So in all our machine algebras we want a subset U = {1, H, 2} making elements like the ones
above available in direct powers. To impose the precedence above in the direct power, we impose
2 ≺ 2 ≺ H ≺ 1 ≺ 1 on U . We also use ≺ to denote the coordinatewise relation in any direct power
of a machine algebra. Suppose B = A(T)X . A subset F ⊆ B is sequentiable provided

• F ⊆ UX ,
• H occurs at least once in f , for each f ∈ F , and
• ≺ gives F a structure isomorphic to some convex substructure of the ordered set of integers.

Since H may occur at several places in such an f , sequentiable sets can be more complex than
{αp : p ∈ Z}. For a fixed sequentiable set F the index set X falls into natural pieces that help us see
the structure. Look at the following display of the four element sequentiable set F = {f0, f1, f2, f3}.

f0: 1 1 H 2 2 2 H 2 2 2 1 H 1
f1: 1 1 1 H 2 2 1 2 2 2 1 1 1
f2: 1 1 1 1 2 2 1 H 2 H 1 1 1
f3: 1 1 1 1 2 H 1 1 2 1 1 1 1

Examining the 13 columns, we see that several are exactly the same. In this example the set X
has 13 elements and some unspecified arrangement of these thirteen elements underlies the display
above. But the particular arrangement of X is immaterial from the point of view of the algebra
A(T)X . Thus we are free to rearrange X to make the precedence on F more transparent. Below is
the result of such a rearrangement:

f0: 1 1 1 1 H H H 2 2 2 2 2 2
f1: 1 1 1 1 1 1 1 H 2 2 2 2 2
f2: 1 1 1 1 1 1 1 1 H H 2 2 2
f3: 1 1 1 1 1 1 1 1 1 1 H 2 2

We have put all the columns consisting entirely of 1’s to the left. Next we put all the columns
beginning with H in position 0, then all columns with H in position 1, and so on. At the right we
have placed all columns consisting entirely of 2’s. Doing this, we see that there are only 6 = 4 + 2
different kinds of columns possible:

1 H 2 2 2 2
1 1 H 2 2 2
1 1 1 H 2 2
1 1 1 1 H 2

This means our sequentiable set F partitions the index set X into 6 blocks. The blocks can be
labeled XL for the set of all indices of columns that are constantly 1, XR for the set of all indices
of columns that are constantly 2, and Xn for the set of all indices where the necessarily unique H
occurs at the nth position.

To simplify the presentation a bit and make the pictures understandable, once a sequentiable
set F has been specified, we will assume that X is arranged in such a line so that the set XL is an
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initial (or left) segment, XR is a final segment (or right) segment, and the each Xn is placed at the
obvious position on the line. Since at its biggest, F can be indexed only by Z, we can accommodate
such a line like picture if we are willing to place XL at −∞ and XR at +∞.

Now let F be the four element sequentiable set above but with the columns collapsed to 6 and
arranged as in the last display, and let Q = 〈t, 2, i〉 be a configuration. We code Q by

β: C0
i,t(2) C

t(0)
i,t(2) C

t(1)
i,t(2) M

t(2)
i D

t(3)
i,t(2) D0

i,t(2)

block: XL X0 X1 X2 X3 XR

This gives a real forest of superscripts and subscripts and the truth is that we will need a few
more to get to full generality. However, we can decode it a bit. The C’s mean “left of the reading
head”. The D’s mean “to the right of the reading head”. M locates where the machine reading
head is. The index i specifies the state of the machine. The subscript t(2) tells what symbol is
written on the tape square scanned by the reading head. Finally, the indices t(j) tell us what is
printed on the corresponding square of the tape, unless it is too far off to the left (in XL) or too
far off to the right (in XR), in which case we have used 0 as a default value (other choices would
be okay). So reading across the superscripts is like reading across the tape. In this way, each
component of β carries a lot of information about the configuration.

Now X in this example had 13 elements rather than 6, so the β above is too short. However,
by duplicating the entries in β the correct number of times (e.g. the first entry C0

i,t(2) should occur
4 times while the last entry D0

i,t(2) should occur twice) we would get a β of the correct length. That
|X| = 13 is immaterial. But our particular sequentiable set had only four elements, it was indexed
with the convex set {0, 1, 2, 3}, and we took n = 2 in our configuration. To get the general case,
let I be any convex subset of Z and suppose that F is a sequentiable set indexed by I. Let n ∈ I
and let Q = 〈t, n, i〉 be a configuration. Then we use the β below as a code for Q and we say that
β codes Q over F .

β(x) =



C0
i,t(n) if x ∈ XL.

C
t(j)
i,t(n) if x ∈ Xj and j < n and j ∈ I.

M
t(n)
i if x ∈ Xj and j = n ∈ I.

D
t(j)
i,t(n) if x ∈ Xj and n < j ∈ I.

D0
i,t(n) if x ∈ XR.

Capturing the Transitions Between Configurations

To get a grip on how to handle the transition between configurations let B = A(T)Z and let
F = {αp : p ∈ Z}. Then F is a sequentiable set indexed by Z, and the partition imposed on Z
by F consists of singleton sets {p}. Let Q = 〈t, n, i〉 be a configuration of T, let t(n) = γ, and
suppose that [i, γ, δ, L, j] is an instruction in T. It also proves convenient to let t(n− 1) = ε. Then
T(Q) = 〈s, n− 1, j〉 is the configuration following Q in the computation of T, where

s(k) =

{
δ if k = n,
t(k) otherwise.

The configuration Q is coded over F by
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β = . . . C
t(n−3)
i,γ C

t(n−2)
i,γ Cεi,γ Mγ

i D
t(n+1)
i,γ D

t(n+2)
i,γ D

t(n+3)
i,γ . . .

whereas the configuration T(Q) is coded over F by

T(β) = . . . C
t(n−3)
j,ε C

t(n−2)
j,ε M ε

j Dδ
j,ε D

t(n+1)
j,ε D

t(n+2)
j,ε D

t(n+3)
j,ε . . .

T(β) differs from β in several ways. First, the two positions indexed by n − 1 and n undergo
a change of character from C to M and from M to D. Second, the remaining changes amount
to changing γ to ε and i to j in various subscripts and superscripts. The idea is to effect this
transition with a new operation for the machine instruction [i, γ, δ, L, j]. Changes of the first kind
have to do with two tape locations. Our new operation must combine the two location elements,
αn−1 and αn, with the configuration element β to produce the new configuration element T(β)—our
“instruction” operation should be ternary. To see what is needed to accomplish this, look at

αn−1 = . . . 1 1 H 2 2 2 2 . . .

αn = . . . 1 1 1 H 2 2 2 . . .

β = . . . C
t(n−3)
i,γ C

t(n−2)
i,γ Cεi,γ Mγ

i D
t(n+1)
i,γ D

t(n+2)
i,γ D

t(n+3)
i,γ . . .

T(β) = . . . C
t(n−3)
j,ε C

t(n−2)
j,ε M ε

j Dδ
j,ε D

t(n+1)
j,ε D

t(n+2)
j,ε D

t(n+3)
j,ε . . .

The instruction [i, γ, δ, L, j] makes no reference to ε (the symbol written on square n− 1 of the
tape). Since our operation must act coordinatewise, we will build ε into the operation itself. So to
each machine instruction we will associate two ternary operations, one for each of the two possible
values of ε. Since the machine instructions for a fixed Turing machine T are determined by their
first two components we will denote the operations corresponding to the machine instruction above
by Fiγε. What must happen in A(T) to accomplish the transition above is

Fiγε(1, 1, Cνi,γ) = Cνj,ε

Fiγε(2, 2, Dν
i,γ) = Dν

j,ε

Fiγε(H, 1, Cεi,γ) = M ε
j

Fiγε(2, H,M
γ
i ) = Dδ

j,ε

We would like to declare that in A(T) the operation Fiγε results in the default value 0 except in the
cases above. Ultimately, this won’t do since we will find it necessary to introduce barred versions
of all those C’s, D’s, and M ’s with all the attached subscripts and superscripts in order to control
the finite subdirectly irreducible algebras. So we will have to revisit the definition of Fiγε. For the
present, it is no great distortion to think that all the other values are 0.

A similar analysis of right-moving instructions leads the ternary operations Fiγε being defined
(with caveats about barred elements) in A(T) via

Fiγε(1, 1, Cνi,γ) = Cνj,ε

Fiγε(2, 2, Dν
i,γ) = Dν

j,ε

Fiγε(H, 1,M
γ
i ) = Cδj,ε

Fiγε(2, H,Dε
i,γ) = M ε

j

With this definition, in A(T)Z

Fiγε(αn, αn+1, β) = T(β)
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provided β is as above, ε is the symbol on tape square n + 1, and [i, γ, δ, R, j] is an instruction of
T. For a given Turing machine T, the definition of Fiγε is unambiguous, since whether Fiγε should
be left or right moving can be determined from T, i, and γ.

These operations can be envisioned as edge operations, where, however, the edges representing
a particular operation now have two labels.

q

q

q

q

q

q

q

q

q

q

q

q

�

�

�

�

�

�

Cνi,γ

Dν
i,γ

Cδj,ε

Dε
i,γ

Cνj,ε

Dν
j,ε

Cεi,γ

Dδ
j,ε

M ε
j

Mγ
i

Mγ
i

M ε
j

Left-Moving Case Right-Moving Case

1 1

1 1

2 2

2 2

H H

H H

Here is a useful fact, apparent in the diagrams above.

Fact 18. If λ basic translation on A(T) associated with one of the operations Fiγε, and λ(a) =
λ(b) 6= 0, then a = b. The same is true for every translation built only using the basic operations
Fiγε, various choices of i, γ, and ε allowed.

On the basis of these definitions, we obtain the following very useful conclusion.

The Key Coding Lemma: Let T be a Turing machine, and let X be a set. Let F be a sequentiable
set for A(T)X and let i be a nonhalting state of T. Finally, let γ, ε ∈ {0, 1} and let f, g, and β be
any elements of A(T)X .

Then Fiγε(f, g, β) = T(β) if
• β codes a configuration Q over F ,
• i and γ are the first two components of the T instruction determined by Q,
• f, g ∈ F with f ≺ g and these two elements refer to the two adjacent tape squares involved

in the motion called for in the instruction,
• ε is the symbol in the square to which the reading head is being moved, and
• T(β) codes the configuration T(Q) over F ;

Otherwise 0 occurs in Fiγε(f, g, β). �



LECTURE 6

A(T) and What Happens If T Doesn’t Halt

The basic plan is to do for A(T) what we did for A. We were able to prove for A three crucial
things:

(1) QZ is in the variety generated by A (and hence that variety was inherently nonfinitely
based and had a countably infinite subdirectly irreducible member).

(2) Any finite subdirectly irreducible in the variety, except possibly a few very small ones, had
a very well determined structure (in fact they were all embeddable into QZ).

(3) There were no other infinite subdirectly irreducible algebras in the variety.
It was the second point that compelled us to adjoin additional elements and operations to our

original 6-element algebra. Having done that, we had to revisit the first point to assure ourselves
that the new elements and operations were innocuous. The third point depended on the first two
and the Dziobiak-Quackenbush Theorem.

Proceeding along the same lines with A(T) we are able to do the following:
(1) QZ is in the variety generated by A(T), provided T does not halt.
(2) In the event that T halts, the cardinality of any finite subdirectly irreducible can be

bounded by a function of the size of T and the number of tape squares it visits before
halting.

(3) In the event that T halts, the variety generated by A(T) has no infinite subdirectly irre-
ducible algebras.

(4) In the event that T halts, the variety generated by A(T) is finitely based.
In the second point, at the cost of adding more elements and more operations to our 8-element

algebra A, we can ensure that any sequentiable set arising in the construction of a finite subdirectly
irreducible cannot be large enough to accommodate the full halting computation. (The idea is that
being able to reach a “halting configuration” would force the forbidden (x ∧ y) ∨ (x ∧ z) to be a
polynomial.) Then we need to argue that bounding the size of sequentiable sets entails a bound on
the subdirectly irreducible algebra itself. In the first point, after making an inessential modification
to QZ to make it into an algebra of the correct similarity type, it is the inaccessibility of the codes of
halting configurations that ensures that the extra operations we had to add to accomplish the second
point are innocuous. The third point is an immediate consequence of Quackenbush’s Theorem. The
fourth point requires a tough proof due to Ross Willard.

The Algebra A(T)
Let T be a Turing machine with states 0, 1, . . . ,m. The universe of the algebra A(T) is easiest

to describe in pieces. For each of the 4m + 4 choices of i = 0, 1, . . . ,m and γ, δ ∈ {0, 1}, we
need four distinct elements denoted by Cδi,γ , C

δ
i,γ , D

δ
i,γ , and Dδ

i,γ . For each of the 2m+ 2 choices of

i = 0, 1, . . . ,m and γ ∈ {0, 1}, we need two elements denoted by Mγ
i and Mγ

i . The unbarred versions

32
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were needed to code configurations. The barred versions help us control the finite subdirectly
irreducible algebras. Let V be the set comprised of all 20m+ 20 of these elements. We also let Vi
denote the set of 20 elements of V whose first lower index is i. In particular, V0 contains all the
elements used in coding halting configurations. The universe of A(T) is just

A(T) = {0} ∪ U ∪W ∪ V

where U = {1, H, 2} and W = {C, C̄,D, D̄}. Thus the size of A(T) is 20m + 28 where m is the
number of nonhalting states of T.

The old algebra A will be a subreduct of A(T). Indeed, we insist that ∧ make A(T) into
a height 1 meet-semilattice with least element 0, and that any product involving a new element
results in 0. The definitions of the remaining old operations are changed little or not at all. Here
are the J ’s:

J(x, y, z) =


x if x = y 6= 0
x ∧ z if x = ȳ ∈ V ∪W
0 otherwise.

J ′(x, y, z) =


x ∧ z if x = y 6= 0
x if x = ȳ ∈ V ∪W
0 otherwise.

Along with the old S’s we insert one more:

S0(u, v, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u ∈ V0,
0 otherwise.

S1(u, v, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u ∈ {1, 2},
0 otherwise.

S2(u, v, x, y, z) =

{
(x ∧ y) ∨ (x ∧ z) if u = v̄ ∈ V ∪W ,
0 otherwise.

Along with the old U0 we insert two new operations U1
iγε and U2

iγε for each of the 4m choices of i,
γ, and ε, where i is a nohalting state:
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U0(x, y, z, w) =


xy if xy = zw 6= 0 and x = z and y = w

xy if xy = zw 6= 0 and x 6= z or y 6= w

0 otherwise.

U1
iγε(x, y, z, w) =


Fiγε(x, y, w) if x ≺ z and Fiγε(x, y, w) 6= 0 and y = z

Fiγε(x, y, w) if x ≺ z and Fiγε(x, y, w) 6= 0 and y 6= z

0 otherwise.

U2
iγε(x, y, z, w) =


Fiγε(y, z, w) if x ≺ z and Fiγε(y, z, w) 6= 0 and x = y

Fiγε(y, z, w) if x ≺ z and Fiγε(y, z, w) 6= 0 and x 6= y

0 otherwise.

Finally, we need the 4m ternary operations Fiγε introduced in Lecture 4 (but extended to acco-
modate the barred elements of V ) and one further unary operation which serves to set up initial
configurations:

I(x) =


C0

1,0 if x = 1,
M0

1 if x = H,

D0
1,0 if x = 2,

0 otherwise.

Notice that for outputs other than 0, the operation I is one-to-one. In this way, the next fact
is an extension of Fact 18

Fact 19. If λ is any translation of A(T) build only from the basic operations I and Fiγε, various
choices of i, γ, and ε allowed, and λ(a) = λ(b) 6= 0, then a = b.

While all this is relatively intricate, the F ’s and the I plainly help us emulate the computations
of the Turing machine. The role of the S’s is to prevent certain kinds of elements from getting into
the picture during the construction of finite subdirectly irreducible algebras. U0 was crucial to get
a kind of unique decomposition result for · in the finite subdirectly irreducible algebras. The U1

and U2 operations play a similar role in connection with the F operations.

What Happens If T Does Not Halt
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Now we expand QZ to the similarity type appropriate to T by insisting that all the following
equations hold in the expansion:

U0(x, y, z, w) ≈ (xy) ∧ (zw) S0(u, v, x, y, z) ≈ 0

J(x, y, z) ≈ x ∧ y S1(u, v, x, y, z) ≈ 0

J ′(x, y, z) ≈ x ∧ y ∧ z S2(u, v, x, y, z) ≈ 0

Fiγε(x, y, w) ≈ 0 I(x) ≈ 0

U1
iγε(x, y, z, w) ≈ 0 U2

iγε(x, y, z, w) ≈ 0

for all choices of i, γ and ε.

This sort of inessential expansion leaves its key properties intact: any locally finite variety to which
(this expanded) QZ belongs will be inherently nonfinitely based, and QZ has a countably infinite
subalgebra Qω which is subdirectly irreducible.

Theorem 4. If T does not halt, then QZ belongs to the variety generated by A(T). In particular,
if T does not halt, then A(T) is inherently nonfinitely based and the variety it generates is not
residually finite.

Proof: We follow the pattern set in the proofs of Theorems 1 and 2. For each p ∈ Z we take
αp, βp ∈ A(T)Z to be the same elements we used before:

αp:= . . . 1 1 1 H 2 2 2 . . .
βp:= . . . C C C D D D D . . .

where the change is taking place at the pth position. Next we let B1 = {αp : p ∈ Z} ∪ {βp : p ∈ Z}
and we take B to be the subalgebra of A(T)Z generated by B1. Let B0 denote the subset of
B consisting of all those Z-tuples in B which contain at least one 0. The set {αp : p ∈ Z} is
sequentiable and consists of all the tuples in B belonging to UZ, since none of the operations of
A(T) ever produces an element of U . Now for every p ∈ Z

I(αp):= . . . C0
1,0 C0

1,0 C0
1,0 M0

1 D0
1,0 D0

1,0 D0
1,0 . . .

which gives the code of a configuration (the all-0 tape with the machine in state 1 reading square
p). The Fiγε’s may now be applied, step by step, to produce the codes of further configurations
reached as the computation of T proceeds. Plainly, all these codes of configurations belong to B.
Let C denote the set of all these configuration codes. We will prove that C∪B0∪B1 is a subuniverse
of A(T)Z, and therefore B = C ∪B0 ∪B1.

Now let Φ be the map defined from B to QZ via

Φ(x) =


ap if x = αp for some p ∈ Z,
bp if x = βp for some p ∈ Z,
0 otherwise
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We contend that Φ is a homomorphism from B onto QZ. To verify this, as well as that C ∪B0∪B1

is a subuniverse, requires us to examine the behavior of each of our operations on C ∪B0 ∪B1. For
each operation in turn, we show that this set in closed and that Φ preserves the operation.

Case 0: Evidently 0 = . . . , 0, 0, 0, 0, · · · ∈ B0 and so Φ(0) = 0.

Case ∧: Evidently, u ∧ v = u if u = v and u ∧ v ∈ B0 if u 6= v, for all u, v ∈ C ∪B0 ∪B1. Hence,
our set is closed under ∧ and Φ(u ∧ v) = Φ(u) ∧ Φ(v).

Case ·: Clearly, αp ·βp+1 = βp for all p ∈ Z, with all other ·-products resulting in elements of B0.
So our set is closed under · and Φ preserves ·.
Case Fiγε: According to the Key Coding Lemma, the results of applying Fiγε to members of
C ∪B0 ∪B1 lie in C ∪B0. Hence, C ∪B0 ∪B1 is closed under this operation and Φ preserves the
operation.

Case I: Applied to elements of C∪B0∪B1, I produces only elements of C∪B0. Hence, C∪B0∪B1

is closed with respect to I, and Φ preserves I.

Observe that no barred elements occur in any of the members of C ∪B1. It follows that

(?) if u, v ∈ C ∪ B0 ∪ B1 with u(p) = v(p) 6= 0 or u(p) = v(p) ∈ V ∪W
for all p ∈ Z, then u = v.

Case J : Evidently, J(x, y, z) ∈ B0 if x ∈ B0 or y ∈ B0 or x 6= y, according to (?). Otherwise,
J(x, y, z) = x. This entails that C ∪B0 ∪B1 is closed under J and Φ preserves J .

Case J ′: Likewise, J ′(x, y, z) ∈ B0 if x ∈ B0 or y ∈ B0 or x 6= y, according to (?). Otherwise,
J ′(x, y, z) = x ∧ z. This entails that C ∪B0 ∪B1 is closed under J and Φ preserves J .

Case U0: If xy ∈ B0 or zw ∈ B0 or xy 6= zw, then we have U0(x, y, z, w) ∈ B0 and (xy)∧ (zw) ∈
B0, for any elements x, y, z, w ∈ C ∪B0 ∪B1. On the other hand, if xy = zw /∈ B0 it must be that
x = z = αp and y = w = βp+1 for some p ∈ Z. In that case, U0(x, y, z, w) = xy = zx = (xy)∧ (zw).
Thus, C ∪B0 ∪B1 is closed under U0 and Φ preserves U0.

Observe that for u, v ∈ C ∪ B0 ∪ B1, we have u ≺ v only when u = αp and v = αp+1 for some
p ∈ Z. In particular,

(∗) With respect to ≺, every element of C ∪ B0 ∪ B1 has at most one
predecessor and at most one successor.

Case U1
iγε: In case Fiγε(x, y, w) ∈ B0 or x 6≺ z, we have U1

iγε(x, y, z, w) ∈ B0. In the alternative
case, it follows from the definition of Fiγε that x ≺ y. In view of (∗) it must be that y = z. So
U1
iγε(x, y, z, w) = Fiγε(x, y, w) ∈ C. Therefore, the application of U1

iγε always results in an element
of C ∪B0. Consequently, C ∪B0 ∪B1 is closed with respect to U1

iγε and Φ preserves this operation.

Case U2
iγε: This case is like the one above, but it exploits the uniqueness of predecessors instead

of successors.

Case S0: Since T does not halt, the set V Z
0 is disjoint from C ∪ B0 ∪ B1. It follows that the

application of S0 always results in an element of B0. Thus S0 is preserved by Φ and C ∪B0 ∪B1 is
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closed with respect to S0. It should be noted that this is the sole place in the argument
where the fact the T does not halt comes into play.

Case S1: The set {1, 2}Z is disjoint from C ∪B0 ∪B1. It follows that the application of S1 always
results in an element of B0. Thus S1 is preserved by Φ and C ∪ B0 ∪ B1 is closed with respect to
S1.

Case S2: It follows from ? that the application of S2 always results in an element of B0. Thus S2

is preserved by Φ and C ∪B0 ∪B1 is closed with respect to S2.

So QZ belongs to the variety generated by A(T). �



LECTURE 7

When T Halts: Finite Subdirectly Irreducible Algebras of
Sequentiable Type

Throughout this lecture we assume that T is a Turing machine that eventually halts when
started on the all-0 tape. We denote by π(T) the number of squares examined by T in the course
of its computation. Thus π(T) is the length of the stretch of tape which comes into use for this
computation. Our ambition is to describe all the finite subdirectly irreducible algebras in the
variety generated by A(T), or at any rate to bound their size. From the facts developed in Lectures
1 and 2 we already have a lot of information at our disposal. Once again we take S to be a finite
subdirectly irreducible algebra in the variety and we fix a finite set T , B, and θ, so that

• B ⊆ A(T)T

• θ is strictly meet-irreducible in Con B.
• S is isomorphic to B/θ.
• T is as small as possible for representing S in this way.
• |T | > 1 (i.e. S /∈ HSA(T)).

Among other things, we know that (x ∧ y) ∨ (x ∧ z) is not a polynomial of B (Fact 5). We
also have an element p ∈ B so that (p, 0) is critical over θ. In Lecture 2 the analysis revealed that
all the elements of S, except 0, arose from a unique longest factorization of p using the product ·.
We want, loosely speaking, to do the same thing now; but the machine operations I and Fiγε have
to be considered along with ·. We will change the definition of B1. Thus, the facts that grew out
of our analysis of the old version of B1 must be re-examined. Also, Fact 9 was proved using an
analysis by cases, with one case for each basic operation. Now we have more operations. Finally,
we have modified all the old operations by extending their domains, (in the case of J, J ′, and S2,
we have done this by treating the new elements in V like the elements in W ). However, in all its
essential features the old analysis can be carried forward.

We take B0 to be the collection of all elements of B which contain at least one 0. In B the
ranges of S0, S1, and S2 lie entirely in B0. Moreover, V T

0 and {1, 2}T are disjoint from B and there
are no elements u, v ∈ B so that u = v̄ ∈ (V ∪W )T . This is just a direct consequence of Fact 5.

Fact 20. Every sequentiable subset of B has fewer than π(T) members.

Proof: By the Key Coding Lemma any large enough sequentiable set would allow us, using I
and the Fiγε’s, to emulate in B the entire halting computation of T, producing an element of V T

0

in B. Then, via S2, (x ∧ y) ∨ (x ∧ z) would be a polynomial of B. �

Next we restate a part of Fact 8 in our expanded setting. The only difference is the insertion
of V in the statement and the proof.

Fact 21. If v ∈ B and p(s) = v(s) or p(s) = v(s) ∈ V ∪W for all s ∈ T , then p = v. �
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The next fact splits our analysis into two cases.

Fact 22. Either p ∈ V T or p ∈W T .

Proof: First notice that there must be a nonconstant unary polynomial f and u ∈ B with
f(u) = p but u 6= p. Otherwise, it follows from Fact 3 that B − {p} is a θ-class. This means
that our subdirectly irreducible algebra S has only two elements, and indeed is isomorphic to a
subalgebra of A(T). This contradicts our assumption that T has at least two elements.

Let λ be a nonconstant unary polynomial of least complexity so that for some u ∈ B with u 6= p
we have λ(u) = p. Also fix such a u. Now the rest of the argument falls into cases according to the
leading operation symbol of λ.
Case ∧: λ(x) = µ(x)∧ r. Then p = µ(u)∧ r Since p is maximal, we conclude that p = µ(u). This
leads to a violation of the minimality of λ.
Case ·: The range of λ is included in B0 ∪W T . This means p ∈W T .
Case I: The range of λ is included in B0 ∪ V T . This means p ∈ V T .
Cases Fiγε: The range of λ is included in B0 ∪ V T . So p ∈ V T .
Cases Si: Impossible: the range of each Si is included in B0.
Cases U0, U jiγε: These cases put p ∈W T (for U0) or p ∈ V T (for U jiγε’s).
Case J : λ(x) = J(µ(x), r, s), or λ(x) = J(r, µ(x), s), or λ(x) = J(r, s, µ(x)). Under the first
alternative, p = λ(u) = J(µ(u), r, s) ≤ µ(u). Then p = µ(u) = r by Fact 21 and the maximality
of p. This violates the minimality of λ. The same reasoning applies to the second alternative. So
consider the last alternative. Then p = J(r, s, µ(u)) ≤ r. Then p = r, and so Fact 21 implies
that p = r = s. But this means that λ(x) = J(p, p, µ(x)) = p, and so λ is constant. This case is
impossible.
Case J ′: This is like the last case, but easier. �

S is of sequentiable type if p ∈W T and of machine type otherwise.

Fact 23. Finite subdirectly irreducibles of sequentiable type have fewer than 2π(T) members.

Proof: We can just follow the old analysis for A, paying a modest amount of attention to the
additional operations, and observing that a sequentiable set arises in a natural way.

Now p ∈ W T . Let B1 be the set of all factors of p with respect to ·. Now all our previously
established facts hold, as is evident in all cases except for Fact 9. This fact asserts that, if u ∈ B
and λ(u) ∈ B1 for some nonconstant translation λ, then u ∈ B1. The proof of Fact 9 relied on a
case-by-case analysis according to the leading operation symbol. To get a proof for Fact 9 in our
expanded similarity type, we have to consider the operations I, Fiγε, U1

iγε, U
2
iγε, and S0. (Actually,

there are also minor changes in the definitions of J, J ′, and S2, which merit a small amount of
attention not provided here.) All these cases are trivial because λ(u) /∈ B1 for any u if the leading
operation is any of these, since B1 ⊆ UT ∪W T .

As in our analysis for A, we have B1 = {a0, a1, . . . , an−1} ∪ {b0, b1, . . . , bn} where bk = akbk+1

for all k < n and b0 = p. Also B − B1 is the θ-class of 0, B1 splits into singletons modulo θ, and
ak ∈ UT and bk ∈W T for all k. It remains to see that {ak : k < n} is a sequentiable set. Since π(T)
bounds the size of sequentiable sets, we would be finished. We need ak ≺ ak+1 for all k < n − 1.
Let t ∈ T , and suppose first that ak+1(t) = 1. Then bk+1(t) ∈ {C,C}, so ak(t) ∈ {1, H}. Hence
ak(t) ≺ ak+1(t). Next, suppose that ak+1(t) = H. Then bk+1(t) ∈ {D,D}, so ak(t) = 2. Hence,
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ak(t) ≺ ak+1(t). Finally, suppose ak+1(t) = 2. Then bk+1(t) ∈ {D,D}, so ak(t) = 2 ≺ 2 = ak+1(t).
thus, ak ≺ ak+1 and {ak : k < n} is sequentiable. �



LECTURE 8

When T Halts: Finite Subdirectly Irreducible Algebras of
Machine Type

We now consider the case when the finite subdirectly irreducible algebra S introduced in Lecture
6 is of machine type. So we have p ∈ V T . In this case, we let B1 be the smallest subset of B which
includes p and which is closed under the inverses of all the machine operations I and Fiγε. Hence,

B1 = {u : λ(u) = p for some nonconstant translation λ of A(T)
built only from the machine operations}

It is easy to see that since p ∈ V T , then B1 ⊆ UT ∪ V T . It also follows that if λ is a translation
built up from the machine operations, and λ(u) = p, then all the coefficients of λ also belong to
B1.

Since we have now substantially altered the definition of B1, we will need to re-examine Facts 8
and 9. Here is the new version of Fact 8. It is an immediate consequence of Fact 21 and Fact 19.

Fact 24. If u ∈ B1 and v ∈ B so that for all s ∈ T either u(s) = v(s) or u(s) = v(s) ∈ V ∪W ,
then u = v.

Here is the new version of Fact 9. The statement has not changed, but the proof is different,
accommodating the change in the definition of B1.

Fact 25. If u ∈ B and λ(u) ∈ B1 for some nonconstant translation λ, then u ∈ B1.

Proof: The proof is by induction on the complexity of λ. The initial step of the induction is
obvious, since the identity function is the only simplest nonconstant translation. For the inductive
step we take λ(x) = ν(µ(x)), where ν(x) is a basic translation and µ(x) is a translation with smaller
complexity than λ. The work breaks down into cases according to the basic operation associated
with ν.
Case ∧: λ(x) = µ(x) ∧ r. But every element of B1 is maximal with respect to the semilattice
order. So λ(u) = µ(u) ∈ B1. Invoking the induction hypothesis for µ(x), we get u ∈ B1.
Case ·: This cannot happen since then the range λ would be included in B0 ∪W T , which is
disjoint from B1.
Cases Fiγε: Since ν(µ(u)) = λ(u) ∈ B1, it follows from the definition of B1, that µ(u) ∈ B1. Now
the induction hypothesis applies.
Case I: λ(x) = I(µ(x)). By the definition of B1, µ(u) ∈ B1. So the induction hypothesis applied.
Case J : ν(x) = J(v, y, z), where x is one of v, y, and z, while the remaining two are coefficients.
First, suppose x is either v or y. From Fact 24 and the maximality of the members of B1 it follows
that µ(u) = λ(u) ∈ B1. So the induction hypothesis applies. Now suppose x is z and son v and y
are coefficients. In this case, it follows from Fact 24 that v = y = λ(u) ∈ B1. But this means that
ν(x) = v and so λ is constant. That cannot happen.
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Case J ′: This case is easier than the last one and its discussion is omitted.
Cases S0, S1 and S2: Too easy—the range of λ would be included in B0.
Case U0: This cannot happen since the range of λ would be included in B0 ∪ W T , which is
disjoint from B1.
Cases U jiγε: ν(x) = U jiγε(v, y, z, w), where exactly one of v, y, z, and w is x and the reamining ones
are coefficients, which we will regard as constant functions.

The other case being similar, we suppose that j = 1. Evidently, λ(u) and Fiγε(v(u), y(u), w(u))
satisfy the hypotheses of Fact 24. So λ(u) = Fiγε(v(u), y(u), w(u)) = Fiγε(v(u), z(u), w(u)) (since
also y(u) = w(u)) follows from the definition of U1

iγε. So v(u), y(u), z(u), w(u) ∈ B1, by the
definition of B1. So µ(u) ∈ B1 and the induction hypothesis applies. �

Here is the new version of Fact 10. Again, the statement is the same, but B1 has a new meaning.
The proof it like that for Fact 10, but it uses Fact 25 in place of Fact 9 and Fact 19 in place of
Fact 6.

Fact 26. u/θ = {u} for each u ∈ B1 and 0/θ = B −B1.

Thus to bound the cardinality of S we need to bound |B1|. This will be the focus of our efforts in
the next lecture. However, here we can remark that in fact a complete analysis of finite subdirectly
irreducible algebras of machine type, as well as those of sequentiable type, is at hand. This further
analysis would describe the behavior of all the operations. We will not pursue this more detailed
analysis, except to point out that all these subdirectly irreducible algebras are flat.



LECTURE 9

When T Halts: Bounding the Subdirectly Irreducibles

In this lecture we will complete our analysis of the subdirectly irreducible algebras generated
by A(T) in the case when T halts. Fact 23 already provides a bound on the size of the finite
subdirectly irreducible algebras of sequentiable type. The last lecture provided a description of the
finite subdirectly irreducible algebras of machine type. Our next task is to bound the size of these
algebras. So we continue to consider the case when S is of machine type.

We can suppose that no component of p ∈ V T is a barred element. (The basic reason is that
the operations Fiγε do not alter whether a symbol is barred. Hence the distribution of bars in
any member of B1 ∩ V T is the same as the distribution of bars in p.) Now B1 ⊆ UT ∪ V T . Let
Ω = B1 ∩ V T and Σ = B1 ∩ UT . Look first in more detail at Ω. We define Ωn by the following
recursion.

Ω0 = {p}
Ωn+1 = Ωn ∪ {u ∈ B1 : Fiγε(f, g, u) ∈ Ωn for some f, g ∈ B and some i, γ, ε}

Evidently, Ω =
⋃
n

Ωn. We will say that f ∈ UT matches v ∈ V T provided for all t ∈ T

f(t) = 1⇔ v(t) is a Cνiγ
f(t) = H ⇔ v(t) is an Mγ

i

f(t) = 2⇔ v(t) is a Dν
iγ

Observe that every v ∈ V T matches exactly one f ∈ UT . For each natural number n, we let
Σn = {f ∈ Σ : f matches v for some v ∈ Ωn}. By referring to the definition of Fiγε, we have
that the elements of the two element set {f, g} match the elements of the two element set {u, v}
whenever Fiγε(f, g, u) = v ∈ Ω (the order in which this matching occurs depends on whether the
underlying Turing machine instruction is right-moving or left-moving). It follows that Σ =

⋃
n

Σn.

Fact 27. Σ is a sequentiable set.

Proof: We argue by induction that Σn is sequentiable.

Initial Step: Observe that Σ0 has only one element. (Σ0 cannot be empty, since then our
subdirectly irreducible S would be in HSA(T).) Since Σ0 ⊆ B1 ∩UT and B is disjoint for {1, 2}T ,
we see that its element has to have H in at least one place. Thus, Σ0 is a sequentiable set.

Inductive Step: Suppose h ∈ Σn+1 − Σn. Pick u ∈ Ωn+1 − Ωn so that h matches u. Further,
pick Fiγε, f, g, and v so that Fiγε(f, g, u) = v ∈ Ωn. It does no harm to suppose that we have a
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left-moving operation. So g matches u and f matches v. It follows that h = g, that f ∈ Σn, and
that f ≺ g. By the inductive hypothesis, we have that Σn is sequentiable. Let us display Σn as

fa ≺ fa+1 ≺ . . . fb
In the event that f = fb we have Ωn ∪ {h} sequentiable as desired. On the other hand, if

f = fc for some c < b, then, in view of Fact 24, we know U1
iγε(f, h, fc+1, u) = Fiγε(f, h, u). So we

would be able to conclude that h = fc+1 ∈ Σn, contrary to our choice of h. Reasoning in the same
way, we see that it is not possible that Σn+1 extends Σn on the right in any more elaborate way.
Indeed, suppose h′ ∈ Σn+1−Σn and that Fi′γ′ε′(fb, g′, u′) = v′ ∈ Ωn, where h′ matches u′. We take
this operation to be left-moving. Then from U1

i′γ′ε′(fb, h
′, h, u′) = Fi′γ′ε′(fb, h′, u′) we are able to

conclude that h = h′.
Right-moving operations are handled in a way similar to what we just did for left-moving

operations, but using U2
iγε. �

Fact 28. Σ has fewer than π(T) elements. �

To obtain a bound on the cardinality of Ω we must recall that the sequentiable set Σ partitions
T into TL, Ta, . . . , Tb, TR where Σ = {fa, . . . , fb}.

Fact 29. u � Tc is constant for each u ∈ Ω and each c ∈ {a, . . . , b}.

Proof: The proof is accomplished in stages, each stage showing that more elements of Ω are
constant on more Tc’s until everything is accomplished. This proof needs some preliminary obser-
vations.

Suppose that u ∈ Ωn+1−Ωn with Fiγε(fc, fc+1, u) = v ∈ Ωn. In this case we will say that u, c and
c+1 become active at stage n+1. (We regard p as the only element active at stage 0 and no member
of c ∈ {a, . . . , b} as active at stage 0.) The definition of Fiγε entails that u � Tc, u � Tc+1, v � Tc and
v � Tc+1 are all constant. Moreover, for all d, u � Td is constant if and only if v � Td is constant. In
checking this, it helps to notice that the relevant subscripts and superscripts can all be determined
from Fiγε and the related Turing machine instruction [i, γ, δ,M, j]. Also, if I(f) = u ∈ Ω, then
u � Td is constant for all d.

Now we argue by induction on n, that every member of Ωn is constant on Tc for all c that have
become active by stage n and that, for all d and all v, v′ ∈ Ωn, v � Td is constant if and only if
v′ � Td is constant.

The initial step of the induction holds vacuously.
For the inductive step, suppose u, u′ ∈ Ωn+1 − Ωn with

Fiγε(fc, fc+1, u) = v ∈ Ωn and Fi′γ′ε′(fc′ , fc′+1, u
′) = v′ ∈ Ωn

Now our preliminary observations give the conclusions that u and u′ are constant on all the
d’s active by stage n as well as for c, c′, c + 1, and c′ + 1, some of which may have become active
for stage n + 1. Moreover, we also conclude that, for all d, u is constant on Td if and only if v is
constant on Td if and only if v′ is constant of Td if and only if u′ is constant on Td. In this way, the
inductive step is complete. �

Now we just count things to obtain:
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Fact 30. Ω has no more than 2sms elements where s = |Σ| and m is the number of nonhalting
states of T.

Proof: For each u ∈ Ω there are no more than s possibilities for c ∈ {a, . . . , b} so that u(t) = Mγ
i ,

for some i and some γ and all t ∈ Tc. Having fixed one of these possibilities there are m choices
for i and two choices for γ. Now for d with a ≤ d < c we must have a ν so that u(t) = Cνiγ for all
t ∈ Td. Thus for each such d there are no more than two possibilities for ν. Likewise, if c < d ≤ b,
then there is some ν so that u(t) = Dν

iγ for all t ∈ Td. Again, for each such d there are no more
than two possibilities for ν. Thus, far we have bounded the number of possibilities for u by 2sms,
as desired—but we still have to examine what u(t) is like when t ∈ TL ∪TR. Suppose t ∈ TL. Then
fc(t) = 1 for all c ∈ {a, . . . , b}. From the definition of the operations Fiγε, it follows that u(t) = Cνiγ ,
where ν is determined by p(t) = Cνi′γ′ , and i and γ are the same subscripts that occur throughout
u. So u is determined on TL by our previous choices and by the structure of p. Likewise, u is
determined on TR. So the desired bound is established. �

Theorem 5. If T halts, then the cardinality of any subdirectly irreducible member of the variety
generated by A(T) is no greater than the maximum of 2π, 2(π−1)m(π− 1) +π and 20m+ 28, where
π is the number of tape squares used by T in its halting computation and m is the number of
nonhalting states of T; moreover, every subdirectly irreducible algebra in the variety is flat. �

The 20m+28 that occurs above is just the cardinality of A(T). It bounds the cardinalities of the
subdirectly irreducibles that belong to HSA(T). The 2π bounds the cardinalities of the subdirectly
irreducible algebras of sequentiable type. The 2(π−1)m(π − 1) + π bounds the cardinalities of the
subdirectly irreducible algebras of machine type.

It is clear that much more was accomplished than just establishing the bound on subdirectly
irreducible algebras given above. Our analysis is very close to a complete description (given a
description of the behavior of T) of all the subdirectly irreducible algebras, even in the case that T

does not halt. The only way in which the hypothesis that T does not halt entered into consideration
of the finite subdirectly irreducible algebras was in bounding their size. The analysis of their
structure holds regardless. In the case that T does not halt, McKenzie describes how to carry this
description of the finite subdirectly irreducible algebras up to the infinite subdirectly irreducibles,
via an argument relying on Quackenbush’s Theorem. His conclusion is that such varieties have
residual character ω1: while they have countably infinite subdirectly irreducible algebras, they
have none of any larger cardinality.

Finally, we have in hand all the pieces of McKenzie’s first undecidability result about finite
algebras:

Theorem 6. The set of finite algebras of finite type which generate residually very finite va-
rieties is not recursive. Indeed, that set is recursively inseparable from the set of finite algebras of
finite type which generate varieties of residual character ω1. �



LECTURE 10

A(T) is Finitely Based When T Halts

We have already seen in Lecture 6 a proof that if T does not halt, then A(T) is inherently
nonfinitely based. In the preceding lecture, we found that when T halts, then A(T) has a finite
residual bound, and indeed all the subdirectly irreducible algebras in the variety generated of A(T)
are flat. Therefore, to complete the resolution of Tarski’s Finite Basis Problem, it only remains to
prove that finite algebras of this kind must be finitely based. We accomplish that in this lecture.

McKenzie’s original solution of Tarski’s Finite Basis Problem followed a different approach.
That approach used a variant of the algebras A(T) and involved a detailed analysis of normal
forms of terms, rather than an analysis of subdirectly irreducible algebras. Subsequent work by
Ross Willard, relying on McKenzie’s algebras A(T) and his analysis of subdirectly irreducible
algebras, as well as considerable insight on Willard’s part led to a second solution to Tarski’s Finite
Basis Problem. Still, Willard’s solution, while more easily comprehended than McKenzie’s, is by
no means straightforward. It depends on a detailed understanding of how the many fundamental
operations at hand interact.

Fortunately, there is now a direct route to our desired conclusion. The meet-semidistributive
law reads

(SD∧) x ∧ y = x ∧ z ⇒ (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z).
We say that a variety V is congruence ∧-semidistributive provided the congruence lattice of
each algebra in V satisfies SD∧. Recently, Willard as established the following extension of Baker‘s
Finite Basis Theorem.

Theorem 7. Every residually finite congruence ∧-semidistributive variety with only finitely
many basic operation symbols is finitely based.

We will not offer a proof of this powerful theorem here. Rather, we will first show that it applies
to our situation: that every algebra with a semilattice operation is congruence ∧-semidistributive.
Then we will provide a proof of a much weaker version of Theorem 7 that is adequate to demonstrate
that A(T) is finitely based when T halts.

Theorem 8. If A is an algebra with a basic operation ∧ so that 〈A,∧〉 is a semilattice, then
Con A is ∧-semidistributive.

Proof. First notice that if θ ∈ Con A and a ∈ A, then (a, b) ∈ θ if and only if (a∧b, a) ∈ θ and
(a ∧ b, b) ∈ θ. This means that a congruence θ of A are entirely determined by the pairs (a, b) ∈ θ
such that a < b.

Now suppose θ, φ, and ψ ∈ Con A with θ ∩ φ = θ ∩ ψ, and that a < b with (a, b) ∈ θ ∩ (φ ∨ ψ).
To demonstrate ∧-semidistributivity it suffices to show that (a, b) ∈ φ.

Because (a, b) ∈ (φ ∨ ψ) for some n > 0 we can pick c1, c2, . . . , cn ∈ A so that

a φ c1 ψ c2 φ . . . cn−1 ψ cn φ b
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Without loss of generality, we assume that ci ≤ b for each i. (Otherwise, we can replace each ci
by ci ∧ b.) To make the diagrams below more legible, for i ≤ n, let di = c1 ∧ c2 ∧ . . . ∧ ci, and for
n < i ≤ 2n, let di = ci−n ∧ ci+1−n ∧ . . . ∧ cn. Hence, di ≤ b for all i. In consequence, a ∧ di θ di for
all i. Likewise, either di φ di+1 or di ψ di+1 depending on the parity of i.

Now just observe the following diagrams:ua

φ φua ∧ d1 d1

ψ ψua ∧ d2 d2

φ φua ∧ d3 d3
...

...ua ∧ dn dn
ψ ψua ∧ dn+1 dn+1

...
...ua ∧ d2n−1 d2n−1

ψ ψua ∧ d2n d2n

uφ φ

a b

u
u
u
u
u
u
u
u

@
@
@θ

θ

θ

θ

θ

θ

θ

θ

ua

φ φua ∧ d1 d1

ψ ψua ∧ d2 d2

φ φua ∧ d3 d3
...

...ua ∧ dn dn
ψ ψua ∧ dn+1 dn+1

...
...ua ∧ d2n−1 d2n−1

ψ ψua ∧ d2n d2n

uφ φ

a b

u
u
u
u
u
u
u
u

@
@
@θ

φ, ψ

θ
φ, ψ

θ
φ, ψ

θ
φ, ψ

θ
φ, ψ

θ
φ, ψ

θ
φ, ψ

θ
φ, ψ

The diagram on the left displays the congruence relations between these elements as described
above. The diagram on the right shows additional relations along the horizontal lines. These are
deduced as follows. By transitivity, we see that (a ∧ d1) φ d1, which allows us to label the top
horizontal line with φ. Hence, (a ∧ d1) θ ∩ φ d1. But θ ∩ φ = θ ∩ ψ, by our hyposthesis. This
permits us to label the top horizontal line with ψ as well. But then transitivity allows us to label
the next horizontal line with ψ, and so we can continue until we reach the bottom line, which
includes the conclusion we desire. �

Theorem 9. If T halts, the A(T) is finitely based.

Theorem 10. There is no algorithm which determines whether a finite algebra is finitely based.

As it stands, our line of reasoning leading to the last theorem is incomplete, since no proof of
Theorem 7 has been provided. To remedy this situation we offer the following weaker version, also
due to Ross Willard.

Theorem 11. Let A be a finite algebra with only finite many basic operations, among which
is a binary operation ∧ so that 〈A,∧〉 is a semilattice. If the variety generated by A has a finite
residual bound, then A is finitely based.
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Proof. Let V be the variety generated by A.
This proof depends on finding three schemas of first-order sentences ∆k,N ,ΦN , and Θm,N (where

k, n,m, and N are natural numbers) which, roughly speaking, assert bounds on the height and the
cardinality of subdirectly irreducible algebras. Before describing these sentences we formulate two
key lemmas which they fulfill and describe how the lemmas yield a proof of the theorem.

We say an algebra B has the N-approximation property provided for all a, b, c, d ∈ B with
d < c and all translations λ of B, if λ(a)∧ c � d and λ(b)∧ c ≤ d there is a translation λ′ of B with
complexity bounded by N so that λ′(a) ∧ c � d and λ′(b) ∧ c ≤ d. A class K of algebras has the
N -approximation property provided every algebra in K has the property. The algebra B has the
strong N-approximation property provided for all a, b ∈ B and all translations λ of B there
is a translation λ′ of complexity bounded by N so that λ(a) = λ′(a) and λ(b) = λ′(b). The class K

has the strong N -approximation property provided each algebra in K has the property.
For any class K of algebras, we use P2K to denote the class of all algebras isomorphic to direct

products with no more than 2 factors chosen from K.

Lemma 2. Let K be a class of algebras. If SP2K has the strong N -approximation property and
SPK is locally finite, then SPK |= ΦN+1. Conversely, if K |= ΦN , then K has the N -approximation
property.

Lemma 3. Suppose that W is a variety such that ∧ denotes a semilattice operation in W, and
W |= ΦN .
1. If W has residual bound m, then W |= Θm,N .
2. If W |= Θm,N and W is residually of finite height, then W is residually bounded by m.
3. W |= ∆k,N if and only if W has height residually bounded by k.

Here is how to prove the theorem based on these lemmas.
Let m be the residual bound of V. Let k bound the residual height of V. Let K be the class of

subdirectly irreducible algebras belonging to V.
Now, up to isomorphism, SP2K is a finite set of finite algebras, m2 being an upper bound on

their cardinalities. This means that no algebra in SP2K can have more than (m2)(m
2) translations.

Consequently, let N bound the complexity of all the translations for all the algebras in SP2K.
Observe that SP2K has the strong N -approximation property.

Then according to Lemma 2, we know that V = SPK |= ΦN+1. In addition, according to
Lemma 3, part (1), we find that V |= Θm,N+1&∆k,N+1. By the Compactness Theorem, let Σ be a
finite set of equations, each true in V, so that

Σ |= ΦN+1&Θm,N+1&∆k,N+1.

Now let W = Mod Σ. Notice that V ⊆W. Then according the Lemma 3, part (3), we have that
W has height residually bounded by k. Next, according to Lemma 3, part (2), we find that W is
residually bounded by m. This means that W is a variety that has, up to isomorphism, only finitely
many subdirectly irreducible algebras. In particular, there are, up to isomorphism, only finitely
many subdirectly irreducible algebras in W−V. Let S0,S1, . . . ,Sn−1 be a list of respresentatives of
these subdirectly irreducibles. For each i < n, pick an equation si ≈ ti which is true in V but fails
in Si. Let Γ = Σ ∪ {si ≈ ti : i < n}. Then Γ is the desired finite basis for V, since the subdirectly
irreducible models of Γ are precisely the subdirectly irreducible algebras belonging to V. �



LECTURE 11

Two Lemmata for Three Schemata

Here is the first bunch of those elementary sentences:

(ΦN )
For all x, y, z, and w with w < z,
if λ(y) ∧ z ≤ w and λ(x) ∧ z � w for some translation λ of complexity N + 1,
then λ′(y) ∧ z ≤ w and λ′(x) ∧ z � w for some translation λ′ of complexity N .

Lemma 2. Let K be a class of algebras. If SP2K has the strong N -approximation property and
SPK is locally finite, then SPK |= ΦN+1. Conversely, if K |= ΦN , then K has the N -approximation
property.

Proof. Here we suppose that SPK is locally finite and SP2K has the strong N -approximation
property. We wish to establish that SPK |= ΦN+1. So suppose B ∈ SPK, that λ is a translation
of B of complexity less than or equal to N + 2, and that a, b, c, d ∈ B with d < c such that

λ(b) ∧ c ≤ d and λ(a) ∧ c � d.

Since SPK is locally finite, we know that the subalgebra B′ of B generated by a, b, c, d, and all the
elements of B that are involved in λ as coefficients is finite. It follows that B′ is (isomorphic to) a
subalgebra of a direct product B0 ×B1 × · · · ×Bn−1 of finitely many algebras from K. Without
loss of generality we suppose that this direct product has been indexed so that (λ(a))0 ∧ c0 � d0.

Now for each i < n, let Ci be the projection of B′ into B0 × Bi. (In particular, C0 is the
diagonal subalgebra of B0×B0.) We use λ0,i to denote the translation of Ci obtained by applying
the projection of B′ onto Ci to λ. In this way we know

λ0,i(b0,i) ∧ c0,i ≤ d0,i for all i < n, and λ0,0(a0,0) ∧ c0,0 � d0,0.

Because SP2K has the strong N -approximation property, for each i < n, we pick a translation
λ′i of Ci of complexity bounded by N , so that λ′i(a0,i) = λ0,i(a0,i) and λ′i(b0,i) = λ0,i(b0,i) for all
i < n.

For each i < n, let µi be a translation of B′ obtained by pulling λ′i back through the projection.
Observe that µi has complexity bounded by N , for every i < n.

Now define

e0 = µ0(a) ∧ µ1(a) ∧ . . . ∧ µn−1(a)

e1 = µ0(b) ∧ µ1(a) ∧ . . . ∧ µn−1(a)

e2 = µ0(b) ∧ µ1(b) ∧ . . . ∧ µn−1(a)
...

en = µ0(b) ∧ µ1(b) ∧ . . . ∧ µn−1(b)
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Observe that e0∧c � d, as can be seen by examining the projection of each side of this inequality
to B0. In detail, the projection of µj(a)∧c onto Cj yields λ′(a0,j)∧c0,j = λ0,j(a0,j)∧c0,j . Projecting
this in turn on B0 gives (λ(a))0 ∧ c0. So the projection of µj(a) ∧ c to B0 produces (λ(a))0 ∧ c0, a
value independent of j. Therefore the projection of projection of e0 ∧ c to B0 is (λ(a))0 ∧ c0 � d0.
Hence e0 ∧ c � d.

On the other hand en∧ c ≤ d, since, for each i < n, the projection of this inequality to Ci holds
by construction. Let j < n be as small as possible so that ej ∧ c � d but ej+1 ∧ c ≤ d. Let ν be the
translation of B′ defined by

ν(x) = µ0(b) ∧ . . . ∧ µj(b) ∧ µj(x) ∧ µj+2(a) ∧ . . . ∧ µn−1(a).

Then ν is a translation with complexity bounded by N + 1 and ν(a) ∧ c � d while ν(b) ∧ c ≤ d.
Since ν can also be regarded as a translation of B, we have the conclusion that SPK |= ΦN+1.
This completes the first contention of the lemma.

Now suppose that K |= ΦN . Our objective is to prove that K has the N -approximation property.
Let B ∈ K. We need to show that for every n > N and every a, b, c, d ∈ B with d < c, if there is a
translation λ of complexity bounded by n such that

λ(a) ∧ c � d and λ(b) ∧ c ≤ d,

then there is a translation λ′ of complexity bounded by N such that

λ′(a) ∧ c � d and λ′(b) ∧ c ≤ d,

We do this by induction on n. The initial step is n = N + 1, and this is ensured by ΦN . For the
inductive step, we take n = n′ + 1. So there must be a basic translation β and a translation µ of
complexity bounded by n′ so that λ(x) = µ(β(x)). Let a′ = β(a) and b′ = β(b). According to the
induction hypothesis (applied to a′, b′, c, d and with µ in place of λ), there is a translation µ′ of
complexity bounded by N so that

µ′(β(a)) ∧ c � d and µ′(β(b)) ∧ c ≤ d.

Now µ′(β(x)) is a translation of complexity bounded by N +1. Invoking ΦN , we obtain the desired
transation λ′ of complexity bounded by N . This completes the induction, and the proof of the
lemma.

�

Here are the other two bunches of sentences.

(Θm,N )
There do not exist x, y, u0, u1, . . . , um so that y < x and for each i, j with
i < j ≤ m there exists z ≤ y and a translation λ of complexity less than or
equal to N + 1 such that {x, z} = {λ(ui), λ(uj)}.

and
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(∆k,N )

For all translations λ0, . . . , λk of complexity less than or equal to N , and all
x0, x1, . . . , xk+1 with x0 ≤ x1 ≤ · · · ≤ xk+1, and for all choices {ui, vi} =
{xi, xi+1} and for all z, w,
if all of the following inequalities hold

z ∧ λ0(u0) ≤ w
z ∧ λ0(v0) ∧ λ1(u1) ≤ w

...

z ∧ λ0(v0) ∧ . . . ∧ λk−1(vk−1) ∧ λk(uk) ≤ w,

then

z ∧ λ0(v0) ∧ . . . ∧ λk−1(vk−1) ∧ λk(vk) ≤ w.

Lemma 3. Suppose that W is a variety such that ∧ denotes a semilattice operation in W, and
W |= ΦN .

1. If W has residual bound m, then W |= Θm,N .
2. If W |= Θm,N and W is residually of finite height, then W is residually bounded by m.
3. W |= ∆k,N if and only if W has height residually bounded by k.

Proof. For this proof we take W to be a variety for which ∧ denotes a semilatice operation.
We further suppose that W |= ΦN . The lemma has three parts.

Part 1. Here we also suppose W has residual bound m. We want to establish that W |= Θm,N .
But an examination of Θm,N , reveals that if B is an algebra in which Θm,N fails, then there are
a, b, c0, . . . , cm−1 ∈ B with b < a so that every congruence of B which separates a and b, must also
separate all the ci’s from each other. Let θ ∈ Con B be a maximal congruence separating a and b.
Then B/θ is subdirectly irreducible and has at least m + 1 members. Hence B /∈ W. This means
W |= Θm,N .

Part 2. In this part we also suppose that W |= Θm,N and that W is residually of finite height.
Our object is to show that m is a residual bound for W. So let B ∈W be subdirectly irreducible.
Then we can find p, q ∈ B with q < p so that (q, p) is a critical pair. Let p∗ be an element of B
minimal among those r ∈ B such that r ≤ p while r � q. The existence of such a minimal element
is a consequence of the fact that B has finite height. Put q∗ = p∗ ∧ q. It follows that (q∗, p∗) is also
a critical pair for B. Moreover, if x ∧ p∗ � q∗, then x ∧ p∗ = p∗ for all x ∈ B.

Now suppose a, b ∈ B with a 6= b. Then (q∗, p∗) ∈ CgB(a, b). It follows from Mal’cev’s
Congruence Generation Theorem that there is a translation λ of B such that, without loss of
generality, λ(a) ∧ p∗ ≤ q∗ but λ(b) ∧ p∗ � q∗. In view of Lemma 2, we can suppose that the
complexity of λ is bounded by N . According to the last sentence of the preceding paragraph, we
see that λ(b)∧p∗ = p∗. Let µ(x) = λ(x)∧p∗. So µ is a translation whose complexity is bounded by
N + 1. So for any pair a, b ∈ B of distinct elements, there is a translation µ of complexity bounded
by N + 1 such that {µ(a), µ(b)} = {p∗, r}, where r ≤ q∗. Since B |= Θm,N , it follows that B can
have no more than m elements. Consequently, m is a residual bound for W.
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Part 3. First, let us suppose that k residually bounds the height in W. Let B ∈W. Our objective
is to prove that |=∆k,N . Now an examination of ∆k,n reveals that it is a conjunction of finitely
many sentences, each of which is a universally quantified implication for which the hypothesis is
a conjunction of equations and the conclusion in an equation. The truth of such sentences with
this syntactic structure (known as conjunctions of quasi-equations) is readly seen to be preserved
by both the formation of direct products and of subalgebras. Consequently, it is only necessary
to verify that ∆k,N holds when B is subdirectly irreducible. But then B has height bounded by
k. Examination of ∆k,N , shows that for any x0, . . . , xk+1 chosen from B to fulfill the hypothesis,
we must have xi = xi+1 for some i. But this forces ui = vi. In consequence, the left side of the
conclusion of ∆k,N is no larger than the left side of the ith hypothesis. Hence, B |= ∆k,N as desired.

For the converse, we will suppose that B ∈ W is a subdirectly irreducible algebra of height
larger than k, and construct a failure of ∆k,N . By the height of B pick a0 < a1 < · · · < ak+1 in
B. Since B is subdirectly irreducible, pick q < p in B so that (q, p) is a critical pair for B. To
construct the failure we will define translations λi (of complexity bounded by N) and elements ci
and di. We do this recursively as follows. Let i ≤ k and suppose that the earlier λ’s, c’s and d’s
are in hand, so that for j < i

{cj , dj} = {aj , aj+1}
λj(cj) ∧ pj ≤ q

pi � q

where for convenience we have taken

pj := p ∧ λ0(d0) ∧ . . . ∧ λj−1(dj−1).

Now let qi = pi ∧ q. Hence qi < pi and it is easy to verify that (qi, pi) is also a critical pair.
Hence, (qi, pi) ∈ CgB(ai, ai+1). By Mal’cev’s Congruence Generation Theorem and Lemma 2, pick
a translation λi of complexity bounded by N , and ci, di ∈ B so that {ci, di} = {ai, ai+1} and

λi(ci) ∧ pi ≤ qi and λi(di) ∧ pi � qi.

Finally, notice pi+1 = pi ∧ λi(di). Because, qi ≤ q we have

{ci, di} = {ai, ai+1}
λi(ci) ∧ pi ≤ q

pi+1 � q

This completes the recursive construction of a failure of ∆k,N in B.
Thus all parts of the lemma are established.

�

That’s all folks!


