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LECTURE 0

The compatibility problem for equations with the real line

Consider S1, the unit circle with its usual topology. It is easy to see that the equation

x+ y ≈ y+ x

is compatible with S1 in the sense that there is a way to interpret the two-place operation symbol
+ as a two-place continuous operation on circle so that the equation becomes true for all x and y
in S1.

In general, we say a set Σ of equations is compatible with a topological space T just in case
continuous operations on T, of the appropriate ranks, can be assigned to the operation symbols
occurring in Σ so that all the equations in Σ become true. In other words, we also say that there
is a topological algebra on T which is a model of Σ.

Since S1 can be turned into a topological Abelian group, we see that the set of equations
axiomatizing Abelian groups is compatible with S1. By adopting the point of view that each
equation is a constraint on some unknown continuous operations, we can construe this topological
Abelian group as a solution to the system of equations axiomatizing Abelian groups. This is the
point of view adopted by mathematicians working in the field of functional equations. From that
perspective it would be more natural to say that Σ is solvable over T than to say, as we will, that
Σ is compatible with T.

A signature is a system of operation symbols, each assigned some finite rank. Thus, we
could think of a signature as a function which assigns finite ranks to operation symbols. When
investigating groups one would typically use a signature supplied with one two-place operation
symbol (for the product), one one-place operation symbol (for the formation of inverses), and
perhaps a zero-place operation symbol (a constant symbol to name the identity element). Ring
theory would use a different signature. It is customary to consider sets of equations of a particular
fixed signature.

Each equation is just a finite string of symbols. So a finite set of equations is suitable as an
input to an algorithm (alias: computer program). This gives rise to the following general problem.

The Equational Compatibility Problem for T in Signature ρ

Let T be a topological space. Is there an algorithm for determining of arbitary
finite sets of equations of signature ρ whether they are compatible with T?

Solutions to the compatibility problem are known only for a few topological spaces. For the
spheres Sn the answer is known to be affirmative for all n other than 1, 3, and 7. Walter Taylor
(2000), using some deep results of algebraic topology, showed that the sets of equations compatible
with these spheres had to be trivial in a certain specific sense which can be recognized algorithmi-
cally.

Taylor (2006) showed that the equational compatibility problem for the real line has a negative
answer. He used the signature of rings expanded by three one-place operation symbols and a
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0. THE COMPATIBILITY PROBLEM FOR EQUATIONS WITH THE REAL LINE 2

countably infinite list of constant symbols. The purpose of these lectures is follow in Taylor’s
footsteps to a variation on his result.

The topological algebra that places a central role in our enterprise is

R = 〈R,+, ·,−, 1, | |, sin∗〉

where +, ·,−, 1 and | | are the usual operations on the real numbers (we take − to be the operation
of forming negatives, rather than the operation of subtraction) and where sin∗(x) = sin(π2x) for all
real numbers x. We reserve τ to denote the signature of this algebra. The operation symbols of
this signature will be

+, ·,−,1, | |, and sin∗

Here is the theorem we aim to prove:

Main Theorem. There is no algorithm for determining of an equation of signature τ whether it
is compatible with the real line.

The chief ways that this theorem differs from Taylor’s is that no additional constant symbols
are needed and that even limiting our attention to single equations as opposed to finite sets of
equations still resists an algorithmic solution.

Our approach has three stages.
A set ∆ of equations of signature ρ determines the topological algebra T over the space T

provided T is, up to maps that are isomorphisms (simultaneously in the algebraic and topological
senses), the unqiue topological algebra of signature ρ over T which is a model of ∆.

The Finite Determination Theorem. The topological algebra R is determined by a finite set
of equations. This set includes the equational axioms of rings with unit.

This theorem is a minor variation of work by Walter Taylor (2006).
Now we turn to the second stage of our approach. The equational theory of an algebra is the

set of all equations (in the signature of the algebra) which are true in the algebra. An equational
theory is said to be undecidable provided there is no algorithm for determining whether an
arbitrary equation belongs to the theory.

The Equational Undecidability Theorem. The equational theory of R is undecidable.

This theorem is a refinement theorem proved by Daniel Richardson (1968). His reasoning
relied on the negative solution to Hilbert’s Tenth Problem for Exponential Diophantine Equations
established by Davis, Putnam, and Robinson (1961). The completion of the resolution of Hilbert’s
Tenth Problem (Matiyasevich, 1970) led to stronger forms of Richardson’s work.

Now let ∆ be the finite set mentioned in the Finite Determination Theorem and let s ≈ t be any
equation of signature τ . It is clear that s ≈ t is true in R if and only if ∆ ∪ {s ≈ t} is compatible
with the real line. Therefore any algorithm for determining compatibility with R would lead to an
algorithm for deciding the equational theory of R. This establishes the Main Theorem altered to
deal with finite sets of equations in place of single equations.

The third stage in our approach is to apply the following theorem.

The One Equation Collapsing Theorem. Any finite set of equations which includes the equa-
tional axioms for rings with unit is logically equivalent to a single equation. Moreover, there is an
algorithm which, upon input of such a finite set of equations, will output the single equation.
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Two sets of equations are said to be logically equivalent if they have exactly the same models.
Notice that this theorem applies to any signature which includes the signature of rings with unit.
This theorem was announced by Alfred Tarski in 1966, see (Tarski, 1968). Tarski actually framed a
somewhat stronger theorem than the one displayed above. Independently, Grätzer and McKenzie
(1967) announced a similar result obtained by different reasoning. A proof of Tarski’s result can
be found in (McNulty, 2004), while a proof of the result a George Grätzer and Ralph McKenzie is
included in (Grätzer and Padmanabhan, 1978).

An application of the one equation collapse to ∆ ∪ {s ≈ t} completes the proof of the Main
Theorem.



LECTURE 1

Finite determination of 〈R, +, ·,−, 1, | |, sin∗〉

Let ∆0 be the following set of equations (here we regard 0 as an abbreviation for −1 + 1):

x+ (y+ z) ≈ (x+ y) + z x · (y · z) ≈ (x · y) · z
x+ y ≈ y+ x x · y ≈ y · x
x+ 0 ≈ x x · 1 ≈ x
−x+ x ≈ 0 x · (y+ z) ≈ x · y+ x · z

The set ∆0 is just the familiar axioms for commutative rings with unit.
Let ∆1 be the set consisting of:

|x2| ≈ x2 | − x2| ≈ x2

and let ∆2 be the set consisting of:

sin∗(x+ y)− sin∗(x− y) ≈ 2 sin∗ y sin∗(x+ 1) sin∗ 1 ≈ 1

sin∗(sin∗(x) + 1) ≈ | sin∗(sin∗(x) + 1)|

Theorem 0. ∆0 determines 〈R,+, ·,−, 1〉 .

Proof. Let R◦ = 〈R, +̂, ·̂, −̂, 1̂〉 be a commutative ring with unit on R such that all the
fundamental operations are contiuous. We have to show that this algebra is isomorphic to the
reals with the standard operations by a map that is also a homeomorphism.

In the typical axiomatic presentation, tracing back to Eudoxus and Euclid in ancient times and
Weierstrass, Dedekind, and Cantor in the 19th century, the real line is seen as a complete ordered
field, this field being unique up to isomorphism which preserves the order relation as well as the
field operations. See the text (Hewitt and Stromberg, 1965) for an exposition of this approach.
Since the topology on the real line is determined by the order relation, such isomorphisms are
also homeomorphisms. We will take advantage of this standard approach, but it falls short in the
present situation for three reasons:

• In a field 0 and 1 must be distinct and any nonzero element must have a multiplicative
inverse. These facts cannot be expressed with equations.
• Most of the salient facts about the order relation (or the set of “positive” numbers) are

not equational either, although they can be expressed by elementary sentences.
• The completeness principle (i.e. the Least Upper Bound Axiom) is not expressible by even

a set of elementary sentences.
To remedy these shortfalls, we mostly appeal to the continuity of the basic operations of R◦.
To simplify notation put 0̂ = −̂1̂+̂1̂. In the presence of the axioms of commutative rings, we

see that 0̂ 6= 1̂ since R has more than one element. This takes care of part of the first shortfall.
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1. FINITE DETERMINATION OF 〈R,+, ·,−, 1, | |, sin∗〉 5

Here < will always stand for the usual ordering of R. So either 0̂ < 1̂ or 1̂ < 0̂. We will assume
0̂ < 1̂ and later see that this assumption is harmless. Our ambition is to prove that 〈R, +̂, ·̂, −̂, 1̂, <〉
is a complete ordered field. Since we already know that < is a complete ordering of R, it remains
to verify the following:

(1) Every element of R different from 0̂ has a ·̂-multiplicative inverse. (So R◦ is a field).
(2) If a > 0̂, then 0̂ > −̂a.
(3) If a > 0̂ and b > 0̂, then a+̂b > 0̂.
(4) If a > 0̂ and b > 0̂, then â·b > 0̂.

It is (1) above which presents the most difficulty.

Claim 0. If a > c, then a+̂b > c+̂b.

Proof. Let σb(x) = x+̂b for all real x. We suppose b 6= 0̂, as that case is too easy. The function
σb is continuous and σ−̂b is its continuous inverse (using the properties of commutative rings). So
σb is either strictly increasing or strictly decreasing. Every continuous strictly decreasing function
on R must have a fixed point. σb has a fixed point if and only if b = 0̂, according to commutative
ring theory. So σb is strictly increasing and the claim is established. �

Now to establish (3) above just note

a > 0̂ and b > 0̂⇒ a+̂b > 0̂+̂b > 0̂+̂0̂ = 0̂

To establish (2) above notice

a > 0̂⇒ a+̂(−̂a) > 0̂+̂(−̂a)

⇒ 0̂ > −̂a

For each natural number n we define n̂ by the following recursive condition

n̂+ 1 = n̂+̂1̂ for all natural numbers n

where the base of the recursion, namely 0̂, as well as 1̂, are already in hand. It is easy to establish
by induction that 2̂̂·n̂ = 2̂n.

Claim 1. If b > 0̂, then 〈n̂̂·b | n is a natural number〉 is a strictly increasing sequence with no
upper bound.

Proof. Let bn = n̂̂·b. Since b > 0̂ and bn+1 = n̂+ 1̂·b = (n̂+̂1̂)̂·b = n̂̂·b+̂1̂̂·b = n̂̂·b+̂b = bn+̂b,
we see that bn+1 = bn+̂b > bn. So the sequence is strictly increasing by Claim 0. Suppose it had an
upper bound. Then it would have a least upper bound L and limn→∞ bn = L. Now the subsequence
of terms with even indices must also have the same limit L = limn→∞ b2n. Plainly 0̂ < b < L. But
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now consider, with the help of the continuity of ·̂:

2̂̂·L = 2̂̂· lim
n→∞

bn

= lim
n→∞

(2̂̂·bn)

= lim
n→∞

(2̂̂·n̂̂·b)

= lim
n→∞

(2̂n̂·b)

= lim
n→∞

b2n

= L.

This means that L+̂L = 2̂̂·L = L. It follows from the axioms of rings that L = 0̂, a contradiction.
Thus the sequence 〈bn | n is a natural number〉 is a strictly increasing unbounded sequence. �

Claim 2. The ring R◦ is a field.

Proof. It is enough to show that if b > 0̂ then b is invertible. Now the map µb : R→ R defined
so that µb(x) = x̂·b for all real x is a continuous function. Let n be large enough so that bn > 1̂.
Then µb(n̂) = bn > 1̂ > 0̂ = µb(0̂). By the Intermediate Value Theorem, this means there is c ∈ R
so that 1̂ = µb(c) = ĉ·b. So b is invertible as desired. �

Claim 3. If a > 0̂ and b > 0̂, then â·b > 0̂.

Proof. Since µb is continuous the image of the interval (0̂,∞) must be an interval as well.
Because R◦ is a field, it is an integral domain and so 0̂ is not in the image. On the other hand
µb(1̂) = b > 0̂. But then the image of (0̂,∞) must be included in (0̂,∞), and the claim is
established. �

There were two cases at the beginning of the proof of the theorem, namely 0̂ < 1̂ and 1̂ < 0̂.
The argument above demonstrates the theorem in the first case. The argument in the other case is
entirely similar. In items (2) through (4) one should reverse the inequalities. One could also note
that µc−1 is a bicontinuous automorphism of R◦. �

Theorem 1. ∆0 ∪∆1 determines 〈R,+, ·,−, 1, | |〉.

This theorem is too easy to prove.

The Finite Determination Theorem. ∆0 ∪∆1 ∪∆2 determines 〈R,+, ·,−, 1, | |, sin∗〉.

Proof. Let f be a continuous function on R so that

f(x+ y)− f(x− y) = 2f(y)f(x+ 1)(?)

f(f(x) + 1) = |f(f(x) + 1)|
f(1) = 1

We have to prove that f(x) = sin(π2x).
First, we note that

f(0) = 0 and f(x+ 2) = −f(x).
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The equation on the left can be deduced that substituting 0 for both x and y in (?), while the
equation on the right follows from(?) by substituting 1 for y and x+ 1 for x.

Now in (?) substitute h
2 for y and kh for x, and reason as follows:

2f
(
h

2

)
f(kh+ 1) = f

(
kh+

h

2

)
− f

(
kh− h

2

)
f(kh+ 1) =

1
2

[
f

(
(2k + 1)h

2

)
− f

(
(2k − 1)h

2

)]
1

f(h2 )

f(kh+ 1)h =
[
f

(
(2k + 1)h

2

)
− f

(
(2k − 1)h

2

)] h
2

f
(
h
2

)
n∑
k=1

f(kh+ 1)h =

[
n∑
k=1

[
f

(
(2k + 1)h

2

)
− f

(
(2k − 1)h

2

)]] h
2

f(h2 )
n∑
k=1

f(kh+ 1)h =
[
f

(
(2n+ 1)h

2

)
− f

(
h

2

)] h
2

f(h2 )

Now in the last equation put h = x
n . This gives

n∑
k=1

f

(
kx

n
+ 1
)
x

n
=
[
f
(
x+

x

2n

)
− f

( x
2n

)] x
2n

f(0 + x
2n)− f(0)

The sum on the left side is a Riemann sum associated with the integral
∫ x
0 f(t + 1) dt. Since f is

continuous this integral must exist. So by letting n→∞ in the last equation we see that∫ x

0
f(t+ 1) dt =

f(x)
f ′(0)

.

According to the Fundamental Theorem of Calculus the left side is differentiable. So the right side
must be as well and we find

f ′(0)f(x+ 1) = f ′(x).
In turn, this gives

f ′(0)f ′(x+ 1) = f ′′(x) as well as f ′(0)f(x+ 2) = f ′(x+ 1)

Combining these two equations with f(x+ 2) = −f(x) we find the elementary differential equation

f ′′(x) + (f ′(0))2f(x) = 0.

All the solutions to this equation have the form

f(x) = A sin(f ′(0)x) +B cos(f ′(0)x).

Since f(0) = 0 we see that B = 0. It follows that f ′(x) = Af ′(0) cos(f ′(0)x). This implies that
f ′(0) = Af ′(0). But f(1) = 1 now entails that f ′(0) 6= 0. Therefore A = 1. This means

f(x) = sin(f ′(0)x).

It remains to show that f ′(0) = π
2 . Since f(1) = 1 we have that sin(f ′(0)) = 1. This means

that f ′(0) = π
2 + 2mπ for some integer m. We will argue that |f ′(0)| ≤ π

2 , which suffices.
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Now we know that f ′(0)f(x+1) = f ′(x) = f ′(0) cos(f ′(0)x) and that f ′(0) 6= 0. Thus f(x+1) =
cos(f ′(0)x). Now that last equation in ∆2 asserts that f(f(x) + 1) is not negative. This means

cos(f ′(0) sin(f ′(0)x)) ≥ 0.

Since sin(f ′(0)x) takes on all values between −1 and 1, we see that cos y ≥ 0 whenever |y| ≤ |f ′(0)|.
It follows that |f ′(0)| ≤ π

2 , as desired. �

The Provenance of These Results. The theorems in this lecture belong to the theory of
functional equations, an old and widely applicable branch of mathematics. Æquationes Mathemat-
icæ is a journal devoted to this branch. The text of J. Aczél (1966) gives an historical perspective
on this field. Given the extent of the literature about functional equations, it is difficult to know
the origins of the results given in this lecture, dealing as they do with such familiar functions. My
own very cursory glance through the literature of functional equations gives the impression that
addition, subtraction, multiplication, and division of real numbers are usually assumed as given.
Thus Theorem 0 above likely originated with Walter Taylor (2006). On the other hand, the inves-
tigation of systems of equations characterizing the sine and cosine functions were undertaken by
d’Alembert is the middle of the 18th century (d’Alembert, 1747a; 1747b; 1750; 1769), and can
be found in Cauchy’s 1821 text Cours d’analyse de l’École Polytechnique, see (Cauchy, 1992). The
first two equations in ∆2 are variants of familiar equations and the details of proof of the Finite
Determination Theorem that use Riemann sums, telescoping series, and appeal to the integrability
of continuous function, the Fundamental Theorem of Calculus, and the solutions to differential
equations were suggested by reading a paper of Vaughan (1955). The last equation in ∆2 and its
use in the proof of the Finite Determination Theorem to demonstrate f ′(0) = π

2 are again ideas of
Walter Taylor.



LECTURE 2

The Equational Theory of 〈R, +, ·,−, 1, | |, sin∗〉 is Undecidable

Our aim is to prove that there is no algorithm for determining of an arbitrary equation whether
it is true in 〈R,+, ·,−, 1, | |, sin∗〉. Our argument will show that any algorithm for deciding this
equational theory will allow us to devise another algorithm for solving Hilbert’s Tenth Problem.
So some words about Hilbert’s Tenth Problem are in order.

A Diophantine equation is simply an equation where each side is a polynomial in some finite
number of variables and whose coefficients are integers. The equation 2x2y + 2xy2 ≈ 4xyz5 is
a Diophantine equation. Hilbert asked for a method which would determine which Diophantine
equations have solutions in the integers.

A set A of integers is called Diophantine provided there are polynomials p(x, y0, . . . , yn−1)
and q(x, y0, . . . , yn−1) with integer coefficients such that

A = {k | p(k, y0, . . . , yn−1 ≈ q(k, y0, . . . , yn−1) has a solution in the integers}.

This notion can be extended to give meaning to an m-ary relation or a k-ary function on the
integers being Diophantine.

It was conjectured by Davis (1950) that the Diophantine sets were exactly the sets for which
there are algorithms for listing their elements (in no particular order and with repetitions allowed in
the list). While this seemed very doubtful at the time, Davis, Putnam, and Robinson (1961) were
able to show that it was true, provided the operations allowed in building the “polynomials” p and
q included the exponential function 2x. Not only did they prove that the exponential Diophantine
sets were exactly the listable sets, but they also proved that if any function that exhibits roughly
exponential growth is Diophantine in the ordinary sense then the Diophantine sets and the listable
sets coincide. Matiyasevich (1970) demonstrated that a function with exponential growth related
to the Fibonacci sequence was in fact Diophantine. In this way Davis’s Conjecture was verified.
Since it had been established by Turing (1936) that there are listable sets which are not decidable,
Hilbert’s Tenth Problem is seen to have negative solution in a strong sense. LetH be a set of integers
whose characteristic function is not algorithmic (that is membership in H cannot be determined
algorithmically) but which is nevertheless listable. There is a particular natural number n and
specific polynomials p(x, y0, . . . , yn−1) and q(x, y0 . . . , yn−1 such that

H = {k | p(k, y0, . . . , yn−1) ≈ q(k, y0, . . . , yn−1) has a solution in the integers}.

The smallest known value for n is 9. This was discovered by Matiyasevich. A detailed exposition
can be found in (Jones, 1982). Since p and q are fixed, one can also bound the degrees. In particular,
this means that there is no algorithm for determining of an arbitrary Diophantine equation in no
more than 9 variables, whether it is solvable in the integers.

9
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Expand the signature τ by adding 9 constant symbols, c0, c1, . . . , c8. Call this expanded signa-
ture τ ′. For arbitrary polynomials s(y0, . . . , y8) and t(y0, . . . , y8) let

∆s,t = ∆0 ∪∆1 ∪∆2 ∪ {sin∗(2ci) ≈ 0 | i < 9} ∪ {s(c0, . . . , c8) ≈ t(c0, . . . , c8)}.
Since ∆0 ∪∆1 ∪∆2 determines 〈R,+, ·,−, 1, | |, sin∗〉 it is evident that ∆s,t is compatible with the
real line if and only if s(y0, . . . , y8) ≈ t(y0, . . . , y8) has a solution in the integers. This gives us
Taylor’s Theorem, see (Taylor, 2006):

Taylor’s Compatibility Theorem. There is no algorithm for determining whether finite sets of
equations are compatible with the real line.

Indeed, we see a sharper result. Namely that the compatibility problem for the real line in
the signature τ ′ has a negative solution. Our intention in the rest of this lecture is to see that we
can get rid of those nine constant symbols, and along the way prove that the equational theory of
〈R,+, ·,−, 1, | |, sin∗〉 is undecidable. That last result is interesting in its own right.

The idea for how to proceed was put forward by Richardson (1968). At that time, the solution
to Hilbert’s Tenth Problem was not known, so Richardson based his work on the earlier result of
Davis, Putnam, and Robinson concerning the solution of exponential Diophantine equations. Just
a few years after Richardson’s paper appeared, Matiyasevich (1970) completed the work begun by
Davis, Putnam, and Robinson to solve Hilbert’s Tenth Problem. We can take advantage of that.

Given ten polynomials s = s(x0, . . . , x8), k0(x0, . . . , x8), . . . , k8(x0, . . . , x8) with integer coeffi-
cient and no other variables apart from the nine listed we associate a term Fs(x0, . . . , x8) defined
as follows:

Fs(x0, . . . , x8) = 102

[
s2(x0, . . . , x8) +

∑
i<9

(sin∗ 2xi)2k2
i (x0, . . . , x8)

]
− 1.

The Richardson Inequality Lemma. There is an algorithm which upon input of any polynomial
s(x0, . . . , x8) with integer coefficients, will produce polynomials k0(x0, . . . , x8), . . . , k8(x0, . . . , x8),
also with integer coefficients, such that these polynomials, when evaluated at any 9-tuple of reals,
always exceed 1, and such that the following statements are equivalent:

(i) there is a solution of s(x0, . . . , x8) ≈ 0 in the integers.
(ii) there is a 9-tuple of real numbers to which the term function denoted by Fs(x0, . . . , x8) assigns

a negative value.

Proof. Here is how to construct the polynomials ki. Let fi = ∂s2

∂xi
. So fi(x0, . . . , x8) is again a

polynomial. We obtain ki(x0, . . . , x8) from fi(x0, . . . , x8) replacing each coefficient c by |c|+2 and by
replacing each occurrence of xi by x2

i + 2. Indeed, let f(x0, . . . , x8) be any polynomial. We take f◦

to be the polynomial obtained from f by the replacements just described. So if f were 3x0x
3
2− 4x1

then the corresponding f◦ would be the result of simplifying (3+2)(x2
0+2)(x2

2+2)3+(4+2)(x2
1+2).

Here is the claim that motivates this choice of ki as f◦i .

Claim 4. For any reals a0, a1, . . . , a8 and any numbers δi (for i < 9) so that |δi| < 1 we have
that f◦(a0, . . . , a8) > f(a0 + δ0, . . . , a8 + δ8) and f◦(a0, . . . , a8) > 1 for any polynomial f .

Proof. We prove this induction on the complexity of the polynomials f .
The base step of the induction has two cases: f is a constant c and f is the variable xj . In

the first case we note that c < |c| + 2 and in the second case we see that aj + δj ≤ |aj + δi| ≤
|aj |+ |δj | < |aj |+ 1 ≤ a2

j + 2 and the base step of the induction is secure.
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For the inductive step there are also two cases to consider, namely f(x0, . . . , x8) = g(x0, . . . , x8)+
h(x0, . . . , x8) and f(x0, . . . , x8) = g(x0, . . . , x8)h(x0, . . . , x8), where the inductive hypothesis tells
us that

g(a0 + δ0, . . . , a8 + δ8) < g◦(a0, . . . , a8) > 1

h(a0 + δ0, . . . , a8 + δ8) < h◦(a0, . . . , a8) > 1

Since

(g(x0, . . . , x8) + h(x0, . . . , x8))◦ = g◦(x0, . . . , x8) + h◦(x0, . . . , x8)

and

(g(x0, . . . , x8)h(x0, . . . , x8))◦ = g◦(x0, . . . , x8)h◦(x0, . . . , x8),

the desired conclusions follow. �

Now let us turn to the proof of Richardson’s Inequality Lemma. It is easy to see that (i) implies
(ii). For the converse, suppose the real numbers a0, . . . , a8 have the property that Fs(a0, . . . , a8) < 0.
We use bae to denote the integer closest to the real number a, chosing the larger integer in case a
falls halfway between two integers. We note that because of the continuity of Fs we can suppose
without loss of generality that no ai falls halfway between two integers.

We will demonstrate that s2(ba0e, . . . , ba8e) < 1. Since s2(ba0e, . . . , ba8e) must be a nonegative
integer, it will follow that s(x0, . . . , x8) ≈ 0 is solvable in the integers. This will verify that (ii)
implies (i).

We know that Fs(a0, . . . , a8) < 0. This entails that

s2(a0, . . . , a8) +
∑
i<9

(sin∗ 2ai)2k2
i (a0, . . . , a8) <

1
102

.

Hence s2(a0, . . . , a8) < 1
10 and | sin∗ ai|ki(a0, . . . , a8) < 1

10 for all i < 9.
Now according to the Mean Value Theorem in Several Variables there is a point (c0, . . . , c8) on

the line segment joining (ba0e, . . . , ba8e) and (a0, . . . , a8) so that

s2(ba0e, . . . , ba8e)− s2(a0, . . . , a8) = ∇s2(c0, . . . , c8) · ((ba0e, . . . , ba8e)− (a0, . . . , a8))

s2(ba0e, . . . , ba8e)− s2(a0, . . . , a8) =
∑
i<9

∂s2(x0, . . . , x8)
∂xi

|(c0,...,c8) (baie − ai)

which gives, by the claim and the Triangle Inequality,

s2(ba0e, . . . , ba8e) < s2(a0, . . . , a8) +
∑
i<9

ki(a0, . . . , a8)|baie − ai|

The graph of y = |bxe−x| is periodic with period 1 and it looks like a sawtooth with the bottom
points on the X-axis at the integers and the top points with Y -coordinate 1 and X-coordinates
halfway between successive integers. The graph of y = | sin∗ 2x| is also periodic with period 1 and
it looks like a row of ‘sine” humps with the bottom points on the X-axis at integer coordinates and
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high points with Y -coordinate 1 and X-coordinates a values halfway between successive integers.
Evidently, |bxe − x| ≤ | sin∗ 2x| of all x. So we arrive at

s2(ba0e, . . . , ba8e) < s2(a0, . . . , a8) +
∑
i<9

| sin∗ 2ai|ki(a0, . . . , a8).

There are 10 nonnegative terms on the right side of this inequality and we know each is bounded
above by 1

10 . Finally, this yields s2(ba0e, . . . , ba8e) < 1 just as we desire.
�

Richardson (1968) framed this Inequality Lemma in a slightly different way. In the first place his
version applied to a wider class of functions, where ours just concerns polynomials (in 9 variables).
On the other hand Richardson needed k4

i and 104 were we used k2
i and 102, these were refinements

in Richardson’s method that where advanced by Caviness (1970).

The Equational Undecidability Theorem. The equational theory of 〈R,+, ·,−, 1, | |, sin∗〉 is
undecidable.

Proof. Recall that we use R to denote 〈R,+, ·,−, 1, | |, sin∗〉.
Let s be any polynomial with integer coefficients and variables among x0, . . . , x8. Observe that

the equation |Fs| ≈ Fs is true in R if and only if Fs < 0 has no solutions in R if and only if s ≈ 0
has no solutions in the integers, according to Richardson’s Inequality Lemma. By the negative
solution to Hilbert’s Tenth Problem, we know there is no algorithm to settle whether s ≈ 0 is
solvable in the integers. So there can be no algorithm for determining which equations are true in
R. �

Actually, we have here a proof of something a bit stronger: there is no algorithm for determining
which equations in only 9 variables are true in R, that is the 9-variable equational theory of R
is undecidable. Further methods suggested by Richardson lead to the even stronger conclusion
that the 1-variable equational theory of R is undecidable. It should be said that Richardson did
not actually obtain this result, because he based his construction not on the negative solution to
Hilbert’s Tenth Problem (unknown at the time), but on the forerunning result of Davis, Putnam,
and Robinson. After the resolution of Hilbert’s Tenth Problem, Wang (1974) provided a reworking
of the method of Richardson, taking into account the simplifications suggested in (Caviness, 1970).
Richardson (and after him Caviness and Wang) considered the usual sine function, not sin(π2x) as
we have done. Instead, Richard provided a constant symbol to denote π. Matiyasevich (1993) not
only provides a detailed exposition of this reasoning of Richardson, Caviness, and Wang, but he
also devised a way to avoid a constant to denote π. The adjustments to this line of reasoning to
apply to sin(π2x) instead of the sine function are provided in (McNulty, 2008).

One might wonder if the same result holds in the absence of the trigonometric function. The
answer is no. It has been known since 1930 that not only the equational theory, but also the far
richer elementary theory of 〈R,+, ·,−, 1, | |〉 is decidable, see Tarski (1951).

Corollary 2. The equational compatiblity problem for R in signature τ has a negative solution.



LECTURE 3

Collapsing to One Equation

In this lecture we will prove the following theorem.

The One Equation Collapsing Theorem. Any finite set of equations which includes the equa-
tional axioms for rings with unit is logically equivalent to a single equation. Moreover, there is an
algorithm which, upon input of such a finite set of equations, will out put the single equation.

Somewhat stronger versions of this result were announced independently in 1966 by Alfred
Tarski (1968) and in 1967 by George Grätzer and Ralph McKenzie (1967). The respective proofs
can be found in (McNulty, 2004) and in (Grätzer and Padmanabhan, 1978). The proof below
follows Tarski’s approach.

The establishment of the One Equation Collapsing Theorem completes the three stages in the
proof of our Main Theorem, as described in Lecture 0.

It proves convenient to have a symbol for subtraction. We use ·−. Formally, we understand s ·− t
to be an abbreviation for s+ (−t). The equation below, which we denote by ε, plays a key role.

(ε) y ≈ [(z ·− z) ·− (x ·− y)] ·− [(w ·− w) ·− x]

The equation ε, easily seen to be a consequence of the axioms for rings, has itself many useful
consequences.

The Cancellation Lemma. Let p, s, and t be any terms. The following cancellation laws hold:
(a) ε, p ·− s ≈ p ·− t ` s ≈ t.
(b) ε, s ·− p ≈ t ·− p ` s ≈ t.

Proof. Here is the reasoning to establish (a.):

s ≈ [(z ·− z) ·− (p ·− s)] ·− [(w ·− w) ·− p] a substitution instance of ε

≈ [(z ·− z) ·− (p ·− t)] ·− [(w ·− w) ·− p] since p ·− s ≈ p ·− t
≈ t a substitution instance of ε

To establish (b.) observe that the next two equations are substitution instances of ε.

[(z ·− z) ·− (s ·− p)] ·− [(w ·− w) ·− s] ≈ p
p ≈ [(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− t]

Consequently

[(z ·− z) ·− (s ·− p)] ·− [(w ·− w) ·− s] ≈ [(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− t].

But in view of s ·− p ≈ t ·− p we obtain

13
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[(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− s] ≈ [(z ·− z) ·− (t ·− p)] ·− [(w ·− w) ·− t].

Now two applications of the cancellation law (a.) give first

(w ·− w) ·− s ≈ (w ·− w) ·− t

and then the desired result

s ≈ t
�

The following equations are logical consequences of the equation ε, but the proofs are left as
challenges for the seminar.

(z ·− z) ·− [(z ·− z) ·− x] ≈ x y ·− y ≈ z ·− z x ·− (z ·− z) ≈ x
We also note that the sets {ε, s ≈ t} and {ε, s ·− t ≈ z ·− z} are logically equivalent. We also

leave this as a challenge to the seminar. In tackling these challenges it is important to use only the
given equations, not other familiar properties of commutative rings with unit.

Now for any terms s and t we will let δs,t stand for the following equation

y ≈ [(z ·− z) ·− (x ·− y)] ·− [(s ·− t) ·− x].

Lemma 0. Let s and t be any terms. The equation δs,t is logically equivalent to the set {ε, s ≈ t}
of equations.

Proof. We assume, without loss of generality, that the variables x, y, z, and w do not occur
in s ≈ t. Evidently, ε, s ≈ t ` δs,t, so it remains to establish δs,t ` ε and δs,t ` s ≈ t. These
derivations are accomplished at once by an argument like the proofs left as challenges. We need
three substitution instances of δs,t (rather than of ε). The first two are

z ≈ [[(z ·− z) ·− (z ·− z)] ·− [(s ·− t) ·− z]] ·− [(s ·− t) ·− (s ·− t)]
z ≈ [(z ·− z) ·− (z ·− z)] ·− [(s ·− t) ·− z]

The right side of the second equation occurs in the first equation, giving
z ≈ z ·− [(s ·− t) ·− (s ·− t)]

Substitute z ·− z for z to obtain
z ·− z ≈ (z ·− z) ·− [(s ·− t) ·− (s ·− t)].(∗)

The third substitution instance of δs,t is
s ·− t ≈ [(z ·− z) ·− [(s ·− t) ·− (s ·− t)]] ·− [(s ·− t) ·− (s ·− t)]

Applying (∗) twice to this equation we obtain first
s ·− t ≈ (z ·− z) ·− [(s ·− t) ·− (s ·− t)]

and then
s ·− t ≈ z ·− z.

But z does not occur in s ·− t, so substituting w for z gives
s ·− t ≈ w ·− w.
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Now replace s ·− t in δs,t by w ·− w to obtain ε. With ε in hand, the last equation displayed above
yields s ≈ t by one of the challenges. �

We are now prepared to prove the One Equation Collapsing Theorem.

Proof. Let {p0 ≈ q0, . . . , pm−1 ≈ qm−1} be a finite set of equations which includes the equa-
tional axioms for rings with unit. We take z0, . . . , zm−1 and w be distinct variables that do not
occur is any of these equations. Let

Σ = {p0 · z0 ≈ q0 · z0, . . . , pm−1 · zm−1 ≈ qm−1 · zm−1} ∪ {x · 1 ≈ x, ε}

It is clear that Σ is logically equivalent to our original set of equations.
Here is another equation, which we will call γ and which is a consequence of the axioms for

rings with unit.

(γ) (x · 1) ·− x ≈ [y · (w ·− w)] ·− [z · (w ·− w)]

We use p to denote (x · 1) ·− x and q to denote [y · (w ·− w)] ·− [z · (w ·− w)]. So γ is the equation
p ≈ q.

By substituting x for y, z, and w in γ we obtain

(x · 1) ·− x ≈ [x · (x ·− x)] ·− [x · (x ·− x)].

So we find that x · 1 ≈ x follows from {γ, ε} with the help of the challenges made earlier. Another
consequence is y · (w ·− w) ≈ z · (w ·− w).

It is convenient to let ui denote pi · zi and ri denote qi · zi for all i < m. Further, we use u∗i to
denote pi · (w ·− w) and r∗i to denote qi · (w ·− w) for all i < m. Observe that u∗i ≈ r∗i is a logical
cnsequence of {γ, ε} for all i < m.

Now let

s be the term p ·−
(
[u0 ·− (. . . ·− (um−2 ·− um−1) . . . )] ·− [u∗0 ·− (. . . ·− (u∗m−2

·− u∗m−1) . . . )]
)

and

t be the term q ·−
(
[r0 ·− (. . . ·− (rm−2 ·− rm−1) . . . )] ·− [r∗0 ·− (. . . ·− (r∗m−2

·− r∗m−1) . . . )]
)
.

The single equation that we have been seeking is δs,t. By the Lemma, this equation is logically
equivalent to {ε, s ≈ t}. So we see that at least δs,t is a consequence of Σ. It remains for us to
show that ui ≈ ri for each i < m.

The equation s ≈ t written out in detail is

p ·−
(
[u0 ·− (· · · ·− (um−2 ·− um−1) · · · )] ·− [u∗0 ·− (· · · ·− (u∗m−2

·− u∗m−1) · · · )]
)
≈

q ·−
(
[r0 ·− (· · · ·− (rm−2 ·− rm−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2

·− r∗m−1) · · · )]
)
.

Substituting w ·− w for each zi is this equation gives

p ·−
(
[u∗0 ·− (· · · ·− (u∗m−2

·− u∗m−1) · · · )] ·− [u∗0 ·− (· · · ·− (u∗m−2
·− u∗m−1) · · · )]

)
≈

q ·−
(
[r∗0 ·− (· · · ·− (r∗m−2

·− r∗m−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2
·− r∗m−1) · · · )]

)
.

In view of the challenges and the presence of ε we obtain

p ·− (z ·− z) ≈ q ·− (z ·− z).
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Applying the Cancellation Lemma we obtain p ≈ q and(
[u0 ·− (· · · ·− (um−2 ·− um−1) · · · )] ·− [u∗0 ·− (· · · ·− (u∗m−2

·− u∗m−1) · · · )]
)
≈(

[r0 ·− (· · · ·− (rm−2 ·− rm−1) · · · )] ·− [r∗0 ·− (· · · ·− (r∗m−2
·− r∗m−1) · · · )]

)
by applying the Cancellation Lemma, this time to s ≈ t. A third application of the Cancellation
Lemma yields

(?) u0 ·− (u1 ·− · · · ·− (um−2 ·− um−1) · · · ) ≈ r0 ·− (r1 ·− · · · ·− (rm−2 ·− rm−1) · · · ).

Now substitution gives

u0 ·− (u∗1 ·− · · · ·− (u∗m−2
·− u∗m−1) · · · ) ≈ r0 ·− (r∗1 ·− · · · ·− (r∗m−2

·− r∗m−1) · · · )
but {γ, ε} ` u∗i ≈ r∗i so we get

u0 ·− (u∗1 ·− · · · ·− (u∗m−2
·− u∗m−1) · · · ) ≈ r0 ·− (u∗1 ·− · · · ·− (u∗m−2

·− u∗m−1) · · · )

The Cancellation Lemma applied to the equation above gives

u0 ≈ r0
and, from (?), we get

u1 ·− · · · ·− (um−2 ·− um−1) · · · ) ≈ r1 ·− · · · ·− (rm−2 ·− rm−1) · · · ).

We can repeat this process to obtain δs,t ` ui ≈ ri for all i < m, which is what was to be proved. �

Comments at the end. The second of the three stages of our proof of the Main Theorem
departed from Walter Taylor’s approach. While Taylor did not take on the task of collapsing to a
single equation, this stage was a simple application of a theorem from the literature. A significant
difference between the two approaches lies in our use of the absolute value as a basic operation.
This came up in two places. In the first stage it was used to prove that f ′(0) was actually π

2 . In
the second stage, it was used to express the solvability of an inequality like F < 0 by the failure
of an equation like |F | ≈ F . This allowed us to avoid the nine additional constant symbols in
our negative solution to the Compatibility Problem for the real line, that are present in Taylor’s
approach. (Actually, Richardson (1968) invented a method for squeezing these nine constants down
to just one, see (McNulty, 2008) for an application appropriate here.) To get the correct value for
f ′(0) in the first stage, Taylor introduced a new one-place operation symbol λ and he replaces our
∆1 with the equation

sin∗(sin∗(x) + 1) = (λ(x))2.

While in Taylor’s setting it is not necessary that the interpretation of λ on the real line be deter-
mined, by replacing ∆1 by

∆′1 = {sin∗(sin∗(x) + 1) = (λ(x))2,λ(x+ 4) ≈ λ(x),λ(0) ≈ −1,λ(2) ≈ 1}

we see that ∆0 ∪∆′1 ∪∆2 determines the interpretation of λ as well. Taylor was even able to prove
that the function determined in this way is a real-analytic function on the real line. By combining
this with Richardson’s method of getting by with one constant and with the One Equation Collapse,
the following theorem emerges.
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Theorem at the End. In the signature of rings with unit, expanded by two one-place operation
symbols sin∗ and λ and one constant symbol, there is no algorithm for determining whether an
arbitrary equation is compatible with the real line, in the real analytic sense.



Appendix: From 9 to 1

The main objective of this series of lectures in the seminar was the negative solution to the
compatibility problem over the real line for single equations of signature τ . To achieve this objective
it was not necessary to develop Richardson’s method for squeezing down to one variable from nine.
On the other hand, this method has a number of interesting consequences, notably the Theorem at
the End. So in this appendix I provide an adaption of Richardson’s method suitable in our context.

Call a system 〈e0, e1, e2, . . . 〉 of functions on R a system of approximate decoding functions
if and only if given any natural number m, any real numbers χ0, . . . , χm−1, and any ε > 0, there is
a real number η so that |ei(η)− χi| < ε for all i < m.

Richardson’s Approximate Decoding Lemma. Let h(x) = x sinx and g(x) = x sinx3. Then

〈h(gi(x)) | i is a natural number〉 = 〈h(x), h(g(x), h(g(g(x)))), . . . 〉

is a system of approximate decoding functions.

A very short argument, given by Wang (1974), is needed to deduce the negative solution
Hilbert’s Tenth Problem for one variable with respect to 〈R,+, ·,−, 1, sin∗〉 from the Richardson
Inequality Lemma and Richardson’s Approximate Decoding Lemma. What is needed to prove our
Theorem at the End is a modification of Richardson’s Approximate Decoding Lemma.

1. How to make a system of approximate decoding functions

Our Decoding Lemma. Let h(x) = x sin∗ x and g(x) = x sin∗ x3. Then

〈ei(x) | i is a natural number〉 := 〈h(x), h(g(x), h(g(g(x)))), . . . 〉

is a system of approximate decoding functions.

For each i < n we let ei(x) be the obvious term that denotes the corresponding decoding
function ei in the algebra R∗.

Proof. The claim below is key to proving the Lemma. Our proof has been adapted from an
argument of Matiyasevich (1993). Richardson’s original argument can also be adapted in roughly
the same way.

Claim. Given any real numbers χ and ψ and any ε > 0, there is a real number η such that

|h(η)− χ| < ε

g(η) = ψ

18
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Proof of the Claim. It is harmless to suppose ε < 1. Fix an integer k so large that 4k−1 >
|χ| and 4k − 2 > |ψ| and

M
6(4k − 1)2

(2k + 1)π + 1
>

4
ε

Consider the closed interval [4k − 1, 4k + 1]. Notice

sin∗(4k − 1) = sin
π

2
(4k − 1) = sin(2πk − π

2
) = sin(−π

2
) = −1

sin∗(4k + 1) = sin
π

2
(4k + 1) = sin(2πk +

π

2
) = sin(

π

2
) = 1

So sin∗(x) maps [4k − 1, 4k + 1] onto [−1, 1]. Hence, the image of the interval [4k − 1, 4k + 1]
under the map h(x) must include the interval [−4k + 1, 4k + 1]. This means that there is η0 in
[4k − 1, 4k + 1] so that h(η0) = χ, since 4k − 1 > |χ| entails that −4k + 1 < χ < 4k + 1.

By continuity, h will map any sufficiently small interval about η0 into the interval about χ of
radius ε. Our argument depends on finding out how small sufficiently small must be. After a bit
of reverse engineering, we take

δ =
ε

(2k + 1)π + 1
.

Let ν be any element of [η0 − δ, η0 + δ]. According to the Mean Value Theorem, we pick η̂ in
[η0 − δ, η0 + δ] so that |h(ν)− h(η0)| ≤ |h′(η̂)|δ.

Now just observe

|h(ν)− χ| = |h(ν)− h(η0)|
≤ |h′(η̂)|δ

=
∣∣∣sin(

π

2
η̂) +

π

2
η̂ cos(

π

2
η̂)
∣∣∣ δ

≤
(

1 +
π

2
(η0 + δ)

)
δ

≤
(

1 +
π

2

(
4k + 1 +

ε

(2k + 1)π + 1

))
ε

(2k + 1)π + 1

≤
(

1 + 2kπ +
π

2
+

π

(4k + 2)π + 2

)
ε

(2k + 1)π + 1

<
(

1 + 2kπ +
π

2
+
π

2

) ε

(2k + 1)π + 1

= (1 + 2kπ + π)
ε

(2k + 1)π + 1

= ((2k + 1)π + 1)
ε

(2k + 1)π + 1
= ε

This means

|h(ν)− χ| < ε

for any ν in [η0 − δ, η0 + δ].
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So it remains to find η in [η0 − δ, η0 + δ] so that g(η) = ψ. Now the cubing function maps
[η0 − δ, η0 + δ] onto [(η0 − δ)3, (η0 + δ)3]. Also, observe

(η0 + δ)3 − (η0 − δ)3 = 6η2
0δ + 2δ3

≥ 6(4k − 1)2δ

= 6(4k − 1)2
ε

(2k + 1)π + 1

=
6(4k − 1)2

(2k + 1)π + 1
ε

>
4
ε
ε = 4

Therefore, as ν ranges over [η0− δ, η0 + δ] we find that ν3 ranges over an interval of length at least
4. In turn, this means that π

2 ν
3 ranges over an interval of length at least 2π. Consequently, as ν

ranges over [η0− δ, η0 + δ] we conclude that sin∗(ν3) = sin(π2 ν
3) takes on all values between −1 and

1.
Then g(ν) = ν sin∗(ν3) has to take on all values between δ − η0 and η0 − δ. Recall that

4k− 1 ≤ η0. Since we have |ψ| < 4k− 2, we know that ψ will lie between δ− η0 and η0 − δ and we
can pick η in [η0 − δ, η0 + δ] so that g(η) = ψ and |h(η) − χ| < ε, as desired. This completes the
proof of the Claim. �

Our whole line of reasoning in support of the Lemma can now be concluded by a straightforward
induction on the natural number m to the effect that for all reals χ0, . . . , χm−1 and every ε > 0,
there is ηm so that

|ei(ηm)− χi| < ε for all i < m.

The base step holds vacuously.
Here is the inductive step. Suppose reals χ0, . . . , χm are given along with ε > 0. The inductive

hypothesis applied to the system χ1, . . . , χm yields ηm so that

|ei(ηm)− χi| < ε for all i with 1 ≤ i ≤ m.

Use the Claim to obtain ηm+1 so that |h(ηm+1)− χ0| < ε and g(ηm+1) = ηm.
It follows that

|e0(ηm+1)− χ0| = |h(ηm+1)− χ0| < ε

|e1(ηm+1)− χ1| = |e0(g(ηm+1))− χ1| = |e0(ηm)− χ1| < ε

|e2(ηm+1)− χ2| = |e1(g(ηm+1))− χ2| = |e1(ηm)− χ2| < ε

...

|em(ηm+1)− χm| = |em−1(g(ηm+1))− χm| = |em−1(ηm)− χm| < ε,

which is exactly what we need. We have devised a system of approximate decoding functions from
just · and sin∗. This completes the proof of the Lemma. �
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2. Just one unknown: Hilbert’s Tenth Problem for R∗

Let R∗ be the algebra 〈R,+, ·,−, 1, sin∗〉.

A Negative Solution to Hilbert’s Tenth Problem in One Unknown for R∗. There is no
algorithm for determining whether an equation of signature τ∗ in one variable is solvable in R∗.

We repeat here Wang’s proof, with one small change (as Wang allowed the rational number 1
2).

With each polynomial p(x0, . . . , x8) with integer coefficients we will associate a term Gp(x) in
the signature of R∗ so that the following are equivalent

(i) p(x0, . . . , x8) ≈ 0 has a solution in the integers
(ii) Gp(x) < 0 has a solution in the real numbers

(iii) Gp(x) ≈ 0 has a solution in the real numbers.

Moreover, there will be an algorithm which upon input of p(x0, . . . , x8) will output the associated
Gp(x). In this way Hilbert’s 10th Problem in one variable for R∗ will be reduced to Hilbert’s 10th

Problem in n variables for the ring of integers, and our Theorem will be established.
First, let Hp(x0, . . . , x8) be the term

2(102)

[
p2(x0, . . . , x8) +

∑
i<9

(sin∗ 2xi)2k2
i (x0, . . . , x8)

]
−1,

where the terms ki(x0, . . . , x8) come from the Richardson Inequality Lemma.
Notice that Hp(x0, . . . , x8) = 2Fp(x0, . . . , x8)+1, where Fp(x0, . . . , x8) also comes from the

Richardson Inequality Lamma.
Finally, put

Gp(x) = Hp(e0(x), e1(x), . . . , e8(x)) = 2Fp(e0(x), . . . , e8(x)) +1 .

Now it follows from our Lemma by the continuity of Hp that

Hp(b0, . . . , b8) < 0 for some b0, . . . , b8 ∈ R

if and only if

Gp(η) = Hp(e0(η), . . . , e8(η)) < 0 for some η ∈ R.

A similar equivalence prevails with the inequalities going in the other direction.
First, we argue that (i) imples (ii) implies (iii). Suppose that a0, . . . , a8 are integers so that

p(a0, . . . , a8) = 0. Then Fp(a0, . . . , a8) = −1, which implies that Hp(a0, . . . , a8) = −1 as well.
Consequently, Gp(µ) is negative for some real number µ. On the other hand it is easy to see that
Hp(π4 , . . . ,

π
4 ) must be positive. So Gp(ν) must be positive for some real number ν, by our Lemma

and the continuity of Hp. By the Intermediate Value Theorem there must be a real number η so
that Gp(η) = 0.

To see that (iii) implies (i), suppose that Gp(η) = 0. Then there are real numbers β0, . . . , β8

so that 0 = 2Fp(β0, . . . , β8) + 1. This means that Fp(β0, . . . , β8) is negative. By the Richardson
Inequality Lemma, we conclude that p(x0, . . . , x8) ≈ 0 has a solution in the integers.

That’s all that needed to be proved.
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3. Proofs at the End

Theorem at the End. In the signature of rings with unit, expanded by two one-place operation
symbols sin∗ and λ and one constant symbol, there is no algorithm for determining whether an
arbitrary equation is compatible with the real line, in the real analytic sense.

Proof. Let τ ′ be the signature with operation symbols

+, ·,−,1, sin∗,λ, c
where c is a new constant symbol. We reduce Hilbert’s 10th Problem in one variable for R∗ to the
equational compatibility problem for R and τ ′. We just proved above that the former problem is
algorithmically unsolvable, hence the equational compatibility problem must also be algorithmically
unsolvable.

Let ∆ = ∆0 ∪∆′1 ∪∆2 and let Γ be any finite set of equations of the signature of R∗ so that x
is the only variable to occur in Γ. Let Γ′ result from Γ by substituting the constant symbol c for
the variable x. We contend that

Γ has a solution in R∗ if and only if ∆ ∪ Γ′ is compatible with R.
The left-to-right implication is immediate from the natural interpretations for the operation sym-
bols. The right-to-left implication is immediate since ∆ determines R∗ according to the modified
Finite Determination Theorem.

Now, we complete the proof by appealing to the One Equation Collapse. �

The One-Variable Equational Undecidability Theorem. The one-variable equational theory
of 〈R,+, ·,−, 1, sin∗, | |〉 is algorithmically undecidable.

Proof. In Section 2 we noted that there is an algorithm which given any polynomial p with
integer coefficients will produce a term Gp(x) in one variable so that

p(x0, . . . , xn−1) ≈ 0 has a solution in the integers
if and only if

Gp(x) < 0 has a solution in the real numbers
if and only if

Gp(x) ≈ 0 has a solution in the real numbers.

It is our contention that the one-variable equation |Gp(x)| ≈ Gp(x) fails in R if and only if
p(x0, . . . , xn−1) ≈ 0 has a solution in the integers.

This contention holds since p(x0, . . . , xn−1) ≈ 0 has a solution in the integers if and only if
Gp(x) < 0 has a solution in the reals if and only if the equation |Gp(x)| ≈ Gp(x) fails in R.

So Hilbert’s 10th Problem over the integers reduces to the algorithmic decision problem for the
one-variable equational theory of R. Hence that latter problem must be algorithmically undecid-
able. �
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1992 Cours d’analyse de l’École Royale Polytechnique. Première partie, Instrumenta Rationis. Sources for the

History of Logic in the Modern Age, VII, Cooperativa Libraria Universitaria Editrice Bologna, Bologna
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