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The equational compatibility problem for the real line

George F. McNulty

In Celebration of the Accomplishments of George A. Grätzer and E. T. Schmidt

Abstract. Walter Taylor proved recently that there is no algorithm for deciding of a finite
set of equations whether it is topologically compatible with the real line in the sense that it

has a model with universe R and with basic operations which are all continuous with respect

to the usual topology of the real line. Taylor’s account used operation symbols suitable for
the theory of rings with unit together with three unary operation symbols intended to

name trigonometric functions supplemented finally by a countably infinite list of constant

symbols. We refine Taylor’s work to apply to single equations using operation symbols for
the theory of rings with unit supplemented by two unary operation symbols and at most

one additional constant symbol.

Introduction

Let T be a topological space and let Γ be a set of equations. We will say that
Γ is compatible with T if there is an algebra T with universe T whose basic
operations are continuous such that Γ is true in T. We say that an equation s ≈ t
is compatible with T when {s ≈ t} is. By a signature we mean a system of
operation symbols each equipped with a natural number to specify its rank (i.e.
its number of arguments). Thus a signature is a function that assigns ranks to
operation symbols. Let ρ be a countable computable signature.

The Equational Compatibility Problem for T and ρ
Is there an algorithm for determining of any finite set Γ of equations
of signature ρ whether Γ is compatible with T?

This problem is algorithmically unsolvable if no such algorithm exists.
Walter Taylor proved in [18] that the equational compatibility problem is algo-

rithmically unsolvable for the real line and the signature of ring theory enhanced
by three additional operation symbols of rank 1 and a countably infinite number of
constant symbols. In fact, Taylor devised a method for establishing the algorithmic
unsolvability of equational compatibility problems. His method has two parts: a
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topological finite determination theorem and the algorithmic unsolvability of an
appropriate variant of Hilbert’s 10th Problem. Let T be a topological space, ρ be a
signature, and let T be an algebra of signature ρ with universe T for which all the
basic operations are continuous. The topological algebra T is finitely determined
provided there is a finite set Σ of equations of signature ρ which is compatible with
T and up to isomorphism (simultaneously algebraic and topological) T is the only
topological algebra of signature ρ with universe T which is a topological model of
Σ. We also say that T is determined by Σ.

For the second element of Taylor’s method we formulate:
Hilbert’s 10th Problem in n variables for the algebra T
Is there an algorithm for determining of any finite set Γ of equations
in no more than n variables whether Γ has a solution in T?

This problem is algorithmically unsolvable if no such algorithm exists.
Taylor’s method is predicated on establishing for a given topological algebra T

of signature ρ that it is determined by some finite set Σ of equations and that
Hilbert’s 10th Problem in n variables for T is not solvable algorithmically. Then
the algorithmic unsolvability of the Equational Compatibility Problem for T and a
certain signature ρ′ can be deduced from these two results as follows. Expand the
signature ρ by n new constant symbols c0, c1, . . . , cn−1 to obtain the signature ρ′

and for each finite set Γ of equations of signature ρ in the variables x0, x1, . . . , xn−1

associate the set Γ′ of equations by substituting the constant symbol ci for the
variable xi, for each i < n. Then

Γ has a solution in T if and only if Σ ∪ Γ′ is compatible with T.

This reduces Hilbert’s 10th Problem in n variables for the algebra T to the equa-
tional compatibility problem for T and ρ′.

Taylor carried out this method for the real line using the topological algebra

〈R,+, ·,−, 0, 1, sin∗, cos∗, λ〉

where sin∗(χ) := sin(π2χ) and cos∗(χ) := cos(π2χ) for all real numbers χ, and where
λ is a certain function (described more precisely later) which satisfies (λ(χ))2 =
cos∗(sin∗(χ)) for all real numbers χ. We reserve σ to denote the signature of this
algebra and σ′ to denote its expansion by a countably infinite list of additional
constant symbols. Taylor set no bound on the number of variables in Hilbert’s 10th

Problem for this algebra, leading to all those additional constant symbols.
Taylor also considered smoothness conditions more stringent than continuity for

the operations. For each natural number n, the set Cn consists of those operations
on R for which all partial derivatives of order n exist and are continuous. A set
of equations is Cn-compatible with the real line provided the set of equations has
a model with universe R all of whose operations belong to Cn. Compatibility and
C0-compatiblity coincide. More stringent yet, a set of of equations is real analytic
compatible with the real line if all the operations can be chosen to be real analytic.

Recall that two collections A and B are said to be recursively inseparable
provided every collection C which includes A and is dijoint from B must have an
algorithmically unsolvable membership problem. As Taylor notes, his algorithmic
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unsolvability results concerning the several variants of the campatibility problem
are all corollaries of the theorem below.

Taylor’s Inseparability Theorem. Let the signature be σ′. The collection of
finite sets of equations which are not compatible with the real line is recursively
inseparable from the collection of finite sets of equations which are real analytic
compatible with the real line.

Here we refine this result in two ways. First, we are able to simplify the signa-
tures; in particular, we need no more than one additional constant symbol. Second,
we can replace compatibility of finite sets of equations by compatibility of single
equations. Where Taylor focussed on one topological algebra, we will consider
infinitely many. Let

Rra := 〈R,+, ·,−, 1, sin∗, λ〉

and for each natural number n let

Rn := 〈R,+, ·,−, 1, sin∗, | |n〉

where |χ|n = |χ|2n+1 for all real numbers χ. It is known (and easy) that | |n
belongs to C2n and hence to Cn. Taylor proved in [18] that λ is real analytic. In
the interests of parsimony, we have dropped the operation cos∗ and the constant
0, which are definable by terms from the remaining operations. All these algebras
have a common signature which we will denote by τ . We use τ ′ to denote the
signature obtained by expanding τ with a single new constant symbol c. Here is
our main result.

The Main Inseparability Theorem.

(a.) Let the signature be τ and let n be any natural number. The collection of
equations which are not compatible with the real line is recursively inseparable
from the collection of equations which are Cn-compatible with the real line.

(b.) Let the signature be τ ′. The collection of equations which are not compatible
with the real line is recursively inseparable from the collection of equations
which are real analytic compatible with the real line.

This theorem is proven in Section 7.
In 1967 George A. Grätzer and Ralph N. McKenzie [1] announced that any finite

set of equations which includes the axioms for rings with unit is logically equivalent
to a single equation. A version of their proof can be found in [2]. Independently,
in 1966 Alfred Tarski announced the same result, see [17]. A version of Tarski’s
proof can be found in [13]. Each of these methods is constructive: they provide
algorithms which, given any finite set Σ of equations which includes the axioms for
rings with unit, will produce a single equation sΣ ≈ tΣ which is logically equivalent
to Σ. We refer to the logical equivalence of Σ with sΣ ≈ tΣ as the one equation
collapse. Since the equational axioms for rings with unit hold in each of the
algebras displayed above, we are able to replace the consideration of finite sets of
equations with the consideration of single equations.
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To reduce the signatures σ and σ′ to τ and τ ′ we appeal to methods originated by
Daniel Richardson in 1968, see [14]. For part (a) of the Main Inseparability Theorem
we also modify Taylor’s approach, invoking the undecidability of the (one variable)
equational theory of Rn rather than the algorithmic unsolvability of Hilbert’s 10th

Problem.
The following theorems are what we will need to establish the Main Inseparability

Theorem.

Theorem 0. Each of the algebras Rra and Rn for each natural number n is finitely
determined.

Section 1 discusses how to adapt Walter Taylor’s arguments to establish this
theorem.

Theorem 1. For each of the algebras Rra and Rn for each natural number n, there
is no algorithm which will determine of any equation in one variable whether it has
a solution in the algebra.

Thus, Hilbert’s 10th Problem in 1 variable is algorithmically unsolvable for any
of the algebras Rn and Rra, even when restricted to single equations. Hilbert’s 10th

Problem is discussed in Section 2. Following an overview of the methods originated
by Richardson and some adjustments to these methods in Sections 3 and 4, we
prove Theorem 1 in Section 5.

Theorem 2. For each natural number n there is no algorithm which will determine
of any equation (in one variable) whether it is true in Rn.

A proof of this theorem is given in Section 6.
As corollaries of the Main Inseparability Theorem, we see that each of the fol-

lowing problems is algorithmically unsolvable:
I. To determine of an arbitrary equation of signature τ whether it is compatible

with the real line.
II. (For each natural number n) To determine of an arbitrary equation of signa-

ture τ whether it is Cn-compatible with the real line.
III. To determine of an arbitrary equation of signature τ ′ whether it is C∞-

compatible with the real line.
IV. To determine of an arbitary equation of signature τ ′ whether it is real analytic

compatible with the real line.
I would like to thank Walter Taylor for his patient reading many earlier versions

of this paper and for his helpful advice.

1. Finite determination: establishing Theorem 0

To distinguish the operation symbols of a signature from the basic operations
of an algebra, we use boldface for the symbols. So the operation symbols of the
signature τ will be

+, ·,−,1, sin∗, and λ or one of | |n.
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Strictly speaking, we should use only one unary operation symbol rather than
providing λ and its infinitely many alternatives. We abuse the notation to increase
readability.

Let ∆ be the set of equations listed below, which axiomatize the theory of com-
mutative rings with unit.

x+ (y + z) ≈ (x+ y) + z x · (y · z) ≈ (x · y) · z
x+ y ≈ y + x x · y ≈ y · x

x+ (−1 + 1) ≈ x x · 1 ≈ x
x+ (−x) ≈ −1 + 1 x · (y + z) ≈ x · y + x · z

Let ∆n be the set of equations listed below.

sin∗(x+ y)− sin∗(x− y) ≈ 2 sin∗ y sin∗(x+ 1) sin∗ 1 ≈ 1

(sin∗(sin∗(x) + 1))2n+1 ≈ | sin∗(sin∗(x) + 1)|n |x · x|n ≈ | − (x · x)|n
|x · x|n ≈ (x · x)2n+1

Finally, let ∆ra be the set of the equations listed below.

sin∗(x+ y)− sin∗(x− y) ≈ 2 sin∗ y sin∗(x+ 1) sin∗ 1 ≈ 1

sin∗(1 + sin∗(x)) ≈ (λ(x))2 λ(x+ 4) ≈ λ(x)

λ(0) ≈ −1 λ(2) ≈ 1

In [18], Taylor proved ∆ determines 〈R,+, ·,−, 1〉. By invoking continuity, espe-
cially the familiar intermediate value property of continuous real functions of one
variable, Taylor is able to take advantage of the characterization of R as the essen-
tially unique completely ordered field. In principle, Taylor also proved that ∆∪∆ra

determines Rra. Taylor chose a different set of equally familiar trigonometrc iden-
tities, using both sin∗ and cos∗ in place of the first two equations in ∆ra. Taylor
applies some well-known results from the theory of functional equations, a branch
of mathematics with a long history, to conclude that sin∗ denotes a function of the
form sin(αχ) for all real numbers χ. Indeed, such findings trace back the d’Alembert
in the middle of the eighteenth century and to an 1821 treatise of Cauchy. The
same can be said of the first two equations we chose for ∆ra. See the readable 1955
account of Vaughan in [20], where the result is deduced from the integrability of
continuous functions using Riemann sums, and from the solution to second order
differential with constant coefficients. To determine the value of α as π

2 , Taylor
required that sin∗(1 + sin∗ x) be nonnegative. The third of the equations listed in
∆ra and in ∆n ensure this nonnegativity. The remaining equations in ∆ra and in
∆n are needed to determine the functions λ and | |n.

In this way, Walter Taylor’s reasoning in [18] can be adjusted to prove our
Theorem 0.
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2. Hilbert’s 10th Problem

Recall
Hilbert’s 10th Problem in n variables for the algebra T
Is there an algorithm for determining of any finite set Γ of equations
in no more than n variables whether Γ has a solution in T?

As Hilbert originally framed the problem (for the ring of integers), there was no fi-
nite bound on the number of variables under consideration. The negative resolution
of Hilbert’s 10th Problem actually provides such a bound.

A set A of integers is said to be Diophantine provided there are polynomials
p(x, y0, . . . , yn−1) and q(x, y0, . . . , yn−1) with integer coefficients such that

A = {k | p(k, y0, . . . , yn−1 ≈ q(k, y0, . . . , yn−1) has a solution in the integers}.

This notion can be extended to give meaning to an m-ary relation or a k-ary
function on the integers being Diophantine.

In 1950 it was conjectured by Martin Davis [4] (see also [5]) that the Diophantine
sets were exactly the sets for which there are algorithms for listing their elements
(in no particular order and with repetitions allowed in the list). While this seemed
very doubtful at the time, Martin Davis, Hilary Putnam, and Julia Robinson [7]
were able to show in 1961 that it was true, provided the operations allowed in
building the “polynomials” p and q included the exponential function 2x. Not only
did they prove that the exponential Diophantine sets were exactly the listable sets,
but they also proved that if any function exhibiting roughly exponential growth is
Diophantine in the ordinary sense then the Diophantine sets and the listable sets
coincide. Other notable references are the 1958 paper of Martin Davis and Hilary
Putnam [6] and the 1960 abstract of Julia Robinson [15]. In 1970 Yuri Matiyasevich
[9] demonstrated that a function with exponential growth related to the Fibonacci
sequence was in fact Diophantine. In this way Davis’s Conjecture was verified.
Since it had been established in 1936 by Alan Turing [19] that there are listable
sets which have algorithmically unsolvable membership problems, Hilbert’s Tenth
Problem is seen to have negative solution in a strong sense. A fully detailed and
highly readable exposition of this result and related matters was given in 1993 by
Yuri Matiyasevich [12].

Let H be a set of integers whose characteristic function is not algorithmic (that
is membership in H cannot be determined algorithmically) but which is never-
theless listable. There is a particular natural number n and specific polynomials
p(x, y0, . . . , yn−1) and q(x, y0 . . . , yn−1) such that

H = {k | p(k, y0, . . . , yn−1) ≈ q(k, y0, . . . , yn−1) has a solution in the integers}.

The smallest known value for n is 9. This was discovered by Matiyasevich. A
detailed exposition can be found in [8]. In particular, this means that there is no
algorithm for determining of an arbitrary Diophantine equation in no more than 9
variables, whether it is solvable in the integers.

On the other hand, Hilbert’s 10th Problem has long been known to be algorth-
mically solvable, as a result of Tarski’s decision method [16], when formulated for
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the ring of real numbers or the ring of complex numbers. The situation arising from
the expansion of the ring of reals (or of complex numbers) by various exponential
and trigonometric functions has attracted considerable attention. In particular,
Matiyasevich [12] has been able to show that Hilbert’s 10th Problem in 1 vari-
able for the algebra 〈R,+, ·,−, 0, 1, sin〉 is algorithmically unsolvable. This result
of Matiyasevich depends substantially on earlier work of Daniel Richardson [14] in
1968, B. F. Caviness [3] in 1970, and Paul Wang [21] from 1974. Indeed, Wang’s
result differs from that of Matiyasevich essentially only because Wang needed to
include π as a constant of the algebra. However, this result is not quite suitable
since we must contend with the function sin∗ rather than the function sin. We
modify a key argument of Richardson below.

3. The methods of Richardson, Wang, and Matiyasevich

Richardson’s 1968 paper contains a number of interesting results, among which
we draw attention to the three which are directly relevant here.

Richardson’s First Theorem. There is a natural number n so that Hilbert’s 10th

Problem in n variables for R† = 〈R,+, ·,−, 0, 1, exp, sin, ln 2, π, q〉q∈Q is algorithmi-
cally unsolvable.

Let υ be the signature appropriate to the algebra R† over the reals that occurs
in the statement of Richardson’s First Theorem.

Richardson’s Second Theorem. There is no algorithm which, given a term t(x)
of signature υ in no more than one variable, will determine if there is a real number
r such that tR

†
(r) is negative.

Let R‡ = 〈R,+, ·,−, 0, 1, exp, sin, | |, ln 2, π, q〉q∈Q. Richardson also proved

Richardson’s Third Theorem. The one-variable equational theory of R‡ is al-
gorithmically undecidable.

Daniel Richardson’s work was accomplished before Matiyasevich completed the
resolution of Hilbert’s 10th Problem. Instead, Richardson used the result of Davis,
Putnam, and Robinson [7] that the version of Hilbert’s 10th Problem over the inte-
gers for exponential Diophantine equations is algorithmically unsolvable. For this
reason, Richardson considered an algebra over the reals which included among its
basic operations the natural exponential function and, as a distinguished constant,
the natural logarithm of 2. The latter was needed since the Davis-Putnam-Robinson
exponential Diophantine equations involved 2x and Richardson’s method invoked
partial derivatives. The other basic operations Richardson demanded over the reals
were the ring operations of addition, multiplication, negation, 0, and 1, the sine
function, π as a distinguished constant, and a distinguished constant for each ra-
tional. For his Third Theorem he needed the absolute value function as well. A
careful reading of Richardson’s work [14] shows that all those rationals (apart from
1) need not be distinguished as constants. B. F. Caviness [3], also not yet aware
of Matiyasevich’s work, points out that in the event that Hilbert’s 10th Problem
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is algorithmically unsolvable (as it indeed is), then the exponential function and
ln 2 can be dropped as basic operations from Richardson’s results. Caviness also
simplified some parts of Richardson’s argument.

By 1974, the time of Paul Wang’s paper [21], the resolution of Hilbert’s 10th

Problem by Matiyasevich was known. Let

R? = 〈R,+, ·,−, 0, 1, sin, π, q〉q∈Q.

Wang was able to show

Wang’s Theorem. Hilbert’s 10th Problem in 1 variable for R? is algorithmically
unsolvable.

In section 9.2 of his book [12] Matiyasevich presents an exposition of a version of
these results. In the process he drops the rationals as distinguished constants and,
more surprisingly, is able to drop π as well, leaving only the ring operations and
the sine function. However, it is Wang’s Theorem to which we will appeal most
directly. Except at one important point, the way in which π and the sine function
enter into Richardson’s original argument, and into its subsequent adaptations by
Caviness and Wang, is in expressions like

Fp(x0, . . . , xn−1) = (n+1)2

[
p2(x0, . . . , xn−1) +

∑
i<n

(sin2πxi)ki(x0, . . . , xn−1)

]
−1

where p(x0, . . . , xn−1) and ki(x0, . . . , xn−1) are certain polynomials with integer
coefficients. Such expressions can be easily framed in terms of Taylor’s sin∗ instead
of in terms of sin and π:

Fp(x0, . . . , xn−1) = (n+1)2

[
p2(x0, . . . , xn−1) +

∑
i<n

(sin∗2xi)2ki(x0, . . . , xn−1)

]
−1

Now Richardson’s Second Theorem and Wang’s Theorem depend on two lemmas.
Here is the first:

The Richardson-Caviness Inequality Lemma. There is an algorithm which
given any polynomial p(x0, . . . , xn−1) with integer coefficients will produce n poly-
nomials k0(x0, . . . , xn−1), . . . , kn−1(x0, . . . , xn−1) also with integer coefficients such
that these polynomials exceed 1 when evaluated at any n-tuple of reals, and such
that the following statements are equivalent:

(i) there is a solution of p(x0, . . . , xn−1) ≈ 0 over the integers;
(ii) there is an n-tuple of real numbers to which the term function denoted by

Fp(x0, . . . , xn−1) over the reals assigns a value less than 0.

The proofs of this lemma found in [14, 3, 21] all carry over without significant
change when framed in terms of sin∗ in place of sin and π. It is interesting to note
that these arguments make use of the Mean Value Theorem in Several Variables.

The second lemma is the key to squeezing down to one variable. Call a system
〈e0, e1, e2, . . .〉 of functions on R a system of approximate decoding functions if
and only if given any natural number m, any real numbers χ0, . . . , χm−1, and any
ε > 0, there is a real number η so that |ei(η)− χi| < ε for all i < m.
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Richardson’s Approximate Decoding Lemma. Let h(x) = x sinx and g(x) =
x sinx3. Then

〈h(gi(x)) | i is a natural number〉 = 〈h(x), h(g(x), h(g(g(x)))), . . . 〉

is a system of approximate decoding functions.

A very short argument, given by Wang in [21], is needed to deduce Wang’s The-
orem from the Richardson-Caviness Inequality Lemma and Richardson’s Approxi-
mate Decoding Lemma. What is needed to prove our Theorem 1 is a modification
of Richardson’s Approximate Decoding Lemma.

4. How to make a system of approximate decoding functions

Approximate ∗-Decoding Lemma. Let h(x) = x sin∗ x and g(x) = x sin∗ x3.
Then

〈ei(x) | i is a natural number〉 := 〈h(x), h(g(x), h(g(g(x)))), . . . 〉

is a system of approximate decoding functions.

For each i < n we let ei(x) be the obvious term that denotes the corresponding
decoding function ei in the algebra Rra and in each of the algebras Rn.

Proof. The claim below is key to proving the Approximate ∗-Decoding Lemma. Our
proof has been adapted from an argument of Matiyasevich in [12]. Richardson’s
original argument can also be adapted in roughly the same way.

Claim. Given any real numbers χ and ψ and any ε > 0, there is a real number η
such that

|h(η)− χ| < ε

g(η) = ψ.

Proof of the Claim. It is harmless to suppose ε < 1. Fix an integer k so large that
4k − 1 > |χ| and 4k − 2 > |ψ| and

6(4k − 1)2

(2k + 1)π + 1
>

4
ε
.

Consider the closed interval [4k − 1, 4k + 1]. Notice

sin∗(4k − 1) = sin
π

2
(4k − 1) = sin(2πk − π

2
) = sin(−π

2
) = −1

sin∗(4k + 1) = sin
π

2
(4k + 1) = sin(2πk +

π

2
) = sin(

π

2
) = 1

So sin∗(x) maps [4k − 1, 4k + 1] onto [−1, 1]. Hence, the image of the interval
[4k − 1, 4k + 1] under the map h(x) must include the interval [−4k + 1, 4k + 1].
This means that there is η0 in [4k− 1, 4k+ 1] so that h(η0) = χ, since 4k− 1 > |χ|
entails that −4k + 1 < χ < 4k + 1.
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By continuity, h will map any sufficiently small interval about η0 into the interval
about χ of radius ε. Our argument depends on finding out how small sufficiently
small must be. After a bit of reverse engineering, we take

δ =
ε

(2k + 1)π + 1
.

Let ν be any element of [η0 − δ, η0 + δ]. According to the Mean Value Theorem,
we pick η̂ in [η0 − δ, η0 + δ] so that |h(ν)− h(η0)| ≤ |h′(η̂)|δ.

Now just observe

|h(ν)− χ| = |h(ν)− h(η0)|
≤ |h′(η̂)|δ

=
∣∣∣sin(

π

2
η̂) +

π

2
η̂ cos(

π

2
η̂)
∣∣∣ δ

≤
(

1 +
π

2
(η0 + δ)

)
δ

≤
(

1 +
π

2

(
4k + 1 +

ε

(2k + 1)π + 1

))
ε

(2k + 1)π + 1

≤
(

1 + 2kπ +
π

2
+

π

(4k + 2)π + 2

)
ε

(2k + 1)π + 1

<
(

1 + 2kπ +
π

2
+
π

2

) ε

(2k + 1)π + 1

= (1 + 2kπ + π)
ε

(2k + 1)π + 1

= ((2k + 1)π + 1)
ε

(2k + 1)π + 1
= ε

This means
|h(ν)− χ| < ε

for any ν in [η0 − δ, η0 + δ].
So it remains to find η in [η0 − δ, η0 + δ] so that g(η) = ψ. Now the cubing

function maps [η0 − δ, η0 + δ] onto [(η0 − δ)3, (η0 + δ)3]. Also, observe

(η0 + δ)3 − (η0 − δ)3 = 6η2
0δ + 2δ3

≥ 6(4k − 1)2δ

= 6(4k − 1)2 ε

(2k + 1)π + 1

=
6(4k − 1)2

(2k + 1)π + 1
ε

>
4
ε
ε = 4

Therefore, as ν ranges over [η0− δ, η0 + δ] we find that ν3 ranges over an interval of
length at least 4. In turn, this means that π

2 ν
3 ranges over an interval of length at

least 2π. Consequently, as ν ranges over [η0− δ, η0 + δ] we conclude that sin∗(ν3) =
sin(π2 ν

3) takes on all values between −1 and 1.
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Then g(ν) = ν sin∗(ν3) has to take on all values between δ−η0 and η0−δ. Recall
that 4k−1 ≤ η0. Since we have |ψ| < 4k−2, we know that ψ will lie between δ−η0

and η0− δ and we can pick η in [η0− δ, η0 + δ] so that g(η) = ψ and |h(η)−χ| < ε,
as desired. This completes the proof of the Claim. �

Our whole line of reasoning in support of the Approximate ∗-Decoding Lemma
can now be concluded by a straightforward induction on the natural number m to
the effect that for all reals χ0, . . . , χm−1 and every ε > 0, there is ηm so that

|ei(ηm)− χi| < ε for all i < m.

The base step holds vacuously.
Here is the inductive step. Suppose reals χ0, . . . , χm are given along with ε > 0.

The inductive hypothesis applied to the system χ1, . . . , χm yields ηm so that

|ei(ηm)− χi| < ε for all i with 1 ≤ i ≤ m.

Use the Claim to obtain ηm+1 so that |h(ηm+1)− χ0| < ε and g(ηm+1) = ηm.
It follows that

|e0(ηm+1)− χ0| = |h(ηm+1)− χ0| < ε

|e1(ηm+1)− χ1| = |e0(g(ηm+1))− χ1| = |e0(ηm)− χ1| < ε

|e2(ηm+1)− χ2| = |e1(g(ηm+1))− χ2| = |e1(ηm)− χ2| < ε

...

|em(ηm+1)− χm| = |em−1(g(ηm+1))− χm| = |em−1(ηm)− χm| < ε,

which is exactly what we need. We have devised a system of approximate decoding
functions from just · and sin∗. This completes the proof of the Approximate ∗-
Decoding Lemma. �

5. Just one unknown: The proof of Theorem 1

Theorem 1. For each of the algebras Rra and Rn for each natural number n, there
is no algorithm which will determine of any equation in one variable whether it has
a solution in the algebra.

Proof. We repeat here Wang’s argument, with one small change (as Wang allowed
the rational number 1

2 ). Let R be any of the algebras mentioned in the statement
of the theorem.

With each polynomial p(x0, . . . , x8) with integer coefficients we will associate a
term Gp(x) in signature τ so that the following are equivalent

(i) p(x0, . . . , x8) ≈ 0 has a solution in the integers
(ii) Gp(x) < 0 has a solution in the real numbers

(iii) Gp(x) ≈ 0 has a solution in the real numbers.
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Moreover, there will be an algorithm which upon input of p(x0, . . . , x8) will output
the associated Gp(x). In this way Hilbert’s 10th Problem in one variable for R will
be reduced to Hilbert’s 10th Problem in 9 variables for the ring of integers, and
Theorem 1 will be established.

First, let Hp(x0, . . . , x8) be the term

2(10)2

[
p2(x0, . . . , x8) +

∑
i<n

(sin∗ 2xi)2ki(x0, . . . , x8)

]
−1,

where the terms ki(x0, . . . , x8) are the ones from the Richardson-Caviness Inequality
Lemma.

Notice that Hp(x0, . . . , x8) = 2Fp(x0, . . . , x8)+1, where Fp(x0, . . . , x8) comes
from the Richardson-Caviness Inequality Lamma as well.

Finally, put

Gp(x) = Hp(e0(x), e1(x), . . . , e8(x)) = 2Fp(e0(x), . . . , e8(x)) +1 .

Now it follows from the Approximate ∗-Decoding Lemma by the continuity of
Hp that

Hp(b0, . . . , b8) < 0 for some b0, . . . , b8 ∈ R
if and only if

Gp(η) = Hp(e0(η), . . . , e8(η)) < 0 for some η ∈ R.
A similar equivalence prevails with the inequalities going in the other direction.

First, we argue that (i) imples (ii) implies (iii). Suppose that a0, . . . , a8 are
integers so that p(a0, . . . , a8) = 0. Then Fp(a0, . . . , a8) = −1, which implies that
Hp(a0, . . . , a8) = −1 as well. Consequently, Gp(µ) is negative for some real number
µ. On the other hand it is easy to see that Hp(π4 , . . . ,

π
4 ) must be positive. So

Gp(ν) must be positive for some real number ν, by the Approximate ∗-Decoding
Lemma and the continuity of Hp. By the Intermediate Value Theorem there must
be a real number η so that Gp(η) = 0.

To see that (iii) implies (i), suppose that Gp(η) = 0. Then there are real num-
bers β0, . . . , β8 so that 0 = 2Fp(β0, . . . , β8) + 1. This means that Fp(β0, . . . , β8)
is negative. By the Richardson-Caviness Inequality Lemma, we conclude that
p(x0, . . . , x8) ≈ 0 has a solution in the integers. �

6. Just one variable: Proof of Theorem 2

Theorem 2. For each natural number n there is no algorithm which will determine
of any equation (in one variable) whether it is true in Rn.

Proof. In Section 5 we noted that there is an algorithm which given any polynomial
p(x0, . . . , x8) with integer coefficients will produce a term Gp(x) in one variable so
that

p(x0, . . . , x8) ≈ 0 has a solution in the integers
if and only if

Gp(x) < 0 has a solution in the real numbers
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It is our contention that the one-variable equation |Gp(x)|n ≈ (Gp(x))2n+1 fails
in Rn if and only if p(x0, . . . , x8) ≈ 0 has a solution in the integers.

This contention holds since p(x0, . . . , x8) ≈ 0 has a solution in the integers
if and only if Gp(x) < 0 has a solution in the reals if and only if the equation
|Gp(x)|n ≈ (Gp(x))2n+1 fails in Rn.

So Hilbert’s 10th Problem over the integers reduces to the algorithmic decision
problem for the one-variable equational theory of Rn. Hence that latter problem
must be algorithmically undecidable. �

7. Proof of the Main Inseparability Theorem

The Main Inseparability Theorem.
(a.) Let the signature be τ and let n be any natural number. The collection of

equations which are not compatible with the real line is recursively inseparable
from the collection of equations which are Cn-compatible with the real line.

(b.) Let the signature be τ ′. The collection of equations which are not compatible
with the real line is recursively inseparable from the collection of equations
which are real analytic compatible with the real line.

There is a well-known method for establishing recursive inseparability results.
We will use it to prove the Main Inseparability Theorem. Loosely speaking, the
method runs as follows. We say that a set U has an algorithmically unsolvable
membership problem when there is no algorithm for determining of an input u
whether u ∈ U . The recursive inseparability of two sets A and B follows from the
existence of an algorithm Φ with the following properties:

(i.) If u ∈ U , then Φ(u) ∈ B.
(ii.) If u /∈ U , then Φ(u) ∈ A.

Indeed, suppose that A ⊆ C with C and B disjoint. We see that if u ∈ U , then
Φ(u) ∈ B and so Φ(u) /∈ C. On the other hand, if u /∈ U , then Φ(u) ∈ A and so
Φ(u) ∈ C. This means u ∈ U if and only if Φ(u) /∈ C. Therefore, the membership
problem for U reduces to the membership problem for C. Since the membership
problem for U is algorithmically unsolvable, we see that the membership problem
for C must also be algorithmically unsolvable. It follows that A and B are recusively
inseparable.

Proof of the Main Inseparability Theorem. For part (a) we take U to be the set
of all equations of signature τ which are true in Rn and in which x is the only
variable to occur. We take A to be the set of equations of signature τ which are not
compatible with the real line and we take B to be the set of equations of signature
τ which are Cn-compatible with the real line. For each equation p(x) ≈ q(x) of
signature τ in which no variable other than x occurs we define Φ(p(x) ≈ q(x)) to
be sΣ ≈ tΣ, where Σ = ∆ ∪ ∆n ∪ {p(x) ≈ q(x)}. Here is where we invoke the
one equation collapse. According to Theorem 2, the set U has an algorithmically
unsolvable membership problem. Moreover, condition (i.) of our method holds,
since if p(x) ≈ q(x) is true in Rn, then Σ∪{p(x) ≈ q(x)} is Cn-compatible with the
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real line and the same must hold for Φ(p(x) ≈ q(x)) since Σ ∪ {p(x) ≈ q(x)} and
Φ(p(x) ≈ q(x)) have the same models. For condition (ii.) suppose p(x) ≈ q(x) fails
in Rn. Then Σ∪{p(x) ≈ q(x)} is not compatible with the real line, by Theorem 0.
Since Σ ∪ {p(x) ≈ q(x)} and Φ(p(x) ≈ q(x) have the same models, we find that
Φ(p(x) ≈ q(x)) is not compatible with the real line either. In this way part (a) of
our theorem is established.

For part (b) we take U to be the set of all equations of signature τ which are
solvable in Rra and in which x is the only variable to occur. We take A to be
the set of equations of signature τ ′ which are not compatible with the real line
and we take B to be the set of equations of signature τ ′ which are real analytic
compatible with the real line. For each equation p(x) ≈ q(x) of signature τ ′ in which
no variable other than x occurs we define Φ(p(x) ≈ q(x)) to be sΣ ≈ tΣ, where
Σ = ∆ ∪ ∆ra ∪ {p(c) ≈ q(c)}. We have invoked the one equation collapse again.
According to Theorem 1, the set U has an algorithmically unsolvable membership
problem. Moreover, condition (i.) of our method holds, since if p(x) ≈ q(x) is
solvable in Rra, then Σ ∪ {p(c) ≈ q(c)} is real analytic compatible with the real
line and the same must hold for Φ(p(x) ≈ q(x)) since Σ ∪ {p(c) ≈ q(c)} and
Φ(p(x) ≈ q(x)) have the same models. For condition (ii.) suppose p(x) ≈ q(x) has
no solution in Rra. Then Σ ∪ {p(c) ≈ q(c)} is not compatible with the real line,
by Theorem 0. Since Σ∪ {p(c) ≈ q(c)} and Φ(p(x) ≈ q(x)) have the same models,
we find that Φ(p(x) ≈ q(x)) is not compatible with the real line either. In this way
part (b) of our theorem is established. �
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[11] Yuri V. Matiyasevič, Some purely mathematical results inspired by mathematical logic. In

Logic, Foundations of Mathematics, and Computability Theory, vol. 1 of Proceedings of the
Fifth International congress of Logic, Methodology and Philosophy of Science, (Robert E.



TAYLOR’S ALGORITHMIC UNSOLVABILITY OF TOPOLOGICAL R-COMPATIBILITY 273

Butts and Jaakko Hintikka, eds) (1977) 121–127, D. Reidel Publishing Company,

Dordrecht, Holland.

[12] Yuri V. Matiyasevich, Hilbert’s Tenth Problem, Foundations of Computing Series, MIT
Press, Cambridge, Massachusetts, 1993.

[13] George F. McNulty, Minimum bases for equational theories of groups and rings: The work

of Alfred Tarski and Thomas C. Green, Annals of Pure and Applied Logic, 127 (2004)
131–153.

[14] Daniel Richardson, Some undecidable problems involving elementary functions of a real

variable. Journal of Symbolic Logic,33 (1968) 514–520.
[15] Julia Robinson, The undecidability of exponential Diophantine equations. Notices of the

American Mathematical Society, 7 (1960) p. 75.

[16] Alfred Tarski, A decision method for elementary algebra and geometry, University of
California Press, Berkeley and Los Angeles, 1951.

[17] Alfred Tarski, Equational logic and equational theories of algebras, pages 275–288 in
Contributions to Mathematical Logic: Proceedings of the Logic Colloquium, Hannover 1966,
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