
Math 588, Fall 2001 Problem Set 1 Due Sept. 18, 2001

1. [Burris-Sanka. 1.1.9] Let 〈A,≤〉 be a be a finite poset. Show that there is a total (i.e., linear)
order ≤′ on A such that ≤ ⊆ ≤′, i.e., a ≤ b implies a ≤′ b.
Hint: consider the set of all partial orders 4 on A such ≤ ⊆ 4. Show that there must be a
maximal one and that any maximal one is a total order. The result holds also for infinite
posets, but Zorn’s lemma must be used in this case.]

2. [Burris-Sanka. 1.1.10] Let A = 〈A,∨,∧〉 be a lattice. An element a ∈ A is join irreducible
if a = b ∨ c implies a = b or a = c. If A is a finite lattice, show that every element is of the
form a1 ∨ · · · ∨ an, where each ai is join irreducible.

3. [Burris-Sanka. 1.2.4] Let A = 〈A,≤〉 be a poset. A subset S of A is a lower segment of A if
every element of A that is less than or equal to some element of S is in S, i.e., for all a ∈ A
and s ∈ S, a ≤ s implies a ∈ S. Show that the lower segments of A form a lattice with
operations under ∪ and ∩ (the set-theoretical join and meet). If A has a least element,
show that the set L(A) of non-empty lower segments of A forms a lattice.

4. [Burris-Sanka. 1.2.5 and 1.3.2] If A = 〈A,∨,∧〉 is a lattice, then an ideal of A is a nonempty
lower segment that is closed under ∨. Show that the set I(A) of ideals of A forms a lattice
under ⊆.

If A is distributive, show that 〈I(A),⊆〉 is distributive.

5. Let A be a bounded lattice (a lattice is bounded if it has a least element 0 and a greatest
element 1). Let Sub(A) be the set of all sublattices of A that include 0 and 1. Show that
Sub(A) = 〈Sub(A),⊆〉 is a complete lattice.

Show that, if A is distributive, then for all H,K ∈ Sub(A), H∨K consists of all elements of
A of the form (h1∧k1)∨· · ·∨ (hn∧kn), with 1 ≤ n ∈ ω, h1, . . . , hn ∈ H and k1, . . . , kn ∈ K.



Math 588, Fall 2001 Problem Set 2 Due Oct, 9, 2001

(1) [Burris-Sanka. 1.4.6] Let L = 〈L,≤〉 be an algebraic lattice and D an upward di-
rected subset of L, i.e., for all d1, d2 ∈ D there exists a d3 ∈ D such that d1 ≤ d3

and d2 ≤ d3. Prove that, for every a ∈ L, a ∧
∨
D =

∨
d∈D(a ∧ d).

[Hint : Show that, for every compact element c of L, c ≤ a∧
∨
D iff c ≤

∨
d∈D(a∧d).]

(2) [based on Burris-Sanka. 1.5.7] Let Σ be an arbitrary signature and let A = 〈A, {σA :
σ ∈ Σ}〉 be a finitely generated Σ-algebra, i.e., there exists a finite X ⊆ A such
that A = SgA(X). Prove that, for every set Y that generates A, there is a finite
Y ′ ⊆ Y such that Y ′ generates A.

(3) Let 〈A, C〉 be a closed-set system, and let Cω be the set of all finitely generated closed
sets, i.e., Cω = {ClC(X) : X ⊆ω A }. 〈A, Cω〉 may or may not be a closed-set system,
i.e., the set of finitely generated sets may or may not be closed under intersection.
(a) Prove that, for any set A, 〈A,Eq(A)ω〉, i.e., the set of all finitely generated

equivalence relations, is a closed-set system.
[Hint : Show that every subequivalence relation of a finitely generated equiva-
lence relation is finitely generated. Look at the associated partitions.]

(b) Let Σ = {f, g} where f is unary and g is binary. Let A = 〈Z, f, g〉 be the
Σ-algebra whose universe is the set of integers and f and g are defined as
follows. f(n) = n + 1 if 0 ≤ n; otherwise f(n) = n. g(n,m) = n − m
if 0 ≤ n < m; otherwise g(n,m) = n. (“+”, “−”, and “≤” are the usual
addition, substraction, and order of the additive group of integers.) Show that
〈Z,Sub(A)ω〉 is not a closed-set system.

(4) (a) Prove that every infinite mono-unary algebra has a proper subuniverse (i.e, a
subuniverse different from both ∅ and the universe of the algebra).

(b) Construct an infinite bi-unary algebra (i.e., two unary operations) that has no
proper subuniverse.

(5) The subuniverses of 〈Z,+〉 different from 〈Z,+,−, 0〉 and are much harder to char-
acterize. Show that they are all finitely generated.
[Hint : Show that the problem can be reduced to showing that every subuniverse of
〈ω,+〉 is finitely generated. A subuniverse A of 〈ω,+〉 is eventually periodic if there
exists n,m ∈ ω with m > 0 such that every x ∈ A with x ≥ m is of the form m+kn
with k ∈ ω. For example, if A is the subalgebra of 〈ω,+〉 generated by 3 and 5, then
A is eventually periodic with m = 8 and n = 1. Prove that every subuniverse of
〈ω,+〉 is eventually periodic. Use this fact to prove that every subuniverse is finitely
generated.]

1



Math 588, Fall 2001 Problem Set 3 Due Oct 23, 2001

1. [Burris-Sanka. II.3.1] Let A be a Σ-algebra and X ⊆ A. Define a infinite sequence
E0(X) ⊆ E1(X) ⊆ E2(X) ⊆ · · · ⊆ A be recursion as follows. E0(X) = X and En+1(X) =
En(X) ∪ {σA(a1, . . . , am) : m ∈ ω, σ ∈ Σm, a1, . . . , am ∈ En(X) }. Prove that SgA(X) =⋃
n∈ω En(X).

2. Let Σ be the signature of groupoid, i.e., a single binary operation. Consider the binary
relations of subalgebra (⊆) and homomorphic image (4) on the class of all Σ-algebras
Alg(Σ). Prove that the ⊆ ; < = < ; ⊆, i.e., prove that for all A,B ∈ Alg(Σ), if there
exists a C ∈ Alg(Σ) such that A ⊆ C < B, then there exists a D ∈ Alg(Σ) such that
A <D ⊆ B, and vice versa.

[Hint : The “vice versa” part is the harder to prove. Under the assumptions that D ⊆ B
and there exists an epimorphism h:A � D, you have to construct a “superalgebra” C of
A (i.e., A ⊆ C) and an epimorphism g:C � B. It is helpful to draw pictures.

For simplicity you can assume that in this case Σ is a groupoid signature, i.e., a single
binary operation (written in infix notation). Without loss of generality we assume that A
and B are disjoint (otherwise B may first be replaced with an isomorphic image B′ and
then at the end the epimorphism g:C � B′ can be composed with the isomorphism from
B′ to B). Let C = A∪ (B \D). Define g:C → B so that g(c) = h(c) if c ∈ A and g(c) = c
if c ∈ B \D. Then define the operation ·C on C so that it agrees with ·A on A and the map
g is a homomorphism from C to B. The definition of c ·C c′ will require the consideration
of several cases depending on whether or not c and c′ are in A.]

3. Let A be a groupoid. define a binary operation on the set AA of all mappings of A into
itself as follows. For all f, g ∈ AA, f · g is the mapping from A to itself such that, for all
a ∈ A, (f ·g)(a) = f(a) ·A g(a). Prove that the set End(A) of endomorphisms of A is closed
under this operation iff A satisfies the following entropic law. (x ·y) · (z ·w) ≈ (x ·z) · (y ·w).
Prove that if A has an identity element (i.e., an element e such that e ·A a = a = a ·A e for
all a ∈ A), then End(A) is closed under · iff A is a commutative semigroup, i.e., satisfies
the commutative law x · y ≈ y · x and the associative law (x · y) · z ≈ x · (y · z).

4. A semigroup with identity 〈A, ·, e〉 is called a monoid. Prove that every cyclic monoid is
commutative. Prove that H(〈ω,+, 0〉), the class of all homomorphic images of 〈ω,+, 0〉, is
the class of all cyclic (commutative) monoids. Use this result and the First Isomorphism
Theorem to obtain a characterization of Co(〈ω,+, 0〉).
[hint : Show that for every monoid A = 〈A, ·, e〉 and every a ∈ A, there exists a (unique)
homomorphism h: 〈w,+, 0〉 → A such that h(1) = e.]

(over)



5. A Boolean algebra is a algebra B = 〈B,∨,∧,−, 0, 1〉 such that 〈B,∨,∧, 0, 1〉 is a bounded
distributive lattice and− is the complement operation, i.e.,B satisfies the identities−x∨x ≈
1 and −x ∧ x ≈ 0.

(a) Prove that the complement of an element is unique, i.e., if b ∨ a = 1 and b ∨ a = 0,
then b = −a. Prove the law of double negation −−x ≈ x, and the two DeMorgan laws:
−(x ∨ y) ≈ −x ∧ −y and −(x ∧ y) ≈ −x ∨ −y).

(b) Let I be an ideal of B (in the sense of Problem #4 of Problem Set 1), and define a
binary relation α on B by aα b if a − b, b − a ∈ I, equivalently (since I is and ideal),
if (a− b) ∨ (b− a) ∈ I. Prove that α is a congruence of B and that 0/α = I.

(c) Let α be any congruence B. Prove that 0/α = { b ∈ B : b α a } is an ideal of B, and
that, for all a, b ∈ B, aα b iff a− b, b− a ∈ 0/α.

Thus there is a bijection between the ideals and congruences of B that clearly preserves ⊆.



Math 588, Fall 2001 Problem Set 4 Due Nov 13, 2001

1. [based on Burris-Sanka. 1.5.10,1.5.11.] A Σ-algebra A has the principal congruence exten-
sion property (PCEP) if, for every B ⊆ A and all b, b′ ∈ B, ΘB(b, b′) = ΘA(b, b′) ∩ B2. A
class K of Σ-algebras has the PCEP if every algebra in the class has the PCEP.

(a) IfA is an Abelian group and a, b, c, d ∈ A, show that 〈a, b〉 ∈ ΘA(c, d) iff a−b = n(c−d)
for some n ∈ Z (i.e., a − b is in the cyclic subgroup generated by c − d). Use this to
show that the the class of Abelian groups has the PCEP.

(b) If L is a distributive lattice and a, b, c, d ∈ L, show that 〈a, b〉 ∈ Θ(c, d) iff c ∧ d ∧ a =
c∧d∧ b and c∨d∨a = c∨d∨ b. Use this to show that the class of distributive lattices
has the PCEP.

Note: A Σ-algebra A has the congruence extension property (PCEP) if, for every B ⊆ A
and every β ∈ Co(B) there is a α ∈ Co(A) such that β = α ∩B2. A class K of Σ-algebras
has the CEP if every algebra in the class has the CEP.

It is easy to see that the CEP implies the PCEP. We shall see later that the converse holds.

2. Let A be a Σ-algebra.

(a) LetA be a nontrivial Σ-algebra. Prove that if∇A is finitely generated as a congruence,
then A has at least one simple homomorphic image.

(b) Prove that if Σ is finite (i.e., has only a finite number of operation symbols) and
A is finitely generated as a subuniverse of itself, then ∇A is finitely generated as a
congruence. Hence any finitely generated nontrivial algebra over a finite language
type has a simple homomorphic image.

(c) Show that any nontrivial ring with unit 〈R,+, ·,−, 0, 1〉 has a field as a homomorphic
image.

[Hint: Use Zorn’s lemma for the first part.

For any nonempty subset X of A choose an fixed but arbitrary a ∈ X and let

Y =
(
X × {a}

)
∪
(
{σA(a, a, · · · , a) : σ ∈ Σ } × {a}.

For the second part show that A = SubA(X) implies ΘA(Y ) = ∇A.

For the third part, use part (a). You can use the fact that any simple ring is a field.]

(over)



3. Let 〈Ai : i ∈ I 〉 be system of Σ-algebras. Let B be a Σ-algebra and 〈hi : i ∈ I 〉 ∈∏
i∈I Hom(B,Ai). 〈hi : i ∈ i 〉 is said to separate points if, for all distinct b, b′ ∈ B there

exists an i ∈ I such that hi(b) 6= hi(b′).

Prove that B ∼= ; ⊆
∏
i∈I Ai iff there exists a 〈hi : i ∈ I 〉 ∈

∏
i∈I Hom(B,Ai) that

separates points.

[Hint: One of the two implications is an immediate corollary of Theorem 7.15 of Burris and
Sankappanavar.]

4. Let ~α = 〈α1, . . . , αn〉 be a finite system of congruences on A. For each i ≤ n let

α̂i = α1 ∩ · · · ∩ αi−1 ∩ αi+1 ∩ · · · ∩ αn.

Prove that ~α is a factor congruence system for A iff

(a) α1 ∩ · · · ∩ αn = ∆A, and

(b) αi ; α̂i = ∇A, for each i ≤ n.

[Hint: Prove by induction on n that (b) holds iff ~α has the Chinese Remainder Property.]

5. Let A be a Σ-algebra.

(a) Prove that A is directly irreducible iff, for every system 〈Bi : i ∈ I 〉 of Σ-algebras, if
A ∼=

∏
i∈I Bi, then there is an i ∈ I such that Bj is trivial for all j ∈ I \ {i}.

(b) Prove that if A is finite, then A is directly irreducible iff, for every system 〈Bi : i ∈ I 〉
of Σ-algebras, if A ∼=

∏
i∈I Bi, then there is an i ∈ I such that A ∼= Bi.

[Hint: Recall that we define an algebra to be directly irreducible if its only factor con-
gruences are ∆ and ∇. Burris and Sankappanavar take the condition in (a) in the special
case I = {1, 2} to be the definition of direct irreducibility. Thus (a) in this case is their
Corollary 7.7. They claim it is a corollary of their Theorems 7.3 and 7.5, but some work is
still needed to get it.]



Hint on Problem #1

Lets look at the first part. Let Φ be the set of all pairs of integers 〈a, b〉 such that
a− b = n(c− d) for some n ∈ Z. You must show that Φ = ΘA(a, b), i.e., Φ is the smallest
congruence α on A such that aα b. First verify by calculation that Φ is a congruence, i.e.,
an equivalence relation with the substitution property. For example, lets verify it has the
substitution property wrt the operation +. I.e, if a1 Φ b1 and a2 Φ b2, then (a1+a2)Φ (a1+b2).
So assume a1 − b1 = n1(c − d) and a2 − b2 = n2(c − d). Then (a1 + a2) − (b1 + b2) =
(a1−b1)+(a2−b2) = (n1+n2)(c−d). Clearly, c Φ d. This shows that ΘA(c, d) ⊆ Φ. To show
the inclusion in the other direction we must show that if aΦ b, then aΘA(c, d) b. Suppose
a−b = n(c−d). Then a = b+n(c−d). Since cΘA(c, d) d and dΘA(c, d) d because ΘA(c, d) is
an equivalence relation, we have by the substitution property that (c−d)ΘA(c, d) (d−d) = 0.
So again by the substitution property, a = (b + n(c − d))ΘA(c, d) (b + n(0)) = b. So
Φ ⊆ ΘA(c, d).

Use the same method in part (b). Define a binary relation Φ on the lattice by the given
condition. Prove it is a congruence that relates c and d and then prove it is included in
ΘL(c, d)



Math 588, Fall 2001 Problem Set 5 Due Dec. 13, 2001

1. [based on Burris-Sanka. II.8.3] Prove that the sudirectly irreducible cyclic (i.e., one-generated)
mono-unary algebras are exactly the finite cyclic algebras with empty tail whose cycle is of
length a positive power of a prime, or the finite cyclic algebras with nonempty tail whose
cycle is of length 1.

[Hint: Start by showing that every finite cyclic mono-unary algebra A with nonempty
tail and a cycle of length > 1 fails to be subdirectly irreducible. This is done by finding
two congruences that are greater than ∆A but intersect in ∆A. Show that there is an
endomorphism of A that maps all of A onto its cycle by “wrapping” its tail around its
cycle and leaving the cycle itself fixed, and then take the first congruence to be the relation
kernel of this map. Show that the equivalence relation that collapses the cycle to one point
an leaves the tail alone is a congruence, and take this to be the second congruence. This
shows that every subdirectly irreducible finite cyclic algebra is either a cycle of length >
1 with empty tail, or a cycle of length 1 with nonempty tail. You still have to show that
algebras of the second kind are SI and that those of the first kind are SI iff the length of
the cycle is a power of a prime. Finally, you have to show that the infinite cyclic algebra,
i.e., 〈ω, s〉 where s is the successor function, is not subdirectly irreducible.

Extra Credit Problem: Describe all SI mono-unary algebras.]

2. Let A and B be Σ-algebras.

(a) Let C ⊆ A and D ⊆ B. Show that C×D ⊆ A×B; show by example that in general,
not every subalgebra of A×B need be of this form.

(b) Assume that there is a binary term t(x1, x2) such that tA(a, a′) = a for all a, a′ ∈ A
and tB(b, b′) = b′ for all b, b′ ∈ B. Prove that in this case, every subalgebra of A×B
is of the form C ×D with C ⊆ A and D ⊆ B.

(c) Let A = 〈A, ·,−1, e〉 and B = 〈B, ·,−1, e〉 be finite groups such that |A| and |B| are
relatively prime. Prove that there exists a binary term t satisfying the condition of
part (a). Hence every subgroup of A×B is a product of subgroups of A and B.

[Hint for part (b): Let E ⊆ A × B. Let C = { a ∈ A : ∃ b ∈ B (〈a, b〉 ∈ E) } and let
D = { b ∈ B : ∃ a ∈ A (〈a, b〉 ∈ E) }. Prove in general (i.e., without the assumption about
the existence of the term t) that C ∈ Sub(A) and D ∈ Sub(B) and that E ⊆ C ×D. Now
prove that E = C ×D; here is where the term t is used.

Prove for every n-ary term s(x1, . . . , xn) and for all 〈a1, b1〉, . . . , 〈an, bn〉 ∈ A×B that

sA×B(〈a1, b1〉, . . . , 〈an, bn〉) = 〈sA(a1, . . . , an), sB(b1, . . . , bn)〉.

Use this together with the assumption on t to show that if 〈a, b′〉, 〈a′, b〉 ∈ E, then 〈a, b〉 ∈ E.]

(over)



3. Let A be a Σ-algebra, Let 〈αi : i ∈ I 〉 ∈ Co(A)I , and β =
⋂
i∈I αi. Prove that

A/β ∼= ; ⊆sd

∏
i∈I A/αi.

[Hint: Prove that in the lattice Co[A/β],
⋂
i∈I αi/β = ∆A/β ; for this you can use the

Correspondence Theorem.]

4. Let Σ be an arbitrary signature. Prove that the algebra TeΣ(X) has the unique parsing
property wrt X.

[Hint: We represent strings over Σ ∪X by the Greek letters α, β, γ, possibly with sub- or
superscripts. αβ will denote the concatenation of α and β. α is an initial segment of β, in
symbols α 4 β, if there exists a string γ such that β = αγ. If γ 6= ε (the empty string),
then γ is a proper initial segment of β.

Define f : (Σ ∪ X) → Z by setting f(x) = −1 for each x ∈ X, and f(σ) = n − 1 for each
σ ∈ Σn. For every string α = a1 . . . an let f̄(α) = f(a1) + · · ·+ f(an); note f̄(ε) = 0.

Prove the following lemmas.

Lemma 1. A string α is a Σ-term iff f̄(α) = −1 and f̄(β) ≥ 0 for every proper initial
segment of α.

For example
t : ∧ − ∨ x1 0 ∧ x2 1
f : 1 0 1 −1 −1 1 −1 −1
f̄ : 1 1 2 1 0 1 0 −1

Lemma 2. Let α1, . . . , αn and β1, . . . , βm be two sequences of Σ-terms. α1 . . . αn = β1 . . . βm
iff n = m and αi = βi for all i ≤ n.

Use this last lemma to prove that TeΣ(X) has the unique parsing property wrt to X.]

5. (a) Let K be a variety. Assume that K contains a nontrivial finite algebra. Prove that, for
all cardinals λ and κ, if Frλ(K) ∼= Frκ(K) iff λ = κ

(b) Let Σ = {·, π1, π2} with · a binary operation and π2 and π2 unary operations. Let K be
the variety of Σ-algebras defined by the identities π1(x1 ·x2) ≈ x2, π2(x1 ·x2) ≈ x2, and
π1(x) · π2(x) ≈ x. Prove that Frn(K) ∼= Frm(K) for all n,m ∈ ω such that n,m ≥ 2.

[Hint: Part (a). Count the number of homomorphisms from Frλ(K) and Frκ(K) into some
nontrivial finite algebra. Part (b): Prove by induction on n that Frn(K) ∼= Frn+1(K). For
the base step, suppose F is a free algebra over K with a single free generator. From this free
generator construct two elements such that F has the UMP over K wrt these two elements.]



Math 589, Spring 2002 Problem Set 1 Due Feb. 6, 2002

Corrected Mat. 1, 2002

1. Let V be any variety. Prove that for any cardinal κ, the free algebra of V with κ free
generators is isomorphic to the coproduct of κ copies of the free algebra with one free
generator, i.e., Frκ(V ) ∼=

∐
ξ<κ F ξ, where F ξ = Fr1(V ) for each ξ < κ.

[note: This generalizes the well known result that every free Abelian group is isomorphic
to a direct sum of ZZZ.]

2. Let K ⊆ P(I). Then K is included in a proper filter and hence an ultrafilter iff, for all n ∈ ω
and all K1, . . . ,Kn ∈ K, K1 ∩ · · · ∩Kn 6= ∅.

3. Prove that a principal filter [X) on a set I is an ultrafilter iff |X| = 1.

4. Let I be an infinite set, and let F be a proper filter on I. Prove the following.

(a) If Cf ⊆ F , then F is nonprincipal.

(b) If F is a nonprincipal ultrafilter, then Cf ⊆ F .

[Note: The condition that F is an ultrafilter is essential in part (b). Here is a counterex-
ample. Let I = ω and let F = {X ∈ Cf : 0 ∈ X }. Clearly Cf * F , but it is easy to see
that F is proper and nonprincipal.]

5. Let N ∈ ω and let 〈Ai : i ∈ I 〉 be a system of Σ-algebras whose cardinalities are
bounded above by N , i.e., |Ai| ≤ N for all i ∈ I. let U be an ultrafilter on I. Prove
that |

∏
i∈I Ai/Φ(U)| ≤ N .

[Hint: You can use Problem 4, part (b).]



Math 589, Spring 2002 Problem Set 2 Due Feb. 22, 2002

1. Let 〈Ai : i ∈ I 〉 be a system of Σ-algebras, and let U be an ultrafilter on I. Let ϕ be a
formula of the form ε1 or · · · or εn or (not δ1) or · · · or (not δm), where ε1, . . . , εn, δ1, . . . , δm
are Σ-equations. Prove that(∏

i∈I
Ai

)/
Φ(U) � ϕ iff { i ∈ I : Ai � ϕ } ∈ U .

[Hint: The solution cannot be easily obtained simply by generalizing the proof of Lemma 3.38.
First of all the class of models of an equational clause is not necessarily closed under homo-
morphic images or direct products (integral domains, for example). A somewhat different
argument is required. Here is how I suggest you proceed. A big part of the problem is to
choose the right kind of simplifying notation.

Let I be an index set, which is normally infinite. We use vector notation to represent
a “I-dimensional” vector over an arbitrary I-indexed system of sets 〈Ai : i ∈ I 〉. Thus
~a = 〈 ai : i ∈ I 〉 ∈

∏
i∈I Ai. On the other hand, we will use “hats” to denote arbitrary finite

sequences of elements of A, for example, â = a0, . . . , ak−1 ∈ Ak. Thus ~̂a = ~a0, . . . ,~ak−1 is a
finite sequence of I-vectors, i.e., a “I by k” matrix of elements of the Ai. For each j < k,
~aj is the j-th column of the matrix, and for each i ∈ I, âi = ai0, . . . , ai(k−1) is the i-th row.

Let ϕ(x̂) be the equational clause(
t1(x̂) ≈ s1(x̂)

)
or· · ·or

(
tn(x̂) ≈ sn(x̂)

)
or
(
not

(
u1(x̂) ≈ v1(x̂)

))
or· · ·or

(
not

(
um(x̂) ≈ vm(x̂)

))
,

where x̂ = x0, . . . , xk−1 is a list of all the variables that occur in ϕ.

The intermediate notion of satisfaction is useful here. Let A be a Σ-algebra and â =
a0, . . . , ak−1 ∈ Ak. We say that â satifies ϕ(x̂) in A, in symbols 〈A, â〉 � ϕ(x̂), if

tA1 (â) = sA1 (â) or · · · or tAn (â) = sn(â) or uA1 (â) 6= vA1 (â) or · · · or uAm(â) 6= vAm(â).

Thus ϕ(x̂) is universally valid in A if, for every â ∈ Ak, â satisfies ϕ(x̂) in A.

Let
∏
i∈I Ai be a system of Σ-algebras and ~̂a = ~a0, . . . ,~ak−1 ∈

(∏
i∈I Ai)

k. Let U be an
ultrafilter on I, and let ~̂a/Φ(U) = ~a0/Φ(U), . . . ,~ak−1/Φ(U). Prove the following two lemmas

Lemma 1.
〈(∏

i∈I Ai

)
/Φ(U), ~̂a/Φ(U)

〉
� ϕ(x̂) iff

EQ
(
t
∏
Ai

1 (~̂a), s
∏
Ai

1 (~̂a)
)
∈ U or · · · or EQ

(
t
∏
Ai

n (~̂a), s
∏
Ai

n (~̂a)
)
∈ U

or EQ
(
u
∏
Ai

1 (~̂a), v
∏
Ai

1 (~̂a)
)
/∈ U or · · · or EQ

(
u
∏
Ai

m (~̂a), v
∏
Ai

m (~̂a)
)
/∈ U .

Lemma 2. { i ∈ I : 〈Ai, âi〉 � ϕ(x̂) } =

EQ
(
t
∏
Ai

1 (~̂a), s
∏
Ai

1 (~̂a)
)
∪ · · · ∪ EQ

(
t
∏
Ai

n (~̂a), s
∏
Ai

n (~̂a)
)

∪ EQ
(
u
∏
Ai

1 (~̂a), v
∏
Ai

1 (~̂a)
)
∪ · · · ∪ EQ

(
u
∏
Ai

m (~̂a), v
∏
Ai

m (~̂a)
)
.

(over)



Now for the solution of Problem 1. For the proof of the implication from right to left, use
that fact that, for all ~̂a ∈ (

∏
i∈I Ai), { i ∈ I : Ai � ϕ(x̂) } ⊆ { i ∈ I : 〈Ai, âi〉 � ϕ(x̂) }. For

the implication in the opposite direction, proof the contrapositive.

Assume { i ∈ I : Ai � ϕ(x̂) } /∈ U , and show that there is a ~̂a ∈ (
∏
i∈I Ai) such that(∏

i∈I Ai

)/
Φ(U) 2 ϕ(x̂).]

2. Let E and Γ be sets of Σ-equations such that E ` γ for every γ ∈ Γ . Prove that, for every
Σ-equation ε, if E ∪ Γ ` ε, then E ` ε.

[Note: The equations of Γ can be viewed as “lemmas” that are used in the “proof” of the
“theorem” ε from the “hypotheses” E. To prove this directly one has to show that, given
any proof δ1, . . . , δm of ε from E ∪Γ (in the precise sense of Definition 4.2), one can replace
each occurrence of a substitution instance γ′ of an equation γ of Γ by a proof of γ′ from
E, thus obtaining a, generally much longer, proof of ε from E alone. A shorter, indirect
proof can be obtained using the soundness and completeness theorems of equational logic,
and the fact the logical consequence operation Cn is a closure operator (Theorem 4.7).]

3. Let E be the axioms of groups (of Type II). Prove that E ∪ {x · x ≈ e} ` x · y ≈ y · x.

[Hint: You have to prove that a proof of x · y ≈ y · x (in the sense of Definition 4.2) exists.
One way to do this is to just write it down like we did in class (or at least started to do) for
(x · y)−1 ≈ y−1 ·x−1. But this will be very long. It is better to first prove some lemmas and
then use Problem #2. You might even want to use lemmas in the proof of a lemma. But for
the lowest level lemmas you have to write out formal proofs in the sense of Definition 4.2. I
suggest that you give an informal proof of x · y ≈ y ·x from E ∪{x ·x ≈ e} as you would do
in a beginning algebra course and then convert it to a formal proof. You can assume that
E ` (x · y)−1 ≈ y−1 · x−1, and hence use (x · y)−1 ≈ y−1 · x−1 as a lemma.]

4. Recall that a set E is Σ-equations is inconsistent if it has only trivial models.

(a) Prove that E is inconsistent iff E ` x ≈ y, where x and y are distinct variables.

(b) Use part (a) to obtain another proof of the compactness theorem for equational logic
that does not use reduced products.

[Hint: For part (b) look at the proof that the closure relation Cn is finitary.]

5. Let A and B be sets and R ⊆ A × B. Let H:P(A) → P(B) and G:P(B) → P(A) be the
Galois connection defined by R. Let CA = {C ⊆ A : (G ◦H)(C) = C }, the closed subsets
of A under G ◦H. Let CB = {C ⊆ B : (H ◦ G)(C) = C }, the closed subsets of B under
H ◦ G. Prove that the complete lattices 〈CA,⊆〉 and 〈CB,⊆〉 are dually isomorphic under
H. Specifically, prove that H is a bijection between CA and CB such that, for all C,C ′ ∈ CA,
C ⊆ C ′ iff H(C) ⊇ H(C ′).



Math 589, Spring 2002 Problem Set 3 Due March 13 , 2002

Corrected May 7, 2002

1. [Pixley] A class of Σ-algebras K is said to be arithmetical if it is both congruence-permutable
and congruence-distributive. Prove that for any variety V the following are equivalent.

(a) V is arithmetical.

(b) There is a t(x, y, z) ∈ TeΣ(x, y, z) such the following identities hold in V.

t(x, y, x) ≈ x, t(x, x, y) ≈ t(y, x, x) ≈ y.

2. A Σ-algebra A is primal if every operation on the universe A of A is a term function, i.e.,
for every n ∈ ω and every h:An → A, there is a Σ-term t(x0, . . . , xn−1) such that, for all
a0, . . . , an−1 ∈ An, h(a0, . . . , an−1) = tA(a0, . . . , an−1).

(a) Prove that the variety generated by a primal algebra is arithmetical.

(b) Prove that, for any prime p, the prime field ZZZp = 〈Zp,+, ·,−, 0, 1〉 is primal.

3. Assume h:A� B and α ∈ Co(A). Prove that h(α) ∈ Co(B) iff

α ; rker(h) ; α ⊆ rker(h) ; α ; rker(h).

[Note: One of the two implications was proved in class. Prove the other one.]

4. Let A be a Σ-algebra. Prove that the following are equivalent.

(a) For every Σ-algebra B, for every h:A� B and for every α ∈ Co(A), h(α) ∈ Co(B).

(b) A is congruence 3-permutable, i.e., for all α, β ∈ Co(A), α ; β ; α = β ; α ; β.

5. Assume V is a locally finite, congruence distributive variety, and that K and L are sub-
varieties of V. Let K ∨ L be the join of K and L in the lattice of subvarieties of V, i.e.,
K ∨ L = H S P(K ∪ L). Prove that every finite, subdirectly irreducible member of K ∨ L is
either in K or in L.



Math 589, Spring 2002 Problem Set 4 Due April 15, 2002

Corrected May 7, 2002

1. Let V be a variety with EDPM and let A ∈ V .

(a) Prove that, for all a, b, c, d, e, f ∈ A and every α ∈ Co(A),

ΘA(c, d) ⊆ ΘA(a, b)∨α implies
(
ΘA(c, d)∩ΘA(e, f)

)
⊆
(
ΘA(a, b)∩ΘA(e, f)

)
∨α.

(b) Prove that, for all a1, b1, . . . , an, bn, c, d, e, f ∈ A,

ΘA(c, d) ⊆
∨
i≤n

ΘA(ai, bi) implies ΘA(c, d) ∩ΘA(e, f) ⊆
∨
i≤n

(
ΘA(ai, bi) ∩ΘA(e, f)

)
.

[Hint: Part (a): Let B = A/α and ∆α:A� B be that natural map; let x̄ = x/α for each
x ∈ A. Show that ∆∗α

(
ΘA(c, d) ∩ ΘA(e, f)

)
= ΘB(c̄, d̄) ∩ ΘB(ē, f̄). Use this to show that

ΘB(c̄, d̄)∩ΘB(ē, f̄) ⊆ ΘB(ā, b̄)∩ΘB(ē, f̄). Now apply (∆∗α)−1 and use Lemma 5.14. Prove
part (b) by induction on n using part (a).]

2. Prove that every variety with EDPM is congruence distributive.

[Hint: Let V a variety with EDPM. It suffices to prove that, for every A ∈ V and all
α, β, γ ∈ Co(A),

α ∩ (β ∨ γ) ⊆ (α ∩ β) ∨ (α ∩ γ). (1)

Use the first problem to prove that if {〈c1, d1〉, . . . , 〈cn, dn〉} is a finite subset β and
{〈e1, f1〉, . . . , 〈em, fm〉} is a finite subset γ, then for all a, b ∈ A,

ΘA(a, b) ⊆
(∨
i≤n

ΘA(ci, di)
)
∨
( ∨
j≤m

ΘA(ej , fj)
)

implies ΘA(a, b) ⊆
(∨
i≤n

(
ΘA(ci, di) ∩ΘA(a, b)

))
∨
( ∨
j≤m

(
ΘA(ej , fj) ∩ΘA(a, b))

)
.

Use this to prove (1).]

3. Let Φ be a set of UDE’s. Recall that Pu(K) is the class of all isomorphic images of ultra-
products of systems of algebras in K.

(a) Prove that Pu Mod(Φ) = Mod(Φ).

(b) Use part (a) to obtain short proof of Theorem 6.4 from Jońsson’s Lemma (Theo-
rem 5.25). Recall that Theorem 6.4 says that, for any congruence-distributive variety
V,

H S P(Mod(Φ) ∩ V) = Modprim(Φ) ∩ V.



[Hint: Part (a) is a very easy consequence of the first problem on Problem Set #2. The
key to part (b) is to show, as in the proof of Theorem 6.4, that Modprim(Φ) ∩ V is variety.
Jonsson’s Lemma can be used to get a simpler proof of this than the one used in the proof
of Theorem 6.4.]

(over)



4. An equation is said to be absorbing if it is of the form t(x0, . . . , xn−1) ≈ xi for some i < n.
For example, (x·y)·y−1 ≈ x is an absorbing equation. Prove that if a set E has no absorbing
equations, then E is consistent.

[Hint: You can either argue directly that E has a nontrivial model, or you can obtain this
indirectly by showing the E 0 x ≈ y; to show the latter you may find it convenient to use
the relation ≡∗E , in particular Theorem 4.15 from the notes for week 4 on the class webpage.]

5. Let V be a variety with a finite signature Σ. For each n ∈ ω, let Idn(V ) be the set
of all identities of V that contain at most n distinct variables, i.e., Idn(V ) = Id(V ) ∩
TeΣ({x0, . . . , xn−1})2. Let Vn = Mod

(
Idn(V )

)
.

(a) Prove that, if V is locally finite, then Vn is finitely based for every n ∈ ω

Since Id0(V ) ⊆ Id1(V ) ⊆ Id2(V ) ⊆ · · · ⊆ Id(V ) and Id(V ) =
⋃
n∈ω Idn(V ), we have

V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ V and V =
⋂
n∈ω Vn.

(b) Prove that if V is finitely based, then V = Vn for some n ∈ ω, and that the converse
holds if V is locally finite.

[Hint: Part (a): Let x̂ = 〈x0, . . . , xn−1〉. Show that there is a system t1(x̂), . . . , tm(x̂) of
terms in n-variables such that for every term s(x̂) there is an i ≤ m such that s(x̂) ≈ ti(x̂)
is an identity of Vn (i.e., of V ); without loss of generality one can assume that the first n
terms in this sequence are the variables x0, . . . , xn−1. To show such a sequence exists use
the fact that, since V is locally finite, the free algebra Frn(V ) over V is finite. It follows
that, for every σ ∈ Σk and every sequence ti1(x̂), . . . , tik(x̂) there exists a tj(x̂) such that
σ
(
ti1(x̂), . . . , tik(x̂)

)
≈ tj(x̂) is an identity of Vn. Show that the set of all such equations is

a finite base for Vn.]



Math 589, Spring 2002 Problem Set 4 (Addtional Hints)

1. (a) Use the following exercise that was given after Lemma 5.14 and eventually proved in
class: For any epimorphism h:A� B and any X ⊆ A2,

h∗
(
ΘA(X)

)
= ΘB

(
h(X)

)
.

You will also have to use part (3) of Lemma 5.14 (I said 5.15 in the original hint,
but this was a mistake) 5.14(3) says that for any epimorphism h:A � B and every
α ∈ Co(A),

h−1h∗(α) = α ∨ rker(h).

(b) This part is proved by induction on n, but it is not a straightforward induction. First
of all you do have to prove the stronger result

ΘA(c, d) ⊆
∨
i≤n

ΘA(ai, bi)∨α implies ΘA(c, d)∩ΘA(e, f) ⊆
∨
i≤n

(
ΘA(ai, bi)∩ΘA(e, f)

)
∨α.

By the induction hypothesis we get

ΘA(c, d) ⊆
∨

i≤n−1

ΘA(ai, bi) ∨
(
ΘA(an, bn) ∨ α

)
implies ΘA(c, d) ∩ΘA(e, f) ⊆

∨
i≤n−1

(
ΘA(ai, bi) ∩ΘA(e, f)

)
∨
(
ΘA(an, bn) ∨ α

)
.

Now consider any set X ⊂ A2 such that ΘA(X) = ΘA(c, d)∩ΘA(e, f) (can take X to
be all of ΘA(c, d) ∩ΘA(e, f)). Use part (a) to prove that, for each 〈x, y〉 ∈ X,

Θ(x, y) ⊆
∨

i≤n−1

(
ΘA(ai, bi) ∩ΘA(e, f)

)
∨
(
(ΘA(an, bn) ∩ΘA(e, f)) ∨ α

)
.

Finally, use this to get

ΘA(c, d) ∩ΘA(e, f) ⊆
∨
i≤n

(
ΘA(ai, bi) ∩ΘA(e, f)

)
.

3. (b) By Birkhoff’s Subdirect Product Theorem, for every Σ-algebra A we have A ∼= ; ⊆sd∏
i∈I Bi where the Bi are subdirectly irreducible (SDI). The algebras Bi, i ∈ I, are

called the SDI factors of A. For any class K of Σ-algebras, let Fsdi(K) be the class of
SDI factors of all A ∈ K. Prove that, for any class K is Σ-algebras,

H S P(K) = H S P Fsdi(K).

The following facts were all either established in the lectures at various places, or they
are easy consequences of results that were established. You may use them in the proof
of part (b) without justifying them.

Fsdi

(
Modprim(Φ) ∩ V

)
⊆ Mod(Φ) ∩ V

H S
(
Mod(Φ)

)
⊆ Mod(Φ)

Psd

(
Mod(Φ) ∩ V

)
⊆ Modprim(Φ) ∩ V.

Use the the above facts together with Jońsson’s Lemma to show that H S P
(
Modprim(Φ)∩

V ) ⊆ Modprim(Θ) ∩K. Part (b) now follows as in the proof of Thm. 6.4.



Math 589, Spring 2002 Problem Set 5 Due May 8, 2002

Corrected May 7, 2002

1. Prove the Ordered Second Isomorphism Theorem: Let A≤ be be a poalgebra and α, β ∈
Qord(A≤) such that β ⊆ α. Define

α/β = α/(β ∩
`
β) =

{ 〈
a/β ∩

`
β, b/β ∩

`
β
〉

: aα b
}
.

Prove that α/β is a quasi-order of A≤/β and that A≤/α ∼= (A≤/β)/(α/β).

2. Let h:A≤ → B≤ be an order homomorphism of ordered algebras, and let α be the order-
kernel of h Prove that there is an ordered subalgebra C≤ of B≤ such that A≤/α ∼= C≤.

[Note: This result was used at a couple places in the with the remark that it follows from
the ordered homomorphism theorem; this it true, but the proof is not trivial.]

3. A semiring is an algebra 〈A,+, .〉 such that 〈A,+〉 is a commutative semigroup, 〈A, .〉 is a
semigroup, and · distributives over +. A partially ordered semiring is a poalgebra 〈A,≤〉
such that A is a semiring. Prove that the class K of partially ordered semirings form an
ordered variety, i.e., find a set E of inequations and prove that K = Mod(E)

An ordered variety V is algebraizable if there is a finite set of inequations ti(x, y) 4
si(x, y), i = 1, . . . , n, such that, for every A≤ ∈ V and for all a, b ∈ A,

a ≤A b iff ∀i ≤ n
(
tAi (a, b) ≤A sAi (a, b) and sAi (a, b) ≤A tAi (a, b)

)
.

The ordered variety of lattices is algebraizable; take n = 1 and t1(x, y) 4 s1(x, y) to be
x ∨ y 4 y.

4. Let V be an algebraizable ordered variety. Prove that, for every A ∈ V, the mapping

α 7→ α∩ `α from Qord(A≤) to Co(A) is injective. Use this to show that the ordered variety
of semirings is not algebraizable.

Most of the definitions and theorems about poalgebras are exact analogues of those
about unordered algebras, but there are some exceptions as the next problem shows.

5. Let V be an algebraizable ordered variety. Prove that, if A≤,B≤ ∈ V, then an order
homomorphism h:A≤ → B≤ is an order isomorphism iff h is a bijection. Show by example
that this may not be true if V is not algebraizable (take V to be the class of partially ordered
semirings).
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