Homework Assignment 0

Problem 0
Let A be a nonempty set and let Q be a finitary operation on A. Prove that the rank of Q is unique.

Problem 1
Construct a semigroup that cannot be expanded to a monoid.

Problem 2
Construct a semigroup that is not the multiplicative semigroup of any ring.

Problem 3
Let A be a set and denote by $\text{Equiv} A$ the set of all equivalence realtions on A. For $R, S \in \text{Equiv} A$ define

$$R \land S = R \cap S$$
$$R \lor S = R \cup R \circ S \cup R \circ S \circ R \cup R \circ S \circ R \circ S \cup \ldots$$

where \circ stands for the relational product (that is $a(R \circ S)b$ means that there is some $c \in A$ such that both aRc and cSb). Prove that $\langle \text{Equiv} A, \land, \lor \rangle$ is a lattice.

Homework Assignment 1

Problem 4
Let A and B be algebras. Prove

$$\text{hom}(A, B) = (\text{Sub} A \times B) \cap \{h \mid h \text{ is a function from } A \text{ into } B\}$$

Problem 5
Let $A = \langle A_i \mid i \in I \rangle$ be a system of similar algebras. Prove that each projection function on $\prod A$ is a homomorphism.

Problem 6
Let $A = \langle A_i \mid i \in I \rangle$ be a system of similar algebras. Further, assume B is an algebra of the same signature and that $B = \prod A$. Prove that if each projection function on B is a homomorphism, then $B = \prod A$.

Problem 7
Let $A = \langle A_i \mid i \in I \rangle$ be a system of similar algebras. Let B be an algebra of the same signature and let h_i be a homomorphism from B into A_i, for each $i \in I$. Prove that there is a homomorphism g from B into $\prod A$ such that $h_i = p_i \circ g$ for all $i \in I$. (Here p_i denotes the ith projection function.

Homework Assignment 2

Problem 8
Let A be an algebra. Prove

$$\text{Con} A = (\text{Sub} A \times A) \cap \{\theta \mid \theta \text{ is an equivalence relation on } A\}.$$

Problem 9
Let A be an algebra and let h be an endomorphism of A. Prove that $h \circ h^{-1}$ is a congruence of A. Observe that $h^{-1} = \{(b, a) \mid h(a) = b \text{ and } a \in A\}$.

Problem 10
Let A be an algebra and let θ be a congruence of A. Prove that $\theta = \bigcup \{Cg^A(a, a') \mid a \theta a'\}$.

Problem 11
Let A be an algebra and let $X \subseteq A$ such that $Sg^A X = A$. Suppose that B is an algebra with the same signature and let h and g be homomorphisms from A into B such that $h(x) = g(x)$ for all $x \in X$. Prove that $h = g$.

Homework Assignment 3

Problem 12
Prove that every finite algebra is isomorphic to a direct product of directly indecomposable algebras.

Problem 13
Find two algebras A and B so that neither A nor B can be embedded into $A \times B$.

Problem 14
Prove that A has factorable congruences if and only if $\beta = (\beta \lor \varphi) \land (\beta \lor \varphi^*)$ for every pair φ, φ^* of complementary factor congruences of A and every $\beta \in Con A$.

Problem 15
Prove that if $Con A$ is a distributive lattice, then A has factorable congruences.

Homework Assignment 4

Problem 16
Let V be a congruence modular variety. Let $A \in V$ and $\alpha, \beta \in Con A$. Prove the following are equivalent.

(i) $\alpha \lor \beta = \alpha \circ \beta$.
(ii) $[\alpha]^m \lor [\beta]^n = [\alpha]^m \circ [\beta]^n$ for all m, n.
(iii) $[\alpha]^m \lor [\beta]^n = [\alpha]^m \circ [\beta]^n$ for some m, n.