Homework Assignment 0

Problem 0

Let A be a nonempty set and let Q be a finitary operation on A. Prove that the rank of Q is unique.

Problem 1

Construct a semigroup that cannot be expanded to a monoid.

Problem 2

Construct a semigroup that is not the multiplicative semigroup of any ring.

Problem 3

Let A be a set and denote by $\mathbf{Eqv} A$ the set of all equivalence realtions on A. For $R, S \in \mathbf{Eqv} A$ define

$$R \wedge S = R \cap S$$
$$R \vee S = R \cup R \circ S \cup R \circ S \circ R \cup R \circ S \circ R \circ S \cup \dots$$

where \circ stands for the relational product (that is $a(R \circ S)b$ means that there is some $c \in A$ sucn that both aRc and cSb). Prove that $\langle \mathbf{Eqv} \rangle A, \land, \lor$ is a lattice.

Homework Assignment 1

Problem 4

Let ${\bf A}$ and ${\bf B}$ be algebras. Prove

 $\hom(\mathbf{A}, \mathbf{B}) = (\operatorname{Sub} \mathbf{A} \times \mathbf{B}) \bigcap \{h \mid h \text{ is a function from } A \text{ into } B\}$

Problem 5

Let $\mathbf{A} = \langle \mathbf{A}_i \mid i \in I \rangle$ be a system of similar algebras. Prove that each projection function on $\prod \mathbf{A}$ is a homomorphism.

Problem 6

Let $\mathbf{A} = \langle \mathbf{A}_i \mid i \in I \rangle$ be a system of similar algebras. Further, assume **B** is an algebra of the same signature and that $B = \prod A$. Prove that if each projection function oo B is a homomorphism, then $\mathbf{B} = \prod \mathbf{A}$.

Problem 7

Let $\mathbf{A} = \langle \mathbf{A}_i \mid i \in I \rangle$ be a system of similar algebras. Let \mathbf{B} be an algebra of the same signature and let h_i be a homomorphism from \mathbf{B} into \mathbf{A}_i , for each $i \in I$. PRove that there is a homomorphism g from \mathbf{B} into $\prod \mathbf{A}$ such that $h_i = p_i \circ g$ for all $i \in I$. (Here p_i denotes the i^{th} projection function.

Homework Assignment 2

PROBLEM 8 Let **A** be an algebra. Prove

Con $\mathbf{A} = (\operatorname{Sub} \mathbf{A} \times \mathbf{A}) \cap \{\theta \mid \theta \text{ is an equivalence relation on } A\}.$

Problem 9

Let **A** be an algebra and let *h* be an endomorphism of **A**. Prove that $h \circ h^{-1}$ is a congruence of **A**. Observe that $h^{-1} = \{(b, a) \mid h(a) = b \text{ and } a \in A\}$.

Problem 10

Let **A** be an algebra and let θ be a congruence of **A**. Prove that $\theta = \bigcup \{ Cg^{\mathbf{A}}(a, a') \mid a\theta a' \}.$

PROBLEM 11

Let **A** be an algebra and let $X \subseteq A$ such that $Sg^{\mathbf{A}} X = A$. Suppose that **B** is an algebra with the same signature and let h and g be homomorphisms from A into B such that h(x) = g(x) for all $x \in X$. Prove that h = g.

Homework Assignment 3

Problem 12

Prove that every finite algebra is isomorphic to a direct product of directly indecomposable algebras.

Problem 13

Find two algebras **A** and **B** so that neither **A** nor **B** can be embedded into $\mathbf{A} \times \mathbf{B}$.

Problem 14

Prove that **A** has factorable congruences if and only if $\beta = (\beta \lor \varphi) \land (\beta \lor \varphi^*)$ for every pair φ, φ^* of complementary factor congruences of **A** and every $\beta \in \text{Con } \mathbf{A}$.

Problem 15

Prove that if **Con A** is a distributive lattice, then **A** has factorable congruences.

Homework Assignment 4

Problem 16

Let \mathcal{V} be a congruence modular variety. Let $\mathbf{A} \in \mathcal{V}$ and $\alpha, \beta \in \mathbf{Con} A$. Prove the following are equivalent.

(i) $\alpha \lor \beta = \alpha \circ \beta$.

(ii) $[\alpha]^m \vee [\beta]^n = [\alpha]^m \circ [\beta]^n$ for all m, n. (iii) $[\alpha]^m \vee [\beta]^n = [\alpha]^m \circ [\beta]^n$ for some m, n.