
GEORGE F. MCNULTY

Equational Logic

DRAWINGS BY THE AUTHOR

K

ThK

Σ

ModΣ

A |= s ≈ t

Algebras Equations

UNIVERSITY OF SOUTH CAROLINA

SPRING 2017



PREFACE

The concepts that can be expressed by means of equations and the kinds of proofs that may be devised
using equations are central concerns of equational logic. The concept of a ring is ordinarily presented by
saying that a ring is a system 〈R,+,−, ·,0,1〉 in which the following equations are true:

x + (y + z) ≈ (x + y)+ z x · (y · z) ≈ (x · y) · z x · (y + z) ≈ x · y +x · z

x + y ≈ y +x x ·1 ≈ x (x + y) · z ≈ x · z + y · z

−x +x ≈ 0 1 · x ≈ x

x +0 ≈ x

A ring is an algebra—meaning here a nonempty set endowed with a system of finitary operations. Equa-
tions, on the other hand, are certain strings of formal symbols. The concept of truth establishes a binary
relation between equations and algebras: an equation s ≈ t is true in an algebra A. This relationship un-
derlies virtually all work in equational logic. By way of this relation each equational theory—that is, each
set of equations closed under logical consequence—is associated with a variety of algebras: the class of all
algebras in which each equation of the theory is true. Through this connection syntactical and compu-
tational tools developed for dealing with equations can be brought to bear on algebraic questions about
varieties. Conversely, algebraic techniques and concepts from the theory of varieties can be employed on
the syntactical side.

It turns our that a variety is a class of similar algebras closed with respect to forming homomorphic im-
ages, subalgebras, and arbitrary direct products. The classification of algebras into varieties is compatible
with most commonly encountered algebraic constructions. It allows us to gather algebras into classes that
can be easily comprehended and manipulated. In many cases, it allows us to distinguish algebras that
strike our intuitions as genuinely different, as well as to group together algebras which seem to belong
together.

This exposition will focus on topics like

1. Finite Axiomatizability: Which varieties can be specified by finitely many equations?

2. Decision Problems: For which varieties is it possible to have a computer algorithm that determines
which equations are true in the variety? Is there a computer algorithm which would determine
whether a finite set of equations specifies exactly the class of all groups?

3. The Lattice of Equational Theories: Set-inclusion imposes a partial order on the set of equational
theories. The structure of this ordered set reflects the comparative strength of the equational theo-
ries.
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EQUATIONAL LOGIC—THE SET UP

Formal systems of mathematical logic are provided with a means of expression and a means of proof.
Equational logic is perhaps the simplest example that is still able to comprehend a considerable portion of
mathematics that arises in practice. From one perspective, equational logic is a fragment of elementary (or
first-order) logic. In this fragment the only formulas are equations between terms—this logic is provided
with neither connectives nor quantifiers (apart from implicit universal quantifiers). In comparison with
elementary logic, equational logic has a meager means of expression. As a consequence, many of the
powerful methods of model theory that have been developed for elementary logic seem to have limited
applicability in equational logic. On the other hand, since the truth of equations is preserved under the
formation of homomorphic images, subalgebras, and direction products, the methods of algebra can be
brought into play.

0.1 THE SYNTAX OF EQUATIONAL LOGIC

A signature is a function which gives natural numbers as outputs. The inputs of a signature are called
operation symbols. The outputs of a signature are called ranks. Constant symbols are those operation
symbols of rank 0. In any particular investigation, we are free to choose a convenient signature. For exam-
ple, for the equational logic of groups we might choose a signature that provides one two-place operation
symbol (to denote the group product), a one-place operation symbol (to denote the formation of inverses),
and one constant symbol (to denote the identity element).

Fix some signature. An algebra A = 〈A,F 〉 of the given signature is a system made up of a nonempty set
A and a system F of operations of finite rank appropriate for the signature. That is, F is a function whose
domain is the same as the domain of the signature and F (Q) is an operation on A of the rank assigned by
the signature to operation symbol Q. Ordinarily, we dispense with F and use QA to denote F (Q). The set A
is called the universe of discourse of the algebra A. But we will be less formal and refer to it more simply
as the universe of A. The operation QA are the basic or fundamental operations of A.

Example. Suppose our operation symbols are +,×,0,1 and our algebra is M = 〈M2(R),F 〉 where M2(R) is
the set of 2×2 matrices over the field of real numbers. Then F (+) is

+M : M2(R)×M2(R) −→ M2(R)

where +M is matrix addition. Likewise with take F (×) = ×M to be matrix multiplication, F (1) to be the
identity matrix, and F (0) is our zero matrix.

1



0.1 The Syntax of Equational Logic 2

We generally write algebras like A = 〈A,+, ·,×, . . .〉 rather than 〈A,F 〉 where F is appropriately defined.

Returning to the syntactical arrangements, we only other essential part of our syntax is a countably infi-
nite list of distinct symbols for variables: v0, v1, v2, . . . . For convenience, we also supply ourselves with the
symbol ≈ for equality.

Fix a signature. Terms are built up from the variables and the constant symbols with the help of the
operation symbols of positive rank. We give a precise definition.

Definition. The set of terms is the smallest set T of finite sequences of operation symbols and variables
satisfying the following constraints:

• Every variable belongs to T ;

• If Q is an operation symbol of rank r and t0, . . . , tr−1 belong to T , then Qt0t1tr−1 also belongs to T .

More informally, every variable is a term and Qt0 . . . tr−1 is a term, whenever t0, . . . , tr−1 are terms and Q
is an operation symbol with rank r .

According to this definition, operation symbols are to be followed by the terms they combine. This is sen-
sible, since we have allowed operation symbols to have any finite rank. However, it is at variance with the
customary practice of writing terms like this x · (y + z) rather than like this ·x + y z. This last string of sym-
bols looks odd indeed, but it is nevertheless what is called for by our official definition. There are a couple
of virtues that the official definition has. In the first place, we do not have to deal with parentheses—
simplifying our syntax. In the second place, while the customary practice works well for two-place op-
eration symbols, there seems to be no natural way to extend it to operation symbols of, let us say, rank
seven. This system of notation was promoted by the Polish logician Jan Łukasiewicz in the 1920’s and is
sometimes called Łukasieicz or Polish notation. More simply it is called prefix notation.

Terms have a key property that we will employ without much reference: A string of symbols that is a
term can be parsed in only one way. That is, if Q is an operation symbol of rank r and t0, . . . , tr−1 and
s0, . . . , sr−1 are terms such that the string Qt0t1 . . . tr−1 is the same as the string Qs0s1 . . . sr−1, then it must be
that t0 = s0, . . . , tr−1 = sr−1. This may seem so obvious as to require no proof. Nevertheless it is the subject
of Problem Set 0 and the proof outlined there as some subtlety.

It is often helpful to depict terms as (ordered rooted) trees. Under such a scheme each term as a top node:
the first symbol in the term. Beneath the top node, should in be an operation symbol of rank r , there will
be r nodes arranged from left to right. These nodes will be the top nodes of trees depicting subterms of the
original term. The following display gives the idea.

·

x
+

y z

The tree depicting x · (y + z)

· ·

+

x y x z

The tree depicting (x · y)+ (x · z)



0.2 Problem Set 0 3

An equation is an ordered pair of terms. We denote these ordered pairs as s ≈ t , rather than (s, t ). So even
though ≈ has been made officially part of our syntax, it just denotes ordered pair and could be omitted.

0.2 PROBLEM SET 0

PROBLEM SET ABOUT UNIQUE READABILITY

In the problems below L is the set of operation and relation symbols of same signature and X is a set of
variables.

PROBLEM 0.
Define a function λ from the set of finite nonempty sequences of elements of X ∪L into the integers as
follows:

λ(w) =


−1 if w ∈ X ,

r −1 if w is an operation symbol of rank r ,∑
i<n λ(ui ) if w = u0u1 . . .un−1 where ui ∈ X ∪L and n > 1.

Prove that w is a term if and only if λ(w) =−1 and λ(v) ≥ 0 for every nonempty proper initial segment v of
w .

PROBLEM 1.
Let w = u0u1 . . .un−1, where ui ∈ X ∪L for all i < n. Prove that if λ(w) = −1, then there is a unique cyclic
variant ŵ = ui ui+1 . . .un−1u0 . . .ui−1 of w that is a term.

PROBLEM 2.
Prove that if w is a term and w ′ is a proper initial segment of w , then w ′ is not a term.

PROBLEM 3.
Let T be the term algebra of L over X . Prove

If Q and P are operation symbols, and P T(p0, p1, . . . , pn−1) = QT
1 (q0, q1, . . . , qm−1), then P = Q,

n = m, and pi = qi for all i < n.

0.3 THE SEMANTICS OF EQUATIONAL LOGIC

Let A be an algebra and let t be a term of the same signature. Then t A will be a certain function from Aω

into A defined as follows:

• vA
i (a0, a1, . . .) = ai for all a0, a1, . . . ∈ A;

• Suppose Qt0 · · · tr−1 is given. Then

(Qt0 · · · tr−1)A (a0, a1, a2, . . .) =QA (
t A

0 (a0, a1, a2, . . .), t A
1 (a0, a1, a2, . . .), . . . , t A

r−1(a0, a1, a2, . . .)
)



0.3 The Semantics of Equational Logic 4

The functions described above are called the term functions of A. Of course, even though we have made
term functions to have rank ω, really each one depends only on finitely many of its denumerably many
inputs. An alternatiive definition of term functions has certain functions of finite rank can be easily con-
structed, but it is more involved.

Example. Let’s look at an example. Consider the familiar algebra (it is the ring of integers)

Z = 〈
Z,+Z, ·Z,−Z,0,1

〉
.

Then
((x0 +x1)+x2)Z (3,7,5,4,4,4, . . .)

is really (
xZ

0 (3,7,5,4,4,4, . . .)+xZ
1 (3,7,5,4,4,4, . . .)

)+Z xZ
2 (3,7,5,4,4,4, . . .)

which is really (
3+Z 7

)+Z 5

and of course this is 15.

At last, here is the crucial element of our semantical arrangements—what it means for an equation s ≈ t
to be true in the algebra A. Just as the operation symbols can be regarded as names for the basic operations
of A, so the terms cqan be seen as names for the term functions of A. We say that s ≈ t is true in A if and
only if s and t name the same term function of A—that is, if and only if sA = t A. Here are alternative ways
to express this:

• A |= s ≈ t ;

• A is a model of s ≈ t ;

• s ≈ t is true in A;

• A |= ∀ȳ[s ≈ t ], where ȳ is any finite string of variables that includes all the variables occurring in the
terms s and t .

The last alternative listed above reflects that equational logic is a fragment of elementary logic.

The truth of equations in algebras imposes a two-place relation between the class of all algebras of our
fixed signature and the set of all equations of the same signature. |= to denote this relation. Like any two-
place relation, |= gives rise to a Galois connection. This Galois connection is crucial to equational logic.

K
ThK

Σ

ModΣ
A |= s ≈ t

Algebras Equations



0.4 Problem Set 1 5

The polarities of the connection are

ModΣ= {A | A |= s ≈ t for all s ≈ t ∈Σ}, where Σ is any set of equations.

and
ThK= {s ≈ t | A |= s ≈ t for all A ∈K}, where K is any class of algebras.

ModΣ is called the equational class or the variety based onΣ. It is the class of all models ofΣ. The set ThK
is called the equational theory of K. It is the class of all equations that are true in every algebra belonging
to K.

As is true of every Galois connection, this one provides two closure operators

ModThK⊇K and ThModΣ⊇Σ.

The closed classes on the algebra side are just the varieties of algebras, while the closed sets of t he equation
side are exactly to the equational theories. Under the inclusion relation, these closed classes are ordered
as complete lattices that are dually isomorhpic to each other. Problem Set 1 provides an overview of these
general results about Galois connections.

The first task in the development of equational logic is to provide descriptions of these two closure oper-
ations.

0.4 PROBLEM SET 1

PROBLEM SET ON GALOIS CONNECTIONS

In Problem 4 to Problem 8 below, let A and B be two classes and let R be a binary relation with R ⊆ A×B .
For X ⊆ A and Y ⊆ B put

X → = {b | x R b for all x ∈ X }

Y ← = {a | a R y for all y ∈ Y }

PROBLEM 4.
Prove that if W ⊆ X ⊆ A, then X → ⊆W →. (Likewise if V ⊆ Y ⊆ B , then Y ← ⊆V ←.)

PROBLEM 5.
Prove that if X ⊆ A, then X ⊆ X →←. (Likewise if Y ⊆ B , then Y ⊆ Y ←→.)

PROBLEM 6.
Prove that X →←→ = X → for all X ⊆ A (and likewise Y ←→← = Y ← for all Y ⊆ B).

PROBLEM 7.
Prove that the collection of subclasses of A of the form Y ← is closed under the formation of arbitrary
intersections. (As is the collection of subclasses of B of the form X →.) We call classes of the form Y ← and
the form X → closed.

PROBLEM 8.
Let A = B = {q | 0 < q < 1 and q is rational}. Let R be the usual ordering on this set. Identify the system of

closed sets. How are they ordered with respect to inclusion?
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THE DESCRIPTION OF ModThK

The closure operator on the algebra side of the Galois connection established by truth, that is by |=, be-
tween algebras and equations is given by

ModThK,

for any class K of algebras, all of the same signature. This operator takes, as input, the class K of algebras,
and returns as output a class, perhaps somewhat larger, of algebras. Obtaining this output, in the way
described, requires a detour through our syntactical arrangements with the help of out semantical notion
of truth. What we desire here is a description of this closure operator that is entirely algebraic and avoids
this detour.

1.1 ALGEBRAIC PRELIMINARIES

Let A and B be algebras of the same signature.

Definition. A function h : A −→ B is a homomorphism provided it preserves the operations of the signa-
ture; that is, provided for every operation symbol Q and every a0, . . . , ar−1 ∈ A, where r is the rank of Q, we
have

h
(
QA(a0, a1, . . . , ar−1)

)=QB (h (a0) ,h (a1) , . . . ,h (ar−1))

A straightforward argument by induction on the complexity of a term t reveals that

h
(
t A(a0, a1, . . . )

)= t B (h (a0) ,h (a1) , . . . )

Here is some notation.
h : A�B

denotes a homomorphism from A onto B. In this case, we say that B is a homomorphic image of A. We
use

h : A�B

to denote a one-to-one homomorphism—these are called embeddings . A homomorphism that is both
one-to-one and maps A onto B , is called an isomorphism. Isomorphisms are invertible and the inverse
of an isomorphism is easily shown to be an isomorphism. If there is an isomorphism between A and B we
say that A and B are isomorphic and we denote this by A ∼= B.

6



1.1 Algebraic Preliminaries 7

A homomorpism from A into A is called an endomorphism of A. The set of all endomorphisms of A is
denoted by EndA. An isomorphism from A to A is called an automorphism of A. The set of all automor-
phisms of A is denoted by AutA.

Let K be a class of algebras of our signature. Then

HK := {B : B is a homomorphic image of some algebra in K}

Fact. Suppose that B is a homomorphic image of the algebra A. Every equation true in A is also true in B.

Put another way, the failure of an equation in B can be pulled back to become a failure of the same
equation in A.

Definition. Let A be an algebra. The set B is a subuniverse of A provided

• B ⊆ A;

• B is closed under all the operations of A.

If B is nonempty, we can make B (a subalgebra of A) by restricting the operations of A to the set B .

Let K be a class of algebras of our signature. Then

SK := {B : B is isomorphic to a subalgebra of an algebra in K}

Fact. Let A be a subalgebra of B. Then every equation that holds in B must also hold in A.

Put another way, if an equation fails in A, then the variables can be assigned values from A in such a way
that the term functions from the left and right sides of the equation will produce different values. Since
every element of A is also an element of B and the basic operations of A evaluate in the same way as the
corresponding basic operation of B, then the same assignment will witness the failure of the equation in B
as well.

Let I be any set and, for each i ∈ I , let Ai be an algebra of our signature. Then we know Ai 6=∅ for all i .
We define ∏

i∈I
Ai := {

s|s : I → ⋃
i∈I

Ai so that si ∈ Ai for each i ∈ I
}
.

In the expression above s = 〈si : i ∈ I 〉 is an I -tuple.

Definition. The direct product
∏
i∈I

Ai is the algebra with universe
∏
i∈I

Ai so that for each operation symbol

Q we put
Q

∏
i∈I Ai

(
s0, s1, . . . , sr−1)= 〈

QAi (s0
i , s1

i , . . . , sr−1
i )|i ∈ I

〉
where r is the rank of Q and sk ∈∏

i∈I
Ai for each k < r .

Example. Suppose the rank of our operation Q is 2 and that we have three algebras A0,A1, and A2. Then

QA0×A1×A2 ((a0, a1, a2) , (b0,b1,b2)) = (
QA0 (a0,b0) ,QA1 (a1,b1) ,QA2 (a2,b2)

)
It might clarify matters if we display the members of the direct product as columns instead of rows:

QA0×A1×A2

a0

a1

a2

 b0

b1

b2

=
QA0 (a0,b0)

QA1 (a1,b1)
QA2 (a2,b2)


We say that the operations on the direct product have be defined coordinate-wise.



1.2 An Algebraic Characterization of ModThK: The HSP Theorem 8

A straightforward argument by induction on the complexity of a term t reveals that

t
∏

i∈I Ai (s0, s1, s2, . . . ) = 〈t Ai (s0
i , s1

i , s2
i , . . . ) | i ∈ I 〉.

What happens when I =∅? Then we get a function from the empty set to the empty set. A function is a
set of ordered pairs satisfying an additional constraint—remember the vertical line test?. The function in
this case is the empty function, which is the empty set of orderer pairs. That is,∏

i∈I
Ai = {∅} = 1.

When we apply this to an empty system of algebras, the result is a one-element algebra.

Let K be a class of algebras of our signature. Then

PK := {B : B is isomorphic to a product of a system of algebras from K}

Fact. Let 〈Ai | i ∈ I 〉 be a system of algebras, all of the same signature and let s ≈ t be any equation of the
signature. Then ∏

i∈I
Ai |= s ≈ t if and only if Ai |= s ≈ t for all i ∈ I .

That is, an equation holds in a direct product exactly when it holds coordinate-wise.

1.2 AN ALGEBRAIC CHARACTERIZATION OF ModThK: THE HSP THEOREM

The HSP Theorem (Tarski’s version).
Let K be a class of algebras, all of the same signature. ModThK=HSPK.

Proof. We see that HSPK⊆ ModThK. Indeed, algebras in HSPK must be models of every equation true
in K, so they must be in ModThK.

For the reverse inclusion, let C ∈ ModThK. We will prove that C ∈HSPK.

First, let I be the set of all equations of the given signature that fail in K. So I is the set of all equations of
the signature that do not belong the ThK. For each s ≈ t ∈ I pick an algebra As≈t ∈K so that s ≈ t fails to
hold in As≈t . Let

A = ∏
s≈t∈I

As≈t .

Then A ∈PK and an equation is true in A if and only if it belongs to ThK.

Let κ be a cardinal with |C | ≤ κ. Above, when we introduced terms and defined the notion of term func-
tions, we restricted our attention to the set {v0, v1, v2, . . . } of variables. This set is countably infinite. For our
current purposes, we would like to replace this set with {vα | α ∈ κ}. This introduces no essential changes
in the notions of terms and term functions apart from changing the set of variables.

Given a term t , the term function of A denoted by t is a certain function

t A : Aκ→ A.

So
t A ∈ A Aκ

.

The term functions of A constitute, in a natural way, a subalgebra of AAκ

. Indeed, let Q be any operation
symbol and let r be the rank of Q. Then for any terms t0, . . . , tr−1 we have

QAAκ

(t A
0 , . . . , t A

r−1) = (Qt0 . . . tr−1)A.



1.2 An Algebraic Characterization of ModThK: The HSP Theorem 9

Let F denote this algebra of term functions of A. Then F is the subalgebra of AAκ

generated by the set
{ρα | α ∈ κ} of projection functions. Here ρα(ā) = aα for every κ-tuple ā of elements of A. So we see that
F ∈ SPP K.

Since |C | ≤ κ there is a function from κ onto C . Denote this function by c̄ = 〈cα | α ∈ κ〉. We define a
homomorphism h : F�C by

h(t A) = t C(c̄)

for all terms t . Now we have to see that this makes sense.

The first difficulty is that there might be quite different terms s and t so that sA = t A. In this event, we see
that s ≈ t is true in A. So s ≈ t is also true in C, since C |= ThK = ThA. So s|mathb f C (c̄) = t C(c̄). So at least
our definition of h is sound.

To see that h is a homomorphism, let Q be any operation symbol and let r be the rank of Q. Let t0, . . . , tr−1

be any terms. Observe

h(QF(t A
0 , . . . , t A

r−1)) = h((Qt0 . . . tr−1)A)

= (Qt0 . . . tr−1)C(c̄)

=QC (
t C

0 (c̄), . . . , t C
r−1(c̄)

)
=QC (

h(t A
0 ), . . . ,h(t A

r−1)
)

So h is a homomorphism.

To see that h maps F onto C just observe that h(vα) = cα, for each α ∈ κ, recalling that c̄ maps κ onto C .

Our conclusion is that C ∈HSPP K. This is not quite what we wanted. But it is easy to see that PP K=
P K (and anyway, this is an exercise in the next Problem Set).

The first version of the HSP Theorem was proven by Garrett Birkhoff in 1935. Here it is.

The HSP Theorem (Birkhoff’s version).
Let V be a class of algebras, all of the same signature. V= ModΣ for some set Σ of equations if and only if V
is closed under H, S, and P.

Proof.
(⇒) This is easy, since the truth of equations is preserved uner the formation of direct products, the forma-
tion of subalgebras, and the formation of homomorphic images.

(⇐) Let Σ= ThV. Then

ModΣ= ModThV

=HSPV using Tarski’s version of the HSP Theorem

=HSV

=HV

=V

Tarski actually deduced his version of the HSP Theorem from Birkhoff’s version. His line of reasoning
is indicated in Problem Set 2. The proof of Tarski’s version that we gave above follows the reasoning of
A. I. Mal’cev in 1954.
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1.3 PROBLEM SET 2

PROBLEM SET ABOUT H, S, AND P

In addition to H, S, and P, there is one more class operator I: A ∈ I K if and onoy if A is isomorphic to
a member of the class K. From these for operators on classes of algebras (these are functions that take a
class K of algebras as inputs and produce classes of algebras as outputs), it is possible to compose them
to obtain other class operators such as SPH. We can order these compound operators by taking O ≤ Q

to mean O K ⊆ Q K for all classes K of algebras, all of the same signature, whenever O and Q are class
operators.

PROBLEM 9.
Prove I≤ H , I≤ S and I≤P.

PROBLEM 10.
Prove H=HH, S= SS and P=PP.

PROBLEM 11.
Prove that if K⊆L, then OK⊆OL, for any classes K and L of algebras, all of the same signature and for
any operator O ∈ {H,S,P}.

PROBLEM 12.
Repeat the last three problems, but for the compound operators HS, SP, and HP.

PROBLEM 13.
Prove SH≤HS, PS≤ SP, and PH≤HP.

PROBLEM 14.
Prove SH 6=HS, PS 6= SP, and PH 6=HP.

PROBLEM 15.
LetK be the class of algebras 〈G , ·〉 so that 〈G , ·,−1 ,1〉 is a finite cyclic group. Prove that SPHS K, SHPS K,
and HSPK are different classes.

In 1972, Don Pigozzi proved that there are exactly 18 class operators that can be compounded from
I,H,S, and P. Below is a Hasse diagram of the ordered set of these operators. The comparabilities in
this diagram, as well as the fact that there are no more than the 18 operators indicated, follow from the first
five problems in this problem set. The incomparabilities as well as the fact that these 18 class operators
are distinct from each other are more difficult to establish. Establishing these requires the construction of
cleverly devised classes K to separate the operators.

That the compound operator HSP is at the top of this ordered set amounts to a derivation of Tarski’s
version of the HSP Theorem from Birkhoff’s version.



1.3 Problem Set 2 11

I

H

SH

S P

HS

PHS

HPS

SHPS

SPHS

HP

PSH

PH

SHP

SPH

SP

PS

HSP

Don Pigozzi’s Ordered Monoid of Class Operators



L
E

S
S

O
N 2

THE DESCRIPTION OF ThModΣ

The HSP Theorem gives us an algebraic description of the closure operator ModTh on the algebraic side
of the Galois connection established by truth between algebras and equations of a give signature. Our
task now is to provide a description of the closure operator ThMod on the equational side of this Galois
connection. Notice that s ≈ t ∈ ThModΣ relates the equation s ≈ t with the set Σ of equations. These are
syntactical objects—made up of strings of symbols. But the closure operator is semantical, bringing in
algebras and the truth of equations in algebras. What we seek here is a strictly syntactical description of
the closure operator.

It helps to recast matters. Observe

s ≈ t ∈ ThModΣ if and only if A |= s ≈ t for all A such that A |=Σ.

When the condition on the right above is satisfied we say that s ≈ t is a logical consequence of Σ.. We
extend the meaning of |= and denote the relation of logical conseuqence by Σ |= s ≈ t . It is also convenient
to contract ThMod to The. We say that TheΣ is the equational theory based on Σ and that Σ is a basis for
this equational theory.

So what we desire is a syntactical description of logical consequence. That is, we would like to devise
a means of proof for equational logic that leads from a set Σ of equational axioms by strictly syntactical
means to each logical consequence s ≈ t .

The chief attributes we require of our formal system of inference are:

Soundness: If the equation s ≈ t can be inferred from the set Σ of equations, then s ≈ t ∈ ThModΣ.

Adequacy: If s ≈ t ∈ ThModΣ, then s ≈ t can be inferred from Σ.

Effectiveness: In so far as it is reasonable (for computable signatures), there is an algorithm for the recog-
nition of inferences.

In addition, we would like our system of inference to be as primitive as possible so that we can read-
ily establish facts about inferences themselves. Since our system of inference is, in essence, a detailed
description of the closure operator ThMod, this will enable us to obtain far-reaching results about equa-
tional theories and varieties. While we will occasionally use our system of inference to actually deduce
equations, this will not be its principal purpose. Deductions actually put forward in mathematics rarely
have a completely formal, syntactical character.

12
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Here is an informal example of an equational deduction. Any ring satisfying the equation x3 ≈ x is com-
mutative. The following derivation of this fact illustrates some of the rules of inference that are commonly
used in reasoning about equations. Some steps invoking obvious uses of the axioms of ring theory are
omitted. Expressions like 2y x y are shorthand for y x y + y x y—which itself abbreviates the more elaborate
(y x)y + (y x)y .

(1) x3 −x≈0 by adding −x to both sides of x3 ≈ x
(2) (x + y)3 − (x + y)≈0 by substituting (x + y), a term, for the variable x

in (1)
(3) (x − y)3 − (x − y)≈0 by substituting (x − y) for x in (1)
(4) (x + y)3 + (x − y)3 −2x≈0 by adding (2) and (3)
(5) 2(x3 −x + y2x + y x y +x y2)≈0 by standard ring theory from (4)
(6) 2(y2x + y x y +x y2)≈0 by replacing x3 −x by 0 in (5) using (1)
(7) 2(y3x −x y3)≈0 by substituting (y x − x y) for x in (6) and stan-

dard ring theory
(8) 2(y x −x y)≈0 by replacing y3 with y twice in (7)
(9) (x2 −x)3 − (x2 −x)≈0 by substituting (x2 −x) for x in (1)

(10) x6 −3x5 +3x4 −x3 −x2 +x≈0 by standard ring theory from (9)
(11) x2 −3x +3x2 −x −x2 +x≈0 by replacing x3 by x six times in (10)
(12) 3(x2 −x)≈0 by standard ring theory from (11)
(13) 3[(x + y)2 − (x + y)]≈0 by substituting (x + y) for x in (12)
(14) 3(x2 −x +x y + y x + y2 − y)≈0 by ring theory from (13)
(15) 3(x y + y x)≈0 by replacing 3(x2 −x) and 3(y2 − y) by 0 in (14)
(16) x y +5y x≈0 by adding (8) to (15)
(17) x y +6y x≈y x by adding y x to both sides of (16)
(18) 6x3≈0 by substituting x for y in (6)
(19) 6x≈0 by replacing x3 by x in (18)
(20) x y≈y x by replacing 6y x by 0 in (17) using (19)

In fact, any ring satisfying an equation of the form xn ≈ x, where n > 1, is a subdirect product of finite
fields and hence commutative. This is a celebrated result of Nathan Jacobson. But every proof of this more
general result we know is not purely syntactical, but rather uses a combination of syntactical and algebraic
methods. Indeed, that mixture of the syntactic with the algebraic is typical of the derivations of equations
in practice.

The kind of inference laid out above amounts to a list of equations, each of which is justified by certain
axioms—here the axioms of ring theory and the equation x3 ≈ x—or by equations earlier in the list. Each
justification is made according to some rule of inference: substituting terms for variables, replacing “equals
by equals", adding “equals to equals", etc. The system of inference we are about to introduce is somewhat
different. In fact, our inferences turn out to be sequences of terms rather than sequences of equations.
Both the proof above and those appropriate to our system are syntactic in character—they are concerned
with the formal manipulation of terms and equations considered as strings of symbols—but they embody
the semantical notion of logical consequence.

2.1 FURTHER ALGEBRAIC PRELIMINARIES

Let A be an algebra. We say that θ is a congruence relation of A provided

• θ is an equivalence relation on A, and
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• QA(a0, . . . , ar−1) θQA(b0, . . . ,br−1) whenever Q is an operation symbol, where r is the rank of Q, and
whenever a0,b0 . . . , ar−1,br−1 ∈ A such that ai θ bi for all i < r .

The second item listed in this definition is sometimes called the substitution property. The notion of a
congruence relation is familiar from the theories of groups and rings, where such equivalence relations
are used to construct quotient groups and quotient rings. Gauss made congruences on the ring of integers
central to number theory. It is easy to see that the congruence relations of A are precisely those sublagebras
of A×A that happen to be equivalence relations.

When θ is a congruence relation on A and a, a′ ∈ A we use a θ a′, (a, a) ∈ θ, and a ≡ a′ mod θ inter-
changeably.

We use ConA to denote the set of all congruence relations of A. A routine argument shows that the
intersection of any nonempty set of congruences of A is again a congruence of A. Now the congruences of
A are ordered by the inclusion relation ⊆. Under this ordering, any set of congruences has a greatest lower
bound, namely the intersection of all the congruences in the set, as well as a least upper bound, namely
the intersection of all those congruences that contain each of the given congruences. There is a smallest
conguence, namely the identity relation restricted to A. There is a largest congruence, namely A × A. We
use 0A to denote the smallest congruence and 1A to denote the largest. In this way, ConA can be given the
structure of a complete lattice.

Congruences are connected to homomorphisms in the same way that normal subgroups in groups and
ideals in rings are connected to homomorphisms. At the center of this business is the notion of a quotient
algebra. Let A be an algebra and let θ be a congruence of A. For each a ∈ A we use a/θ to denote the
congruence class {a′ | a′ ∈ A and a ≡ a′ mod θ}. Moreover, we use A/θ to denote the partition {a/θ | a ∈ A}
of A into congruence classes. We make the quotient algebra A/θ by letting its universe be A/θ and, for each
operation symbol Q of the signature of A, and all a0, a1, . . . , ar−1 ∈ A, where r is the rank of Q, we define

QA/θ(a0/θ, a1/θ, . . . , ar−1/θ) :=QA(a0, a1, . . . , ar−1)/θ.

Because the elements of A/θ are congruence classes, we see that the r inputs to QA/θ must be congruence
classes. On the left side of the equation above the particular elements ai have no special standing—they
could be replaced by any a′

i provided only that ai ≡ a′
i mod θ. Loosely speaking, what this definition says

is that to evaluate QA/θ on an r -tuple of θ-classes, reach into each class, grab an element to represent the
class, evaluate QA at the r -tuple of selected representatives to obtain say b ∈ A, and then output the class
b/θ. A potential trouble is that each time such a process is executed on the same r -tuple of congruence
classes, different representatives might be selected resulting in, say b′, instead of b. But the substitution
property, the property that distinguishes congruences from other equivalence relations, is just what is
needed to see that there is really no trouble. To avoid a forest of subscripts, here is how the argument
would go were Q to have rank 3. Suppose a, a′,b,b′,c,c ′ ∈ A with

a/θ = a′/θ
b/θ = b′/θ
c/θ = c ′/θ.

So a and a′ can both represent the same congruence class—the same for b and b′ and for c and c ′. Another
way to write this is

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ.
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What we need is QA(a,b,c)/θ =QA(a′,b′,c ′)/θ. Another way to write that is

QA(a,b,c) ≡QA(a′,b′,c ′) mod θ.

But this is exactly what the substitution property provides. Hard-working graduate students will do the
work to see that what works for rank 3 works for any rank.

Now suppose h : A → B is a homomorphism. By the kernel of the homomorphism h we mean

kerh := {(a, a′) | a, a′ ∈ A and h(a) = h(a′)}.

The definition of kernel departs a bit from it use in the theories of groups and rings, but we see in the
next theorem that this departure is not essential. The kernel of an homomorphism is easily seen to be a
congruence. The theorem below, sometimes called the First Isomorphism Theorem, shows among other
things, that congruence relations are exactly the kernels of homomorphisms.

The Homomorphism Theorem.
Let A be an algebra, let f : A� B be a homomorphism from A onto B, and let θ be a congruence relation of
A. All of the following hold.

(a) The kernel of f is a congruence relation of A.

(b) A/θ is an algebra of the same signature as A.

(c) The map η that assigns to each a ∈ A the congruence class a/θ is a homomorphism from A onto A/θ and
its kernel is θ.

(d) If θ is the kernel of f , then there is an isomorphism g from A/θ to B such that f = g ◦η, where η : A�A/θ
with η(a) = a/θ for all a ∈ A.

While we provide no proof of this theorem here, we note that any proof of the cooresponding theorems
for groups or rings can be easily modified to obtain such a proof.

A congruence θ of A is said to be fully invariant provided

a ≡ a′ mod θ implies f (a) ≡ f (a′) mod θ

for all a, a′ ∈ A and all endomorphisms f of A. We can say this another way. Expand the signature of A by
adding a new one-place operation symbol to name each endomorphism of A. Let A∗ = 〈A, f 〉 f ∈EndA be the
expansion of A by adjoining each endomorphism as a new basic operation. Then ConA∗ is the set of all
fully invariant congruences of A.

The set T of all the terms of our given signature is the heart of our syntactical arrangements. This set
becomes an algebra T of our signature in a natural way. Indeed let Q be any operation symbol. Let r be the
rank of Q. Then we define the corresponding basic operation on T via

QT(t0, . . . , tr−1) : =Qt0 . . . tr−1,

for all t0 . . . , tr−1 ∈ T . We call the algebra T the term algebra of our signature.

The term algebra T has two crucial properties.

• T is generated by the set {vi | i ∈ω} of all variables, and

• For every algebra A of the signature, every function f : {vi | i ∈ ω} → A can be extended to a homo-
morphism from T into A.
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To see this last property, suppose that f (vi ) = ai for each i ∈ω. Define the extension ĝ of f by

f̂ (t ) : = t A(a0, a1, . . . )

for all t ∈ T . That ĝ has been given a sound definition relies on the unique readiblity of terms—that is,
there is no way to parse the string t as a different term. We see also that the function f̂ is the only way to
extend f to a homomorphism. The function f̂ is an evaluation map.

These properties of T are a instance of a useful notion. Let K be a class of algebras, all of the same
signature, let F be an algebra of the same signature and X ⊆ F . Then we say that F is K-freely generated
by X provided

• The algebra F is generated by the set X , and

• For every algebra A ∈K, every function f : X → A can be extended to a homomorphism f̂ : F → A.

This is a familiar property of vector spaces over a field K. Let F be any vector space and X be a basis of F.
The F is K-freely generated by X , where K is the class of all vector spaces over the field K.

An examination of the proof of the HSP Theorem reveals that the algebra F in that proof is ModThK-
freely generated by the projections.

Let A be an algebra and let T be the term algebra of the same signature. Recalling that s ≈ t is just another
way to denote (s, t ), we contend that

ThA =⋂{
ϕ |ϕ is the kernel of a homomorphism from T into A

}
.

To see this, first suppose that s ≈ t ∈ ThA. This means that for every ω-tuple 〈a0, a1, . . .〉 of elements
of A, we have sA(a0, a1, . . . ) = t A(a0, a1, . . . ). Since homomorphisms from T into A are completely de-
termined by where they send the variables, we see that (s, t ) belongs to the kernel of every such ho-
momoprhism. Therefore ThA ⊆ ⋂{

ϕ |ϕ is the kernel of a homomorphism from T into A
}

. For the reverse
inclusion, suppose s ≈ t ∉ ThA. Then there must be an ω-tuple 〈a0, a1, . . .〉 of elements of A so that
sA(a0, a1, . . . ) 6= t A(a0, a1, . . . ). Let f be the homomorphism from T into A so that f (vi ) = ai for all i ∈ ω.
Then (s, t ) ∉ ker f and so (s, t ) ∉ ⋂{

ϕ |ϕ is the kernel of a homomorphism from T into A
}

. This establishes
the reverse inclusion.

Now in the proof of the HSP Theorem we saw that, for every class K of algebras, all of the same signature,
it was possible to devise an algebra A ∈P K so that ThK= ThA. So we see that every equational theory has
the form ThA for some single algebra A. This means that every equational theory is a congruence relation
on the term algebra. More is true.

Theorem on Fully Invariant Congruences of Term Algebras.
Fix a signature. The equational theories of the signature are exactly the fully invariant congruence relations
on the term algebra.

Proof. We have already seen that equational theories are intersections of congruences of the term algebra.
So they are congruence relations themselve. First, we see that they are fully invariant.

So consider the equational theory ThA. Suppose that s ≈ t ∈ ThA and that f is an endomorphism of the
term algebra T. We want to establish that f (s) ≈ f (t ) ∈ ThA or, what is the same, that (( f (s)), ( f (t ))) ∈ kerh
for every homomorphism h : T → A. Now h ◦ f is a homomorphism from T into A. Since s ≈ t ∈ ThA, we
know that (s, t ) ∈ kerh ◦ f . But this is the same as ( f (s), f (t )) ∈ kerh, our desired conclusion.

So each equational theory is, indeed, a fully invariant congruence relation on the term algebra.

We also desire the converse. So let θ be a fully invariant congruence on T. Let A be T/θ. We contend
that ThA and θ are identical. First, suppose that (s, t ) ∈ θ. Let a0, a1, . . . be any elements of A. Pick terms
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p0, p1, . . . so that ai = pi /θ for each i ∈ω. Let f be the endomorphism of T such that f (vi ) = pi for all i ∈ω.
Now observe

(s, t ) ∈ θ =⇒ ( f (s), f (t )) ∈ θ
=⇒ sA(a0, a1, . . . ) = t A(a0, a1, . . . )

But the ω-tuple 〈a0, a1, . . .〉 was arbitrary. So sA = t A. That is, we have s ≈ t ∈ ThA. Our conclusion:

(s, t ) ∈ θ =⇒ s ≈ t ∈ ThA.

We also need the reverse implication. To this end, suppose s ≈ t ∈ ThA. For each i ∈ ω let ai be xi /θ.
Observe

s ≈ t ∈ ThA =⇒ sA(a0, a1, . . . ) = t A(a0, a1, . . . )

=⇒ sT/θ(x0/θ, x1/θ, . . . ) = t T/θ(x0/θ, x1/θ, . . . )

=⇒ sT(x0, x1, . . . )/θ = t T(x0, x1, . . . )/θ

=⇒ s/θ = t/θ

=⇒ (s, t ) ∈ θ

In this way, we see that each fully invariant congruence of the term algebra T is indeed an equational
theory.

2.2 A SYNTACTIC CHARACTERIZATION OF ThModΣ: THE COMPLETENESS THEOREM FOR EQUATIONAL

LOGIC

Now we can reframe our task. Given a set Σ of equations, we see that ThModΣ is the smallest equational
theory that includes the set Σ. Regarding Σ as a set of ordered pairs of terms, we see that ThModΣ is the
smallest fully invariant congruence relation on the term algebra that includes the setΣ. That is, ThModΣ is
the fully invariant congruence relation on T that is generated by the setΣ. So our task is to give a description
of how the fully invariant congruence relations on the term algebra are generated from a given set Σ.

Given two terms w and r we say that w is a subterm of r provided there are strings u and v , possibly
empty, of symbols so that r = uw v . The term w might occur as a subterm of r is several different ways.
Given an equation p ≈ q and terms r and r ′ we will say that r and r ′ are equivalent in one step using p ≈ q
provide there is an endomorphism f of the term algebra and strings u and v , possibly empty, so that

{r,r ′} = {u f (p)v,u f (q)v}.

We denote this relation by r
p≈q←→ r ′. To say this another way, r ′ is obtained from r by replacing a substitu-

tion instance of one side of p ≈ q by the same subsitution applied to the other side. There is a directional
variant of this notion that is useful. We say that r rewrites in one step using p ≈ q provide there is an
endomorphism f of the term algebra and strings u and v , possibly empty, so that

r is u f (p)v and r ′ is u f (q)v.

We denote this by r
p≈q−→ r ′.

We will say that the equation s ≈ t is deducible from the set Σ of equations provided there is some finite
sequence of terms r0,r1, . . . ,rn so that

• s is r0 and rn is t , and
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• ri and ri+1 are equivalent in one step using some equation from Σ for each i < n.

We call the sequence r0, . . . ,rn a deduction of s ≈ t fromΣ. Notice that deductions with n = 0 are permitted.
This means s ≈ s, where s is any term, is deducible from every set of equations, even the empty set. We can
display such deductions as

s
e0←→ r1

e1←→ r2
e2←→ . . .

en−1←→ t

where each ei is an equation belonging to Σ.

We use Σ` s ≈ t to denote that there is a deduction of s ≈ t from Σ.

The Completeness Theorem for Equational Logic.
Let Σ be a set of equations and let s ≈ t be an equation. Σ |= s ≈ t if and only if Σ` s ≈ t .

Proof. Let θ = {(s, t ) |Σ` s ≈ t }. We need to show that θ is smallest fully invariant congruence on the term
algebra T that includes the set Σ. It is easy to see that θ is an equivalence relation on the set T of terms and
that Σ⊆ θ.

Our first goal is to show that θ ⊆ ϕ for every fully invariant congruence relation ϕ on T that includes Σ.
We do this by induction on the length of deductions.

Base Step
In this case, Σ ` s ≈ t is witnessed by a deduction with n = 0. This means that s and t are the same.
Evidently, (s, s) belongs to every congruence on T.

Inductive Step
Here we assume that (r,r ′) ∈ ϕ for all fully invariant ϕ as long as Σ ` r ≈ r ′ is witnessed by a deduction of
length no more than n. Let Σ` s ≈ t be witnessed by the deduction of length n +1 below:

s = r0
e0←→ r1

e1←→ r2 . . .rn
en←→ rn+1 = t .

So we see that (s,rn) belongs to every fully invariant congruence that includes Σ and that rn
p≈q←→ t , where

p ≈ q ∈ Σ. Let ϕ be a fully invariant congruence that includes Σ. Let f be an endomorphism of T and u
and v be strings of symbols so that {rn , t } = {u f (p)v,u f (q)v}. It is harmless to suppose that rn = u f (p)v
and t = u f (q)v . We know that ( f (p), f (q)) ∈ ϕ since ϕ is a fully invariant congruence that includes Σ.
Now let y be a variable that does occurs in neither rn nor in t . Let t∗ = uy v . Observe that t∗ is the term
obtained from t by replacing the designated occurrence of term f (q) by the new variable y . We contend
that f (p) ≡ f (q) modϕ entails that t∗T(. . . , f (p), . . . ) ≡ t∗T(. . . , f (q), . . . ) modϕ. In fact, this is true about
arbitrary algebras and arbitrary congruences on them. A routine induction of the complexity of the term
t∗ does the job.

So our induction is complete and we know that θ ⊆ϕ whenver ϕ is a fully invarient congruence of T that
includes Σ.

So it only remains for us to show that θ itself is a fully invariant congruence of T. We have already observe
that θ is an equivalence relation on the set of terms. Let Q be an operation symbol. To avoid a morass of
indices, we show the case when the rank of Q is 2. Suppose that Σ` s0 ≈ t0 and Σ` s1 ≈ t1. To see that θ is
a congruence, we must have Σ`Qs0s1 ≈Qt0t1. So let

s0
e0←→ . . .

en−1←→ t0

and
s1

g0←→ . . .
gm−1←→ t1

be deductions from Σ of s0 ≈ t0 and s1 ≈ t1 respectively. We can piece these two deductions together:

Qs0s1
e0←→ . . .

en−1←→Qt0s1
g0←→ . . .

gm−1←→Qt0t1.
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So we find Σ`Qs0s1 ≈Qt0t1, as desired. The case of operation symbols of arbitrary rank holds no myster-
ies. Our conclusion so far is that θ is a congruence relation of T.

Finally, to see that θ is fully invariant, suppose thatΣ` s ≈ t and the f is an endomorphism of T. We need
to see that Σ` f (s) ≈ f (t ). The idea is straightforawrd. Let

s
e0←→ r1

e1←→ r2
e2←→ . . .

en−1←→ t

be a deduction of s ≈ t from Σ. We claim that

f (s)
e0←→ f (r1)

e1←→ f (r2)
e2←→ . . .

en−1←→ f (t )

is also a deduction of f (s) ≈ f (t ) from Σ. To establish this, we need only consider an arbitrary step in the

deduction. So let us suppose that r
p≈q←→ r ′. It is harmless to suppose that r = ug (p)v and r ′ = ug (q)v

where g is an endomorphism of T and u and v are certain strings of symbols. The f (r ) = û f (g (p))v̂ and
f (r ′) = û f (g (q))v̂ . Here û is obtained from u by replacing each variable vi by the term f (vi ). The string
v̂ is obtained from v in the same way. But notice that f ◦ g is itself an endomorphism of T. This means

f (r )
p≈q←→ f (r ′), as desired. It follows that θ is a fully invariant congruence of T. Since Σ ⊆ θ ⊆ ϕ for each

fully invariant congruence ϕ that includes Σ, we find that θ is the least fully invariant congruence of T that
includes Σ. In this way, our theorem is established.

Birkhoff proved the Theorem on Fully Invariant Congruences of Term Algebras in 1935 and drew from it
a completeness theorem for equational logic. Loosely speaking, in Birkhoff’s framework a deduction is a
sequence of equations, rather than a sequence of terms. His rules of inference reflect the definition of fully
invariant congruence relation on the term algebra. Birkhoff system of equational inference can be found
in Problem Set 3. There you can also find a somewhat different system of equational inference put forward
by Tarski. The system we have given, part of the folklore, was inspired by Mal’cev’s description of how to
generated congruence relations in arbitrary algebras. It is convenient for giving proofs on the lenghth of
deductions.

It is frequently possible to prove theorems concerning deducibilty by induction on the length of deriva-
tions. We say that a set Γ of terms is closed with respect to deductions based on Σ iff t ∈ Γ whenever
s ∈ Γ and Σ` s ≈ t .

The Principle of Induction on Deductions.
Let Γ be any set of terms and Σ be any set of equations. If

s
e←→ t implies t ∈ Γ whenever s ∈ Γ and e ∈Σ

then Γ is closed with respect to deductions based on Σ.

Now that we have a formal system of inference in hand, we invite the reader to write out a derivation of
x y ≈ y x from x3 ≈ x and the axioms of ring theory. The deduction provided at the beginning of this section
should be of help. (We should also warn the reader that a fully detailed derivation of this within our formal
system is fairly long.)

One of the advantages of our system of inference is that it gives us a simple test for detecting equational
theories.

Corollary 2.2.1. Let T be a set of equations. The following statements are equivalent:

i. T is an equational theory.

ii. (a) s ≈ s ∈ T for all terms s.
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(b) s ≈ t ∈ T whenever s ≈ r ∈ T and r
e−→ t for some term r and some equation e ∈ T.

iii. (a) s ≈ s ∈ T for all terms s.

(b) T is closed under substitution.

(c) s ≈ t ∈ T whenever t is obtained by replacement for s on the basis of some equation in T .

(d) s ≈ t ∈ T whenever, s ≈ r and r ≈ t belong to T , for some term r .

Proof. The conditions in (ii) assert little more than that T is closed under deductions of lengths zero, one,
and two. We argue by induction on the length of deducttions that T is closed under all derivations. Suppose

inductively that s
p−→1

p−→2
...−→ p−→n−1

t−→. The inductive hypothesis gives s ≈ pn−1 ∈ T . Set r = pn−1 and let
e ∈ T be an equation such that r

e−→ t . By (b) s ≈ t ∈ T . So (ii) implies (i). That (i) implies (ii) is immediate
from the Completeness Theorem for Equational Logic.

(iii) is an easy consequence of (i) and the Completeness Theorem for Equational Logic. Suppose that (iii)
holds and that s ≈ r ∈ T and that r

e−→ t , where e ∈ T . By (iii–b) and (iii–c), r ≈ t ∈ T . By (iii-d), s ≈ t ∈ T .
This means that (iii) implies (ii).

Just as knowing that K is a variety iff K =HSPK gives us a way to check, in some instances, whether a
given class of algebras is a variety, the corollary above often allows us to determine whether a given set of
equations is an equational theory.

2.3 PROBLEM SET 3

PROBLEM SET ABOUT EQUATIONAL INFERENCE

PROBLEM 16.
Let A be any algebra and Γ be any collection of fully invariant congruence relations on A. Prove that the
join

∨
Γ of the set Γ in ConA is again a fully invariant congruence relation on A.

PROBLEM 17.
Write down a detailed definition of the notion “the tree T depicts the term t ."

PROBLEM 18.
Prove that a sequence s of symbols is a subterm of the term t iff s is a term and t = AsB for some possibly
empty strings A and B of symbols.

PROBLEM 19.
Are there substitutions f and g such that f (x + (x +x)) = g ((x +x)+x)?

PROBLEM 20.
Let F and G be unary operation symbols and let s = F 2G2FGx and t = F 2G3FGx. Let u be a subterm
of s that is different from x. Is there a substitution instance of u that is also a substitution instance of
t—possibly by means of a different substitution?
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PROBLEM 21.
(Birkhoff’s System of Inference, Birkhoff 1935) Fix a signature. In this system there are three kinds of rules
of inference:

The Substitution Rule: From {e}, it is permitted to infer any substitution instance of e.

Equivalence Rules: From the any set of equations, it is permitted to infer s ≈ s, for any term s.

From {s ≈ t } it is permitted to infer t ≈ s.

From {s ≈ t , t ≈ u} it is permitted to infer s ≈ u.

Rules for Operating on Equations: For each operation symbol Q, it is permitted to infer the equation

Qp0p1 . . . pr−1 ≈Qq0q1 . . . qr−1

from {pi ≈ qi : i < r }, where r is the rank of Q.

Take Σ`B e to mean that there is a finite sequence e0,e1, . . . ,en of equations such that e is just en and each
member of the sequence either belongs to Σ or is obtainable from some subset of its predecessors by one
of the rules of inference above. Prove that

Σ`B e iff Σ` e

for all sets Σ of equations and all equations e.

PROBLEM 22.
(Tarski’s System of Inference, Tarski 1968) In this system there are three rules of inference:

The Substitution Rule: From {e} it is permitted to infer any substitution instance of e.

The Tautology Rule: From the any set of equations it is permitted to infer any tautology, i.e. any equation
of the form s ≈ s.

The Replacement Rule: From {s ≈ t ,e} it is permitted to infer t ≈ u where u is obtained from s by replace-
ment on the basis of e.

Take Σ`T e to mean that there is a finite sequence of equations that ends with e such that each member of
the sequence either belongs to Σ or can be inferred from some subset of its predecessors in the sequence
by means of the rules given above. Prove that

Σ`T e iff Σ` e

for all sets Σ of equations and every equation e.

PROBLEM 23.
Devise formal inferences of x y ≈ y x from x3 ≈ x and the usual axioms of ring theory, using the formal
system of inference presented in this section and each of the systems described in the two preceding exer-
cises.
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PROBLEM 24 (harder).
From the usual axioms of the theory of commutative rings with unit, supplemented by x6 ≈ x, find a deriva-
tion of x +x ≈ 0.

PROBLEM 25 (harder).
(Hand 1976) From the usual axioms of the theory of commutative rings with unit, supplemented by x48 ≈
x, find a derivation of x2 ≈ x.

PROBLEM 26 (harder).
(Levi 1944 and Stormquist 1974) Let Γ be the usual set of axioms for group theory. Prove that

Γ∪ {xp y p ≈ (x y)p , xq y q ≈ (x y)q } ` x y ≈ y x iff 2 = gcd(p2 −p, q2 −q).

PROBLEM 27.
Fix a similarity typeσwith no constant symbols. Denote by 2σ the algebra of typeσwith universe 2 = {0,1}
such that

F (ā) =
{

1, if every entry in ā is 1

0. otherwise

for each fundamental operation F . Prove that s ≈ t is regular iff 2σ |= s ≈ t , for all equations s ≈ t of type σ.

PROBLEM 28 (harder).
(Graczyńska 1983) Let T be any equational theory, containing nonregular equations, in a similarity type
without constant symbols. Prove that Reg T ∪{e} ` T, for any nonregular equation e ∈T.

PROBLEM 29 (harder).
(Płonka 1967) Let σ be a similarity type with no constant symbols. Let S = 〈S,∨∨〉 be a semilattice and
denote by ≤ the join semilattice order on S. Let 〈Ai : i ∈ S〉 be a system of algebras such that Ai and A j are
disjoint whenever i and j are distinct elements of S. Finally, let H = 〈hi j : i , j ∈ S and i ≤ j 〉 be a system of
homomorphisms such that

hi j : Ai → A j for i ≤ j in S

hi i is the identity map on Ai for all i ∈ S, and

hi k = h j k ◦hi j for i ≤ j ≤ k in S

The Płonka sum of the system 〈Ai : i ∈ S〉 with respect to the semilattice S and the system H of homomor-
phisms is the algebra with universe A = ⋃

i∈S
Ai such that for any operation symbol Q and any a0, . . . , ar−1 ∈ A,

where r is the rank of Q, we have

QA(a0, . . . , ar−1) =QAk (hi0k (a0), . . . ,hir−1k (ar−1)

where a0 ∈ Ai0 , . . . , ar−1 ∈ Air−1 and k = i0 ∨∨·· ·∨∨ ir−1. For any class K of algebras, we say that K is closed
with respect to Płonka sums provided every algebra isomorphic to a Płonka sum of a system of algebras
from K belongs, itself, to K. Prove that V is closed with respect to Płonka sums iff V can be axiomatized by
regular equations, for any variety V.
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PROBLEM 30.
An equation s ≈ t is balanced iff whenever u is a variable or an operation symbol with rank less than two,
then |s|u = |t |u . Prove that in any similarity type the set of balanced equations is an equational theory.

PROBLEM 31.
Let u be any term and set ∆u = {s ≈ t : s = t or both u/ s and u/ t }. Prove that ∆u is an equational theory
for every term u.

PROBLEM 32.
Let Σ= {x(y z) ≈ (x y)z}. Since it is irrelevant with respect to Σ how a term is associated, in this exercise we

suppress parentheses. For any natural number n, let en denote the following equation:

v0v1 . . . vn−1vn vn vn−1 . . . v1v0 ≈ vn vn−1 . . . v1v0v0v1 . . . vn−1vn

Prove the Σ∪ {ei : i < n} 6` en , for every natural number n.

PROBLEM 33 (harder).
Call a similarity type bold provided it has an operation symbol of rank at least two or at least two unary

operation symbols. Prove that there are 2ω equational theories for any countable bold similarity type.
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FIRST INTERLUDE: THE RUDIMENTS OF LATTICE THEORY

Lattice theory is a branch of algebra, just as group theory in a branch of algebra. Lattices arise naturally in
the course of investigating equational logic, so you will find gathered here key definitions and examples,
as well as the basic facts about lattices that will be useful later in this exposition. On the other hand, no
proofs will be provided—apart from some sketched in the problem set. Lattice theory will also provide us
examples of equational theories.

3.1 BASIC DEFINITIONS AND EXAMPLES

A lattices can be construed as an algebra L = 〈L,∨,∧〉 with two two-place basic operations called join and
meet. A lattice can also be contrued as an ordered set L = 〈L,≤〉. This works like two sides of the same coin.
We reserve the word lattice for the algebraic version and use lattice ordered set for the other version. On
the ordered set side, ≤ is a partial ordering of L such that for all x, y ∈ L, there is a least upper bound of
x and y , as well as a greated lower bound. On the algebraic side, evaluating the join ∨ produces the least
upper bound and evaluating the meet ∧ produces the greatest lower bound. Given a lattice ordered set,
the join and meet can be defined by elementary formulas. Given a lattice, the ordering can be defined via

x ≤ y ⇐⇒ x ∨ y ≈ y ⇐⇒ x ∧ y ≈ x.

The class of lattices is a variety, based on a small handful of easily understood equations. The class of
lattice ordered sets, on the other hand, is axiomatized by small set of easily understood elementary sen-
tences, which, however, have more involved syntactical structure requiring several alternations of quanti-
fiers. Here are both systems of axioms:

An Equational Base for the
Class of all Lattices

x ∨ (y ∨ z) ≈ (x ∨ y)∨ z x ∧ (y ∧ z) ≈ (x ∧ y)∧ z

x ∨ y ≈ y ∨x x ∧ y ≈ y ∧x

x ∨x ≈ x x ∧x ≈ x

x ∨ (x ∧ y) ≈ x x ∧ (x ∨ y) ≈ x

An Axiomatization of the Class of all
Lattice-Ordered Sets

∀x[x ≤ x]

∀x∀y[(x ≤ y ∧∧ y ≤ x) =⇒ x ≈ y]

∀x∀y∀z[(x ≤ y ∧∧ y ≤ x) =⇒ x ≤ z]

∀x∀y∃z[z ≤ x ∧∧ z ≤ y ∧∧ (∀u[u ≤ x ∧∧u ≤ y =⇒ u ≤ z])]

∀x∀y∃z[x ≤ z ∧∧ y ≤ z ∧∧ (∀u[x ≤ u ∧∧ y ≤ u =⇒ z ≤ u])]

24
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The equational base, the first two lines assert associativity and commutativity for both join and meet. The
property reflected in the third line is called idempotence, while the last line constains the two absorption
laws. The equational base gives us the curious fact that if 〈L,∨,∧〉 is a lattice, then so is 〈L,∧,∨〉. You cannot
interchange plus and times in a ring and expect the result to still be a ring!

The first three sentences in the axiomatization of lattice ordered sets just assert the reflexive, antisym-
metric, and transitive properties of the orderig, while the last two sentences assert the existence of greatest
lower bounds and least upper bounds. It only takes a little work to see that if 〈L <≤〉 is a lattice, then so
in 〈L,≥〉. This is the analog of interchanging join and meet on the algebraic side. It means that turning a
lattice upside down results again in a lattice.

Lattices arise naturally in several ways. We have already seen that the closed sets on either side of a
Galois connection comprise lattices—in fact, they are just the upside down versions of each other. Indeed,
more general closure systems give rise to lattices of closed set. Here is familiar example: the set of natural
numbers is lattice ordered by divisibility. This ordering puts 1 at the bottom of the lattice (since 1 | n for
every natural number n) and 0 at the top (since n | 0 for every natural number n). The meet in this lattice
is just the greatest common divisor and the join is the least common multiple.

On of the attractive features of lattice theory is that lattices can be displayed in Hasse diagrams. In these
diagrams, the vertices are the elements of the lattice, the edges give the covering relation (the is nothing
in between), and getting higher in the diagram reflects getting larger in the ordering. Of course, this works
best for finite lattices. . . . Here are two important lattices.

The Lattice M3 The Lattice N5

3.2 THE FIRST FACTS OF LATTICE THEORY

A lattice in which the equation x∧ (y ∨z) ≈ (x∧ y)∨ (x∧z) holds is said to be distributive. Of course, there
is another distributive law: x ∨ (y ∧ z) ≈ (x ∨ y)∧ (x ∨ z). Conveniently, it turns out that a lattice in which
one of these distributive laws holds, the other must also hold. While the analogy is limited, the variety of
distributive lattice plays a role in lattice theory akin the to role that the variety of Abelian groups plays in
group theory. Distributive lattice, particularly finite distributive lattices, have a much nicer structure than
lattices in general, just as Ablian groups,particularly finite Abelian groups, have a much nicer structure
than groups is general.

Fact 1. Let L be a lattice. The following are equivalent:

(a) L is a distributive lattce.

(b) L |= x ∨ (y ∧ z) ≈ (x ∨ y)∧ (x ∨ z).

(c) L |= x ∧ (y ∨ z) ≤ (x ∧ y)∨ (x ∧ z).

(d) L |= (x ∨ y)∧ (x ∨ z) ≤ x ∨ (y ∧ z).

(e) The lattice N5 is not isomorphic to any sublattice of L and neither is the lattice M3.
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Fact 2. Let L be any lattice. The lattice ConL of congruences of L is a distributive lattice.

There is a way to weaken the distributive law that results in a very important class of lattices. The modular
law, discovered by Richard Dedekind, is

∀x∀y∀z[x ≤ z =⇒ x ∨ (y ∧ z) ≈ (x ∨ y)∧ (x ∨ z)].

So every distributive lattice is modular. The converse is false. M3 is a distributive lattice that fails to be
modular. The modular law, as formulated above, is not an equation. How it can be replaced by an equation,
as asserted in the next Fact. So the class of modular lattices is itself a variety.

Fact 3. Let L be any lattice. The following are equivalent:

(a) L is a modular lattice.

(b) L |= (
(x ∧ z)∨ y

)∧ z ≈ (x ∧ z)∨ (y ∧ z).

(c) L |= (
(x ∨ z)∧ y

)∨ z ≈ (x ∨ z)∧ (y ∨ z).

(d) L |= (
(x ∧ z)∨ y

)∧ z ≤ (x ∧ z)∨ (y ∧ z).

(e) L |= (x ∨ z)∧ (y ∨ z) ≤ (
(x ∨ z)∧ y

)∨ z.

(f) The lattice N5 is not isomorphic to any sublattice of L.

Fact 4. Let A be any group or any ring or any module. The lattice ConA of congruences of A is a modular
lattice.

One consequence of the characterizations above of distributive and of modular lattices is that turning
them upside down (i.e. interchange join and meet) results in a lattice that is distributive or modular as the
case may be.

There is another way to weaken the distributive law. A lattice L is said to be meet-semidistributive pro-
vided the sentence below in true in L.

∀x∀y∀z[x ∧ y ≈ x ∧ z =⇒ x ∧ (y ∨ z) ≈ (x ∧ y)∨ (x ∧ z)]. (SD∧)

Meet-semidistributive lattices arise as congruence lattices of any algebra that has an associative, commu-
tative, idempotent two-place basic operation. The modular lattice M3 fails to be meet-semidistributive, as
does the lattice depicted on the left below:

Not meet-semidistributive meet-semidistributive
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However, the upside-down version on the right is meet-semidistributive. Neither of these lattices is mod-
ular (can you spot the N5’s?).

Now let A be any set. We use Eqv A to denote the set of all equivalence relations on the set A. While it is
easy to verify that the intersection of any nonempty collection of equivalence relations is again an equiv-
alence relation, the union of even two equivalence relations will usually fail to be transitive. Nevertheless,
eqv A is lattice ordered by ⊆. While we take ϕ∧psi =ϕ∩ψ for any two equivalence relations ϕ and ψ, we
must take $∨ψ to be the transitive closure of ϕ∪ψ. Actually,

ϕ∨ψ=ϕ∪ϕ◦ψ∪ϕ◦ψ◦ϕ∪ϕ◦ψ◦ϕ◦ψ∪ . . . ,

where R ◦ S = {(a,c) | a,c,∈ A and there is b ∈ A such that aRbSc} for any relations R and S on A. So the
equivalence relations on A form a lattice Eqv A. In lattice theory, the lattice Eqv A as a role similar to the
role group of permutations Sym A plays in group theory.

Fact. Let L be any lattice. There is a set A so that L is isomorphic to a sublattice of Eqv A.

Now suppose A is an algebra with universe A. How do Con A and Eqv A compare? Since every congruence
relation is an equvialence relation we might expect Con A to be a sublattice of Eqv A. For this to be true,
the meet and join in Con A must be the restrictions to congruence relations of the meet and join in Eqv A.
With the help of the epression displayed several lines above, you can easily work out the details for ∨. Since
it both lattice the meet is just intersection, we have the next fact.

Fact. Let A be an algebra with universe A. Then Con A is a sublattice of Eqv A.

3.3 PROBLEM SET 4

PROBLEM SET ABOUT LATTICES

PROBLEM 34.
Prove that if 〈L,≤〉 is a lattice ordered set, then 〈L,∨,∧〉 is a lattice, a ∨b is the least upper bound of {a,b}
and a ∧b is greatest lower bound of {a,b} for all a,b ∈ L.

PROBLEM 35.
Prove that if 〈L,∨,∧〉 is a lattice, then 〈L,≤〉 is a lattice ordered set, where a ≤ b means that a ∨b = b for all
a,b ∈ L.

PROBLEM 36.
Prove the Fact that characterizes distributive lattices.

PROBLEM 37.
Prove the Fact that characterizes modular lattices.

PROBLEM 38.
Let A be any algebra with universe A. Prove that Con A is a sublattice of Eqv A.

PROBLEM 39.
Prove the the lattice of normal subgroups of any group is a modular latice.
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EQUATIONAL THEORIES THAT ARE NOT FINITELY AXIOMATIZABLE

One question that immediately presents itself about any give euational theory is whether that theory is
finitely based. As the subjects are usually presented, rings, groups, lattices, and Boolean algebras, among
others, are defined via finite sets of equations. This can be a bit misleading. For example, groups first
arose in a concrete setting: they were sets of permutations endowed with the operations of composition
of permutations, formation of inverse permutations, and in identity permutation. Abstract groups are
those algebras that are isomorphic to concrete groups. In this light, the familiar theorem usually called the
Cayley Representation Theorem should really be called the Cayley Finite Basis Theorem. It gives a finite
list of equations to axiomatize the class of all (abstract) groups. On the other hand, the equational axioms
for rings emerged as a finite list of properties common to a diverse assortment of algebras.

One might ask whether a given variety or even a given algebra is finitely based. Even restricted to finite
algebras of finite signature, this question as turned out to be subtle. Our current concern will be to give ex-
amples of finite algebras that are not finitely based and devise general means to construct such examples.

It has turned out that almost all the finite algebras that emerged in the 19th century are finitely based.
This applies to each finite group, each finite ring, and each finite lattice—although this is by no means
obvious. Indeed, in an asymptotic sense, almost every finite algebra is finitely based. As a consequence,
most nonfinitely based finite algebras seem pathological.

4.1 THE BIRKHOFF BASIS

An algebra A is locally finite provided every finitely generated subalgebra of A is finite. A classK of algebras
is locally finite when each algebra belonging to K is locally finite.

Fact. Every variety generated by a finite algebra is locally finite.

Proof. Let A be a finite algebra and let V=HSP A. Let C be an algebra in V that is generated by the finite
set X . Recall from the proof of the HSP Theorem that we made a subalgebra B of AAC

that was generated by
the projection function ρc for each c ∈C . Then we formed the homomorphism h : B�C. We make here a
small change. Instead, let B be the subalgebra of AAX

generated by the projections ρx for each x ∈ X . Then
B will be finite since A AX

is finite. So C must be finite as well.

A small change in the argument above yields the next Fact.

Fact. Let V be a locally finite variety and let n be a natural number. Then ThV induces an equivalence
relation of the set of terms on {v0, . . . , vn−1} that has only finitely many equivalence classes.

28
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Proof. Suppose that s ≈ t is an equation with variables all drawn from {v0, . . . , vn−1} that fails in V. Then
there must be an algebra C ∈ V in which s ≈ t fails. Moreover, we can insist that C is generated by a set X
of cardinality n. Now in the proof of the HSP Theorem we produced an algebra A so that V=HSP A. As in
the proof of the Fact above, we see C is a homomorphic image of a finitely generated subalgebra B of AAX

.
Since V is locally finite, we have that B is finite. But then so it C.

Let V be a locally finite variety and let n be a natural number. By V(n) we mean the class of algebras, of
the same signature as V, that are models of all the equations true in V in no more than n distinct variables
occur. So V(n) is a variety and V⊆V(n). It is easy to check that

V⊆ ·· · ⊆V(n+1) ⊆V(n) ⊆ ·· · ⊆V(1) ⊆V(0) and V= ⋂
n∈ω

V(n).

The sequence 〈V(n) | n ∈ω〉 is called the descending varietal chain of V.

Fact. Let V be a variety and n be a natural number. Then for all algebras B, we have B ∈V(n) if and only if
every subalgebra of B with n or fewer generators belongs to V.

Proof. First suppose that B ∈V(n) and C is a subalgebra of B generated by {b0, . . . ,bn−1}. To see that C ∈V let
s ≈ t be any equation true in V. Pick c0,c1,c2, · · · ∈C . For each natural number k pick a term pk (x0, . . . , xn −
1) so that ck = pB(b0, . . . ,bn−1). Then the equation

s(p0, p1, p2, . . . ) ≈ t (p0, p1, p2, . . . )

is a logical consequence of s ≈ t and so is true in V. But the displayed equation has only variables from the
set {x0, x1, . . . , xn−1}. So the displayed equation is true in B, since B ∈V(n). So

sC(pC
0 (b0,b1, . . . ,bn−1), . . . ) = t C(pC

0 (b0,b1, . . . ,bn−1), . . . )

sC(c0,c1, . . . ) = t C(c0,c1, . . . ).

Since c0,c1, . . . were arbitrary elements of C , we see that s ≈ t holds true in C. This entails that C ∈V.

For the converse, suppose B ∉ V(n). Then there is some equation s ≈ t , in which at most n distinct
varialbles occur, that is true in V but fails in B. So pick b0,b1, . . . ,bn−1 ∈ B so that sB(b0,b1, . . . ,bn−1 6=
t B(b0,b1, . . . ,bn−1). Let C be the subalgebra of B generated by {b0,b1, . . . ,bn−1}. Evidently, the equation
s ≈ t fails in C. This means that B has a subalgebra, generated by at most n elements, that does not belong
to V.

Birkhoff’s Finite Basis Theorem.
Let V be a locally finite variety of finite signature and let n be a natural number. Then V(n) is finitely based.

Proof. We can assume that V is not the trivial variety, since otherwise V(n) is also trivial (and hence finitely
based) for all n ≥ 2. We leave it in the hands of the eager graduate students to devise finite bases for the
varieties V(1) and V(0) in case V is the trivial variety. (It might help to read through the rest of this proof. . . .)

Let Tn be the subalgebra of the term algebra consisting of those terms in which only variables from
{x0, x1, . . . , xn−1} occur. Let θ = {(p, q) | p, q ∈ Tn and V |= p ≈ q}. It is easy to check that θ is a congru-
ence of Tn and that Tn/θ is the V-freely generated algebra on n free generators. (It is even easier to see that
Tn/θ ∈V, and this is all we need.)

Since V is locally finite this means that Tn/θ is finite. In particular, θ partitions Tn into finitely many
blocks. From each block pick a representative element that is as short as possible (and is a variable if the
block contains a variable). Let Σ be the set of all equations of the form

Qt0t1 . . . tr1 ≈ s
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where Q is an operation symbol, r is the rank of Q, the terms t0, t1, . . . , and tr1 are representative terms, and
the term s is the representative of the θ-class to which Qt0t1 . . . tr−1 belongs. Because there are only finitely
many operations symbols and only finitely many representative terms, the set Σ of equations is finite. It is
easy to check that each equation in Σ is true in V. We can conclude that Σ is a base for V(n) if we can prove
that every equation using only variables from {x0, . . . , xn−1} that is true in V is derivable from Σ. This will
follow from the next claim.

Claim. Let p ∈ Tn . Then Σ` p ≈ q , where q is the representative of the θ-class to which p belongs.

Proof. We induct on the complexity of p.

The base step of the induction splits into to cases: when p is a variable and when p is a constant symbol.
In the first alternative p already a representative term. In the second alternative, p ≈ q has been included
in Σ.

For the inductive step, we have p =Qp0p1 . . . pr−1 for some operation symbol Q of postive rank r . By the
induction hypothesis we know that

Σ` pk ≈ qk

for each k < r , where qk is the θ-representative of pk . So

Σ`Qp0p1 . . . pr1 ≈Qq0q1 . . . qr−1.

But Qq0q1 . . . qr−1 ≈ q is an equation in Σ. So putting things together, we get

Σ` p ≈ q.

This finishes the claim.

To conclude the proof of the theorem, notice that if s ≈ t is an equation with variables only from {x0, . . . , xn−1}
that is true in V, then the θ-representative of s is the same as the θ-representative of t . Say it is q . Then
Σ` s ≈ q, t ≈ q . So Σ` s ≈ t , as desired.

Corollary 4.1.1. Let V be a locally finite variety of finite signature. Then V is finitely based if and only if
V=V(n) for some natural number n.

As an easy consequence, if V be a locally finite variety of finite signature and the only basic operations
of V are either of rank 0 or rank 1, then every equation true in V can have at most two variables. In other
words, V=V(2) and so V is finitely based.

While the variety generated by a finite algebra is always locally finite, the variety generated by a locally
finite algebra need not be locally finite. You are asked to construct an example in the next problem set. We
call an algebra A uniformly locally finite provide there is a function b : ω→ω on the natural numbers so
that every n-generated subalgebra of A has cardinality less than b(n) for every natural number n.

Fact. The variety generated by a uniformly locally finite algebra must be locally finite.

You are also asked to prove this fact in the next problem set.

4.2 LYNDON’S EXAMPLE OF A NONFINITELY BASED FINITE ALGEBRA

In 1954 Roger Lyndon published an example of an algebra with seven elements that is not finitely based.
His example has two basic operations: a two-place operation and a distinquished element. That he used
a constant symbol to denote one element of his algebra was convenient but not essential to his argument.
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So Lyndon’s seven-element algebra really needed only one basic operation and that one operation is a
two-place operation. Some forty years after the publication of Lyndon’s result, Zoltan Szekely observed
that Lyndon’s algebra (as well as several others that arose in the intervening decades) is associated with a
finite automaton. Szekely’s observation allows us to present Lyndon’s example via a diagram.

p q r

a,b,c b a,b,c

a c

0

Lyndon’s Algebra L

The elements of the algebra L fall into three disjoint sets: the 3-element set {p, q,r }, which we call the
set of states, the 3-element set {a,b,c}, which we call the set of letters, and the 1-element set {0}. We call 0
the default element. The binary operation, which we denote by juxtaposition, is defined by following the
arrows in the diagram. That is

ap = p bp = p cp = p

aq = p bq = q cq = r

ar = r br = r cr = r

with all other products resulting in the default element 0. In this way each letter can be thought to act on
the states to produce a state. For instance, the letter a acts on the state q to produce the state p.

The equivalence relation θ on L that makes 0 and r equivalent, but isolates all the other elements is
easily seen to be a congruence of L. The quotient algebra L/θ is isomorphic to L∗, which is displayed
below. Evidently, L∗ is in the variety generated by L. In 2008, Edmond Lee found L∗ and proved that L and
L∗ generate the same variety. He also pointed out that L∗ is subdirectly irreducible (the diligent graduate
students will check that (p,0) is a critical pair).

p q

a,b,c b

a

0

Lee’s Algebra L∗



4.2 Lyndon’s Example of a Nonfinitely Based Finite Algebra 32

Lyndon’s Nonfinite Basis Theorem.
The algebra L is not finitely based.

Proof. Let V denote the variety generated by L. Our plan is to invoke Corollary 4.1.1. To do this, for each
(large enough) natural number n we have to devise an algebra Cn and an equation εn satisfying the follow-
ing constraints:

(a) Cn ∈V(n),

(b) εn holds in V, and

(c) εn fails in Cn .

The last two constraints are equivalent to the constraint that Cn ∉V. Taken together, all three constraints
are equivalent to the contention that V 6=V(n) for all n.

So fix a natural number n. We first build the algebra An , which will be a subalgebra of the n-fold direct
power of L∗. So An ∈V, since we know that L∗ is a homomorphic image of L. So the elements of An will be
n-tuples of elements of L∗. To avoid the accumulation of notation, we drop the commas and parentheses
typical of n-tuples and instead write things like b b b a c c, which would be a 6-tuple.

Here are some n-tuples that will belong to An :

βn = q q q · · ·q q q

αn−1 = b b b · · ·b b a

αn−2 = b b b · · ·b a c

...
...

α1 = b a c · · ·c c c

α0 = a c c · · ·c c c

We take An to be the subalgebra of (L∗)n generated by the n +1 elements that were just listed. Of course,
An has more than just these n +1 elements. For example, we see that

αn−1βn = q q q · · ·q q p.

We will call this new element βn−1. More generally,

αkβk+1 =βk .

This makes, for example, β1 = q p p · · ·p and β0 = p p p p · · ·p p p.

Here is another product:
α3β2 =β2

and in general
αkβ j =β j

whenever j ≤ k. But every other kind of product of these n-tuple produces an n-tuple with a 0 in at least
one position. Let θn be the equivalence relation that collapses all the n-tuple that have at least one entry
0, but that isolates all the other elements of An . It is routine to check that θn is a congruence on An . Let
Bn = An/θn . It is convenient to let bk = βk /θn = {βk } for k ≤ n and let ak = {αk } for k < n. We accept the
ambiguity of letting 0 denote the one large congruence class. So Bn belongs to V, it has 2n +2 elements,
and just like L and L∗ it can be displayed in a diagram, as follows.
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b0 b1 b2

ak
k≥0

ak
k≥1

ak
k≥2

a0 a1

bn−2 bn−1 bn

ak
k≥n−2

ak
k≥n−1

ak
k≥n

an−2 an−1

0

The Algebra Bn

Notice that the rightmost loop actually has no label since there are no ak ’s when k ≥ n. The loop was
included in the picture for the sake of uniformity.

In Bn we have bnb0 = 0. We obtain the desired algebra Cn by changing this one product—make bnb0 = b0

in Cn , but leave everything else unchanged. Here is the diagram for Cn .

b0

bn

b1 b2

ak
k≥0

ak
k≥1

ak
k≥2

a0 a1

bn−2 bn−1 bn

ak
k≥n−2

ak
k≥n−1

ak
k≥n

an−2 an−1

0

The Algebra Cn

The algebras Bn and Cn have the same elements and the operations work almost always the same way. If
we were displaying these algebras via multiplication tables, our two tables would differ at only one square
of the table: in Bn the entry would be 0 while in Cn the entry would be b0.

This small change is enough to keep Cn out of V. Indeed, it is easy to see that the equation

y(x0(x1(x2 · · · (xn−1 y) · · · ))) ≈ y y

holds in L but fails in Cn . (Notice y y always evaluates to 0 in both L and Cn .) So we take the equation
displayed above to be εn .

It only remains to show that Cn ∈V(n). To achieve this we have to show that every subalgebra of Cn with
n or fewer generators belongs to V. Let D be such a subalgebra. Notice that the n +1 elements

a0, a1, . . . , an−1, and bn

are not outputs of the basic operation of Cn and. moreover, removing any one of these elements results in
a subalgebra of Cn . At least one of these elements cannot be in D. It follows that D is itself a subalgebra of
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the subalgebra of Cn formed by removing that one element. So it suffices to suppose that D itself arises by
removing from Cn one of the elements listed above.

Suppose first that D results from removing bn . Then the diagram below displays D.

b0 b1 b2

ak
k≥0

ak
k≥1

ak
k≥2

a0 a1

bn−2 bn−1

ak
k≥n−2

ak
k≥n−1

an−2

0

The Algebra D = Cn with bn removed.

We see, in this case, that D is a subalgebra of Bn , so D ∈V as desired.

The last case we have to consider is that D arises by removing a` from Cn . Then the diagram below
deplays D.

b0

bn

b1 b2

ak
k≥0,k 6=`

ak
k≥1,k 6=`

ak
k≥2,k 6=`

a0 a1

b` b`+1

ak
k>`

ak
k≥`+1

bn−2 bn−1 bn

ak
k≥n−2

ak
k≥n−1

ak
k≥n

an−2 an−1

0

The Algebra D = Cn with a` removed.

This diagram allows us to see two subalgebras of D, namely H, which has universe

{0}∪ {b`+1, . . . ,bn}∪ {ak | `< k < n},

and K, which has universe
{0}∪ {b0, . . . ,b`}∪ {ak | ` 6= k < n}.

Evidently, H is isomorphic to Bn−(`+1). This means H ∈ V. Now consider the algebra K. Notice that bn

labels an edge but it does not label a node in our diagram. As we want the conclusion that K ∈V, we need
to modify our construction of Bn to add an extra label. Here is how. Let A′

n be the subalgebra of (L∗)n

generated by An ∪ {γ} where γ is the n-tuple c c c · · ·c c. Then let B′
n be the quotient algebra formed

from A′
n by the congruence that lumps together all n-tuples having at least one entry 0 and isolating all

other elements. Let g = {γ} be the congruence class of γ. The algebra B′
n has the following diagram.
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b0

g

b1 b2

ak
k≥0

ak
k≥1

ak
k≥2

a0 a1

bn−2 bn−1 bn

ak
k≥n−2

ak
k≥n−1

ak
k≥n

an−2 an−1

0

The Algebra B′
n

So B′
n ∈V and evidently K is isomorphic to a subalgebra of B′

n . This means that K ∈V. Further, K×H ∈V.
But we wanted D ∈ V. So the last part of our proof will demonstrate that D is embeddable into K×H. So
what we need is two homomorphisms ϕ : D → K and ψ : D → H so that the system 〈ϕ,ψ〉 separates the
points of D . Here are the maps:

ϕ(bk ) :=


bk if k ≤ `
bn if k = n

0 Otherwise.

ϕ(ak ) := ak

ϕ(0) := 0

ψ(bk ) :=
{

bk if k > `
0 Otherwise.

ψ(ak ) :=
{

ak If k > `
0 Otherwise.

ψ(0) := 0

The work of showing that these two maps are homomorphisms is left for the entertainment of the graduate
students. To see the separation of points, observe that that the kernel ofϕ places all the ak ’s, all the bk ’s for
k ≤ `, and bn into singleton congruence classes. On the other hand, {0}∪{bk | `< k < n} is a single congru-
ence class of the kernel ofϕ. But the kernel ofψ separates all the elements this single big congruence class
of kernel of ϕ. So the system 〈ϕ,ψ〉 separates the points of D . Consequently, D is embeddable into K×H
and so D ∈V, as desired.

This completes the proof of Lyndon’s Nonfinite Basis Theorem.

4.3 MORE ALGEBRAIC PRELIMINARIES

Let A be an algebra and let 〈Bi | i ∈ I 〉 be a system of algebras of the same signature. Further, let 〈hi | i ∈ I 〉
be a system of homomorphisms such that

hi : A�Bi for each i ∈ I .

The system 〈hi | i ∈ I 〉 is a subdirect representation of A provided it separates points, that is for all a, a′ ∈ A
with a 6= a′, there is i ∈ I such that hi (a) 6= hi (a′). With such a representation of A in hand, observe that

h : A�
∏
i∈I

Bi ,

where the embedding h is defined by

h(a) = 〈hi (a) | i ∈ I 〉 for all a ∈ A.
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Moreover, hi = ρi ◦h for each i ∈ I , where ρi is the projection function.

A subdirect representation 〈hi | i ∈ I 〉 is trivial when h j is one-to-one, for some j ∈ I . After all, that one
h j does all the work of separating points. We say A is subdirectly irreducible provided every subdirect
representation of A is trivial.

Let θi = kerhi . What does this mean? It means a θi a′ if and only if hi (a) = hi (a′). That is, the homomor-
phism hi separates a from a′ if and only if a and a′ belong to different congruence class modulo kerhi .

A system of congruences 〈θi : i ∈ I 〉 separates points means that
⋂
θi is the smallest congruence relation

0A , the congruence that just identifies a with itself for each a ∈ A. That is, 〈θi : i ∈ I 〉 separates points means
that ⋂

i∈I
θi = 0A = {(a, a) : a ∈ A}.

So we could reframe the notion of subdirect representation in terms of congruence relations, rather than
homomorphisms. A system of congruence relations 〈θi : i ∈ I 〉 is a subdirect representation of A provided⋂

i∈I θi = 0A .

In this setting, an algebra A is subdirectly irreducible means that for any subdirect representation 〈θi | i ∈
I 〉 of A by congruences, for at least one i ∈ I we have θi = 0A .

Suppose A is a subdirectly irreducible algebra. Consider all the congruences of A that aren’t trivial. Inter-
sect them: ⋂

{θ : θ ∈ ConA and θ 6= 0A}.

Notice that this cannot be the smallest congruence 0A . If it were, then the congruence in our intersection
would have to be trivial. But A is subdirectly irreducible, so this is impossible. Hence

0A 6=⋂
{θ : θ ∈ ConA and θ 6= 0A}.

This this intersection is the unique minimal least nontrivial congruence. We call it the monolith of A. The
congruence lattice of A has 1A at the top, the congruence that relates everything to everything. It has 0A

at the bottom, the identity congruence that just relates a to a and nothing else (for each a ∈ A). Directly
above 0A we find µ, the monolith of A. It is the only upper-cover of 0A . So when A is subdirectly irreducible,
the congruence lattice Con A looks like

0A

µ

1A

The Congruence Lattice of a Subdirectly Irreducible Algebra A
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The proof of next theorem is left in the hands of the eager graduate students.

Theorem 4.3.1. Let A be an algebra. Then the following are equivalent:

a. A is subdirectly irreducible;

b. A has a critical pair;

c. The congruence lattice of A has a monolith;

d. Every subdirect representation of A is trivial.

Theorem 4.3.2 (Birkhoff’s Subdirect Representation Theorem, 1944). Every algebra is a subdirect product
of subdirectly irreducible factors.

Proof. Let A be an algebra. Consider its congruence lattice ConA. It has a top element (namely 1A) and a
bottom element (namely 0A). We want to find a flock of congruences 〈θi : i ∈ I 〉 that intersect to 0A and so
that A/θi is subdirectly irreducible.

Let I = {(a,b) : a,b ∈ A and a 6= b}. Pick θ(a,b) to be a congruence of A maximal with respect to separating
a and b. Evidently, ⋂

(a,b)∈I
θ(a,b) = 0A

and (
a/θ(a,b),b/θ(a,b)

)
is a critical pair of A/θ(a,b).

Why we can find a maximal congruence with respect to separating a and b? Ask Zorn.

Why it is that (
a/θ(a,b),b/θ(a,b)

)
is a critical pair? First, note that

a/θ(a,b) 6= b/θ(a,b)

since (a,b) 6∈ θ(a,b). Second, suppose that ϕ ∈ ConA/θ(a,b) which is nontrivial. Let ψ ∈ ConA with

θ(a,b) áψ and ϕ=ψ/θ(a,b) := {
(c/θ(a,b),d/θ(a,b)) : (c,d) ∈ψ}

Notice that
a/θ(a,b)ϕb/θ(a,b)

implies (a,b) ∈ψ. But we know this by the maximality of θ(a,b).

Note that Theorem 4.3.2 is just an existence theorem. It does not tell us how to get a subdirect repre-
sentation, but just that there is one. Also, it does not say anything about uniqueness. Nor does it give us
a description of the subdirectly irreducible algebras. So Birkhoff’s Subdirect Representation Theorem falls
short of the standard set by the Fundamental Structure Theorem for Finite Abelian Groups.

Corollary 4.3.3. Every variety of algebras is determined by its subdirectly irreducible members.
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4.4 INHERENTLY NONFINITELY BASED EQUATIONAL THEORIES

An algebra A is inherently nonfinitely based provided:

(i) A has only finitely many basic operations;

(ii) A belongs to some locally finite variety; and

(iii) A belongs to no locally finite variety that is finitely based.

Similarly, we say that a locally finite variety V of finite signature is inherently nonfinitely based provided
it is not included in any finitely based locally finite variety.

Varieties that are inherently nonfinitely based have the nonfinite basis pathology in a contagious way:
if V is inherently nonfinitely based and W is a locally finite variety with V ⊆W, then W is also inherently
nonfinitely based. Similarly if A is inherently nonfinitely based and W is a locally finite variety with A ∈W,
then W is inherently nonfinitely based. Finally, if A is inherently nonfinitely based and HSP B is locally
finite (e.g. B is finite) and A ∈HSPB, then B is also inherently nonfinitely based.

From Birkhoff’s Finite Basis Theorem we deduce

Theorem 4.4.1. Let V be a locally finite variety with a finite signature. Then the following conditions are
equivalent:

(a) V is inherently nonfinitely based;

(b) The variety V(n) is not locally finite for any natural number n;

(c) For arbitrarily large natural numbers n, there exists a non-locally finite algebra Bn whose n-generated
subalgebras belong to V.

Thus to show that a locally finite variety V of finite signature is inherently nonfinitely based, it is enough
to construct a family of algebras Bn (for each n ∈ω) so that each Bn fails to be locally finite, but Bn ∈V(n).

We say that a variety W fails to be locally finite in the finite sense if there is a natural number p so that
W contains arbitrarily large finite p-generated algebras. For W to fail to be locally finite, all it needs is
an infinite, finitely generated algebra. However, for W to fail to be locally in the finite sense it must have
arbitrarily large (but finite) p-generated algebras. A locally finite variety V is inherently nonfinitely based
in the finite sense if whenever V ⊆U where U is a finitely based variety, then there is a natural number p
so that U has arbitrarily large finite p-generated algebras. Equivalently: A locally finite variety V of finite
signature is inherently nonfinitely based in the finite sense if and only if V(n) fails to be locally finite in
the finite sense for all natural numbers n. Combining our ideas thus far, for finite algebras, it is easy to see
that

Inherently nonfinitely based in the finite sense
⇓

Inherently nonfinitely based
⇓

Nonfinitely based

In the opposite direction, it is known that there exist finite algebras that are nonfinitely based but that fail
to be inherently nonfinitely based. Lyndon’s seven-element algebra is one such example. Whether or not
a variety being inherently nonfinitely based is enough to conclude that it is inherently nonfinitely based
in the finite sense is not yet known. This question is related to a problem posed in 1976 by Eilenberg and
Schützenberger:
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The Problem of Eilenberg and Schützenberger:
Let V be a variety of finite signature generated by a finite algebra. Suppose that W is a finitely
based variety such that V and W have exactly the same finite members. Must V be finitely
based?

The same problem can be asked if V is locally finite, and and that problem is still open as well. It turns out
that if there exists a finite, inherently nonfinitely based algebra that fails to be inherently nonfinitely based
in the finite sense this algebra would resolve the Problem of Eilenberg and Schützenberger in the negative.

Consider an algebra A with a finite signature. We call an element 0 ∈ A an absorbing element if any
operation evaluated at any tuple containing 0 gives the value 0. The other nonabsorbing elements in A are
called proper elements. Note that if it exists, the absorbing element 0 of A is unique as long as A has a
basic operation of rank at least two. Moreover, if σ is any automorphism of A, the absorbing element will
be fixed by σ.

We call any tuple that does not contain the absorbing 0 a proper tuple or simply proper. If F is a basic
operation of A of rank r , we can regard F as a set of r +1-tuples, with the first r entries as the inputs and
the last entry as the output. The set of all proper tuples belonging to F is called the proper part of F .

Two proper elements of A are said to be operationally related provided they are entries in a tuple of
proper elements that belongs to some basic operation of A. An entry in such a tuple will be called an
essential element.

We define a shift automorphism algebra as an infinite, locally finite algebra with only finitely many basic
operations, with an absorbing element 0, and with an automorphism σ such that

a. The only finite σ-orbit of A is {0};

b. The proper part of F is partitioned byσ into only finitely many orbits, for each fundamental operation
F of A;

c. There is a proper element a of A and a nonconstant unary polynomial function f of A such that
f (a) =σ(a).

A shift automorphism variety is any variety generated by a shift automorphism algebra. Notice that we
have not stipulated that a shift automorphism algebra be uniformly locally finite. Every shift automor-
phism algebra has a countably infinite subalgebra that is also a shift automorphism algebra.

Almost all of the finite algebras known to be nonfinitely based come out of arguments involving the
following Theorem:

The Shift Automorphism Theorem.
Every shift automorphism algebra is inherently nonfinitely based in the finite sense. Furthermore, every shift
automorphism variety has a countably infinite subdirectly irreducible member.

Proof. Let A be a shift automorphism algebra and let V denote the shift automorphism variety generated
by A. Let n be any natural number larger than the rank of any basic operation of A. Let E denote the set of
essential elements of A. Let E] be the algebra whose universe is E ∪{0}. We now argue that E] is itself a shift
automorphism algebra. We begin by showing that the restriction of σ to E ] is an automorphism of E].

A set S ⊆ A isϕ-invariant provided c ∈ S impliesϕ(c) ∈ S, whereϕ is an automorphism of A. It is straight-
forward to check (why not do it?) that E ∪ {0} is ϕ-invariant, for every automorphism of A. This means that
the restrictions of both σ and σ−1 to E ∪ {0} are automorphisms of E]. Without fear of ambiguity, we use σ
to denote the restriction of σ to E ∪ {0}. It is easy to check that E] is a shift-automorphism algebra. But we
also note that E] is countable and has only finitely many σ-orbits.
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We would like to have that A and E] generate the same variety. But this might not be quite true.

Certainly, every equation true in A must be true in its subalgebra E]. Consider the converse. Suppose
s ≈ t fails in A. Then we can pick c0,c1, · · · ∈ A so that

sA(c0,c1, . . . ) 6= t A(c0,c1, . . . ).

It is harmless to suppose that sA(c0,c1, . . . ) 6= 0. This means that for all i if vi occurs in s, then ci ∈ E ,
provided s is not a variable. By reassigning c j = 0 for all j so that v j does not occur in s, we obtain a failure
s ≈ t in E]. So it remains to consider the case when s is a variable—in fact, s = v0 harmlessly. In this case
c0 might be any proper element of A, even one that is not essential. Again, we could reassign c j = 0 for
all j > 0 and arrive at a failure of s ≈ t in A. But this means that E] might not serve our purposes. So let
E ]] = E ∪{0}∪{σk (d) | d ∈Z}, where d is some fixed proper element of A that is not essential, if there is one.
In this way, reasoning as above, we arrive at the subalgebra E]] of A that is a countable shift-automorphism
algebra with finitely many σ-orbits, with at most one of these orbits consisting of proper nonessential
elements, and that generates the same variety has A.

To simplify notation, we now assume that A itself is a countable shift-automorphism algebra with finitely
manyσ-orbits, with at most one of these orbits consisting of proper nonessential elements. We can replace
A by E]], if we need to.

Let m denote the number of σ-orbits into which A is partitioned. Pick representatives a0, a1, . . . , am−1

from these orbits so that a0 = a where a is the element mentioned in condition (c). We also take am−1 to
be a proper element that is not essential, in case A has any such elements. Arrange the elements of A in a
sequence

. . . , a−2, a−1, a0, a1, . . . , am−1, am , . . .

with the order type of the integers so that σ(a j ) = a j+m . Given this ordering of A, it is natural to talk about
elements being “to the left of” or “to the right of” other elements in A, and the distance between elements
in A is defined by the absolute value of the difference of their indices.

By condition (b), up to translation by σ, there can only be finitely many pairs of operationally related el-
ements. Let d be the maximum distance between any two operationally related elements of A. We require
that the choices for representatives for the σ-orbits and their ordering has been chosen in such a way that
the parameter d is as small as possible. Notice that the parameters d and m depend only on the algebra A
and its automorphism σ.

We now introduce a new parameter. Pick an element ai from A. Let X = {a j : i ≤ j }. Notice that X is the
set of elements to the right of ai together with the element ai itself. Now the subalgebra of A generated by
X may include some elements to the left of ai . However, any such elements must be generated by the finite
set {a j : i ≤ j < i +d}. Since A is locally finite by assumption, we can conclude that X can generate only
finitely many elements to the left of ai . Let wi denote the distance between ai and the element farthest to
the left of ai which is generated by X . Since σ is an automorphism of A, the only numbers that can arise in
this way are precisely w0, w1, . . . , wm−1. Let wL be the largest of these numbers. It is meant to denote the
farthest distance to the left that we can get from any a j using generating elements only to the right of a j . In
the same way, let wR be defined in an analogous manner: it will be the largest member of an m-sequence
of numbers.

Let τ be an automorphism of A. We say that a subalgebra S of A is τ-decomposable provided there is a
subalgebra S0 (called core of the decomposition) such that

S = ⋃
i∈Z

τi (S0)

and no element of S0 is operationally related to any element in any nontrivial τ-translate of S0. Each τ-
translate of S0 is also called a core of the decomposition. Note that the τ-decomposition is constructed so
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a τ(a)τ−1(a)

0

τ τ τ τ

· · · · · · · · · · · ·

Figure 4.1: The τ-Decomposable Subalgebra

that elements from different blocks cannot be operationally related; that is, if F is any basic operation and
s0, . . . , su−1 ∈ S such that

F (s0, . . . , su−1) 6= 0

we are guaranteed that {s0, . . . , su−1} ⊂ τ j (S0) for some unique integer j . Lastly, notice that every τ-decomposable
subalgebra of A is τ-invariant and it is partitioned into τ-orbits.

Some of the subalgebras of A might turn out to be τ-decomposable while other might not. We need
more control of the decomposable subalgebras. Let ` be the smallest natural number such that `m >
n (d +wL +wR ). From this point, we reserve τ to denote σ`. Let m′ = `m. This is the number of τ-orbits
into which A is partitioned.

The τ-decomposability Lemma.
The union of any n τ-orbits of A generates a τ-decomposable subalgebra of A whose cores are n-generated.

Proof. Suppose that Y ⊆ E is the union of n τ-orbits. Let y0 ∈ Y . Scanning the elements of Y to the right
we read the sequence

y0, y1, . . . , yn−1, yn = τ(y0)

The distance between y0 and yn is m′ > n(d +wL +wR ). Between adjacent pairs on this sequence there are
n gaps. By the Pigeonhole Principle, at least one of these gaps must have length at least d +wL +wR +1.
So the set Y can be broken up into pieces of size n so that each is the τ translate of one to the left and
the gaps that separate these pieces are of length at least d +wL +wR +1. Let Y0 be the piece that contains
y0. Let S0 denote the subalgebra generated by Y0. By construction of wL and wR , the subalgebra S0 can
extend no farther than wL points to the left of Y0 and no farther than wR points to the right of Y0. Define
S j = τ j (S0) for each integer j . Between any two such translates of S0, there must be a gap of length at
least d +1. It follows that no element of one translate can be operationally related to any other element of
another translate. Furthermore, the subalgebra generated by Y is⋃

j∈Z
τ j (S0)

and this subalgebra is τ-decomposable.

The τ-decomposable subalgebra has the structure shown in Figure 4.1. Each core of the decomposition
is represented by an ellipse and the element a is the particular element mentioned in condition (c).
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For a variety to be inherently nonfinitely based in the finite sense, it first must be locally finite. Since the
variety V is not assumed to be generated by a finite algebra, we must show directly that it is locally finite.

Claim. The variety V is locally finite.

Proof. It is enough to find a function b(n) on the positive integers so that every n-generated subalgebra of
A has no more than b(n) elements. Let n be as before. Let X be any subset of A so that |X | = n. Apart from
perhaps the default element 0, and some proper but nonessential elements, the only elements that can be
generated from X must be essential elements. Since neither 0 nor any nonessential element can help us
generate additional elements, by insisting that b(n) > n+1, we can suppose that X contains only essential
elements. We now pick n τ-orbits in such a way that each element of X lies in one of the selected orbits.
Thus the subalgebra generated by X is included in the subalgebra generated by the orbits of the elements
in X . Since we have chosen n-many τ-orbits, the algebra generated by the union of the orbits of elements
of X will be τ-decomposable. Let S0 be a core of this τ-decomposition. Then the subalgebra generated by
X will be contained in the union of the τ-images of this core; that is,

SgA X ⊆ ⋃
i∈Z

τi (S0).

Since the blocks of the decomposition are operationally unrelated, each of them form a subalgebra. That
means that the size of the subalgebra generated by X can be no larger than n times the size of the core
S0. This number still depends on the cardinality of S0, which is itself an n-generated subalgebra of A. To
bound this number, notice that there are only m′ many τ-orbits in total. There are

(m′
n

)
ways to pick n of

these orbits. For each such subalgebra we can pick a core algebra for the corresponding τ-decomposable
subalgebra. Then n times the size of the largest of these will suffice for b(n).

Given that V is locally finite, then V is inherently nonfinitely based in the finite sense provided V(n) has
arbitrarily large finite p-generated algebras, for some p. Hence our goal is to find a natural number p and
finite algebras Bn,k for infinitely many k so that

• Each Bn,k has at least k elements;

• Each Bn,k is generated by a set of p elements; and

• Each Bn,k is in V(n).

We will now construct the algebras Bn,k .

Recall that, apart from the elements in at most one of the orbits, all nonzero elements of A are assumed
to be essential. We consider a partial subalgebra of the 2k-fold direct power of this algebra. Let e be an
essential element and let U be a subset of {0,1, . . . ,2k −1}. By e|U we mean the 2k-tuple that has e at the
j th position for all j ∈U and 0 at all other positions.

Let µ be the map from the set Z of integers to {0,1, . . . ,2k −1} defined by

µ(z) ≡ z (mod 2k) for all z ∈Z.

We say that the subset U ⊆ {0,1, . . . ,2k−1} is contiguous modulo 2k provided it is the image under the map
µ of an interval in Z. Define G as the set of 2k-tuples e|U for which

• e is an essential element;

• U is a nonempty contiguous set of integers modulo 2k; and

• |U | < k.
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The set G is the universe of a partial subalgebra G. We use G] to denote the subalgebra of A2k obtained by
adjoining the constantly 0 tuple to G.

We now provide an example of such an e|U . Rather than considering e|U as a usual 2k-tuple, we will
consider it as having a circular form where the positions are as they appear on an analog clock. Let k = 4,
let U = {0,1}, and let e be an essential element of A. Then e|U has the following form:

e
e

0

0
0

0

0

0

Notice that this depiction gives rise to two automorphisms in a natural way. The automorphism τ of A
extends naturally to a coordinatewise defined automorphism on G]; namely, we can define τ on G] as
follows:

τ (e|U ) := τ(e)|U
Another automorphism becomes clear using the circular depiction of e|U . Let ρ denote the cyclic shift on
the coordinate set U . We note that the automorphisms τ and ρ commute. Furthermore, by applying τ◦ρ
to the particular e|U that appears above, we find

0
τ(e)

τ(e)

0
0

0

0

0

and so τ◦ρ (e|U ) = τ(e)|ρ(U ). Notice that the collection of U ’s that play a role in G is closed with respect to
the cyclic shift.

Claim. τ ◦ρ partitions the partial algebra G into 2k2m′ orbits and these orbits are congruence classes of
some congruence relation of G.

Proof. As we noted before, there are m′ many τ-orbits of A. The number of τ ◦ρ-orbits of G will be the
product of m′ and the number of possible choices for the cyclically contiguous nonempty sets U with
cardinality no more than k. To define a particular U , it is enough to describe the cardinality of U and the
starting point of the contiguous interval (modulo 2k). There are 2k choices for the starting point of the
contiguous interval (modulo 2k) of U . Given a starting point of this interval, there are k choices for its
length. Thus there are 2k ·k = 2k2 possible sets U . Hence the total number of τ◦ρ-orbits in G is 2k2 ·m′, as
claimed.

Since τ◦ρ partitions G, it forms an equivalence relation of τ◦ρ-equivalence classes. We just need to show
that the underlying equivalence relation is a congruence. Suppose Q is a basic operation symbol of rank r
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and that

QG (
g0|U0, . . . , gr−1|Ur−1

)= gr |Ur

QG (h0|V0, . . . ,hr−1|Vr−1) = hr |Vr(
τ◦ρ)e j g j |U j = h j |V j for j < r.

We need to verify that gr |Ur and hr |Vr lie in the same τ◦ρ-orbit.

Given that 0 is an absorbing element, the result of QG
(
g0|U0, . . . , gr−1|Ur−1

)
must contain 0 at each coor-

dinate in the complement of U0 ∩·· ·∩Ur−1. That is,

U0 ∩U1 ∩·· ·∩Ur−1 =Ur .

Furthermore, QA
(
g0, . . . , gr−1

)= gr . Likewise,

V0 ∩V1 ∩·· ·∩Vr−1 =Vr and

QA (h0, . . . ,hr−1) = hr .

Since τ◦ρ acts in a coordinatewise manner, we have

τe j
(
g j

)= h j for all j < r, and

ρe j
(
U j

)=V j for all j < r

Provided that e0 = e1 = ·· · = er−1, we will have our desired conclusion.

Having chosen n so that it is greater than the rank of any basic operation of A, the elements g0, . . . , gr−1

cannot be in more than n τ-orbits. Since each g j is τ-related to each h j (where j < r ), the elements
h0, . . . ,hr−1 are in those same τ-orbits. All these essential elements must belong to a single block of the
τ-decomposable subalgebra. Since g0, . . . , gr−1 are operationally related, they must belong to a single τ-
translate of the core. Likewise, since h0, . . . ,hr−1 are operationally related, they must belong to a single
τ-translate of the core. Therefore, there is a single e so that τe carries the block containing the g j ’s to the
block containing the h j ’s. Hence e = e0 = e1 = ·· · = er−1.

We now know that the τ◦ρ-orbits of G are really congruence classes of some congruence relation of G. Let
γ denote that congruence of G. Define Gn,k as the algebra made by adding the default absorbing element
to G/γ. Since G/γ has 2k2m′ elements by the claim above, the algebra Gn,k has cardinality 2k2m′+1.
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Claim. Gn,k ∈V(n).

Proof. Consider n proper elements of G/γ. These correspond to n many τ◦ρ-orbits of G. From these, we
can obtain n many τ-orbits of A since each τ◦ρ-orbit has an associated τ-orbit. Let D be the subalgebra
generated by the union of these orbits. Since D is n-generated, it is τ-decomposable by τ-decomposability
Lemma. Let S be a core of this decomposition. Now we can pick elements g0, . . . , gn−1 of S and appropriate
nonempty subsets U0, . . . ,Un−1 of {0,1, . . . ,2k −1} so that

g0|U0, . . . , gn−1|Un−1

is a system of representatives of our original τ◦ρ orbits. Let H be the subalgebra of G] generated by{
g0|U0, . . . , gn−1|Un−1

}
.

Let π be the map from H to Gn,k defined so that each proper element of H is assigned the τ ◦ρ-orbit to
which it belongs and the absorbing element of H is assigned the absorbing element of Gn,k . We aim to
show that π is a homomorphism from H into Gn,k .

Let Q be a basic operation symbol of rank r and let h0|V0, . . . ,hr−1|Vr−1 be proper elements of H . Since
the operation QH is defined coordinatewise, we have

π
(
QH (h0|V0, . . . ,hr−1|Vr−1)

)=π(
QA (h0, . . . ,hr−1) |V0 ∩·· ·∩Vr−1

)
. (4.1)

Since each h j |V j is a proper element (where j < r ), the map π sends each h j |V j to h j |V j /γ. Thus

QGn,k (π (h0|V0) , . . . ,π (hr−1|Vr−1)) =QGn,k
(
h0|V0/γ, . . . ,hr−1|Vr−1/γ

)
. (4.2)

We aim to show that equation (4.1) and equation (4.2) are equal. If the right side of equation (4.2) is the
default element, the equivalence is clear. If it is not the default element, then there must be representatives
w0|W0, . . . , wr−1|Wr−1 of the γ-classes such that

QG (w0|W0, . . . , wr−1|Wr−1)

is defined in G. In this case, the τ-decomposability of D entails that

QG (h0|V0, . . . ,hr−1|Vr−1)

is defined as well. Given that this is defined, all four sides of the above equations are equivalent, and hence
π is a homomorphism.

The original n elements of Gn,k all belong to the image of the homomorphism π, and so the subalgebra
they generate belongs to V as H belongs to V.

The algebra Gn,k has more than k elements and is found in V(n); however, its generating set is not of the
right cardinality. We will now define p and the algebra Bn,k .

Condition (c) above provides a unary polynomial f and an essential element a so that f (a) = σ(a). We
need such a polynomial that will do the same with τ. Let t (x, y1, . . . , yr ) be a term in which x occurs and let
c1, . . . ,cr be essential elements so that

f (x) = t A(x,c1, . . . ,cr )

which we will denote by t A (x, c̄). The polynomial that works with τ and a is g (x) displayed below.

g (x) = t A
(
t A

(
· · · t A(x, c̄),σ`−2(c1), . . . ,σ`−2(cr )

)
,σ`−1(c1), . . . ,σ`−1(cr )

)
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Notice g (a) = τ(a). Let s(x, y1, . . . , yk ) be a term in which x occurs and let d1, . . . ,d j be essential elements
so that

g (x) = sA (
x,d1, . . . ,d j

)
(4.3)

which we will denote by sA(x, d̄).

First, observe that x cannot be the only variable to occur in s, for otherwise, τ(a) = sA(a) entails τ2(a) =
sA(τ(a)) = sA(sA(a)). More generally, we would have

t k (a) = sA(sA(. . . sA(a) . . . )),

for every natural number k. This would entail that each τk (a) is in the subalgebra of A generated by {a}.
But A is locally finite, so this is this subalgebra is finite. This is impossible since the τ-orbit of a is infinite.

Now s(x, y0, . . . ) must contain a shortest subtern w such that both x and at least one of the variables y0, . . .
occur in w . This means that w =Qu0u1 . . .ur−1 where some the ui ’s are terms in which no variable other
than x occurs (and in at least one of these x does occur) and in the remaining u j ’s the variable x does not
occur (and in at least one of these some variable from y0, . . . does occur). Here Q must be an operation
symbol of rank at least two.

In equation 4.3, we constructed a polynomial g (x) so that g (a) = τ(a) where a is the element mentioned
in condition (c). We also found a term s(x, y1, . . . , y j ) and essential elements d1, . . . ,d j of A so that

g (x) = sA (
x,d1, . . . ,d j

)
.

Let p = j +1. Notice p is one greater than the number of “coefficients” of g (x). Furthermore, notice that
p = `r + 1, where r is the number of “coefficients” in the original polynomial f (x). Let Y j = {0, . . . , i − 1}
for each i < k. Let Zi be the preimage of Yi under the cyclic shift ρ. That is, Zi is Yi turned one notch
counter-clockwise; explicitly,

Zi = {2k −1,0,1, . . . , i −2}.

Let Bn,k be the subalgebra of Gn,k generated by the following elements:

a|Yk /γ,d1|Yk /γ, . . . ,dp−1|Yk /γ

where each di (for i < p) are those found in equation (4.3).

As Bn,k is generated by p elements and is found in the variety V(n), the only thing left to show is that Bn,k

has at least k elements. We claim that the following k elements

a|Z1/γ, a|Z2/γ, . . . , a|Zk /γ

are distinct and all belong to Bn,k .

Notice

sG (
a|Yk ,d1|Yk , . . . ,dp−1|Yk

)= sA (
a,d1, . . . ,dp−1

) |Yk ∩·· ·∩Yk

= sA (
a,d1, . . . ,dp−1

) |Yk

= τ(a)|Yk .

Now, τ(a)|Yk is γ-related to a|Zk since the preimage of τ(a) under τ is a and the preimage of Zk under ρ is
Yk . Using a similar argument, we see

sG (
a|Zk ,d1|Yk , . . . ,dp−1|Yk

)= sA (
a,d1, . . . ,dp−1

) |Zk ∩Yk ∩·· ·∩Yk

= sA (
a,d1, . . . ,dp−1

) |Yk−1

= τ(a)|Yk−1

γ a|Zk−1



4.4 Inherently Nonfinitely Based Equational Theories 47

and

sG (
a|Zk−1,d1|Yk , . . . ,dp−1|Yk

)= sA (
a,d1, . . . ,dp−1

) |Zk−1 ∩Yk ∩·· ·∩Yk

= sA (
a,d1, . . . ,dp−1

) |Yk−2

= τ(a)|Yk−2

γ a|Zk−2.

We can use this same argument to verify that

a|Zk /γ, a|Zk−1/γ, . . . , a|Z1/γ

are all distinct elements. Since they all belong to Bn,k , it has more than k elements, as desired.

At this stage, we know that V is inherently nonfinitely based in the finite sense.

Now we turn to the construction of an infinite subdirectly irreducible algebra in V. To show that V has an
infinite subdirectly irreducible algebra, we let θ be a maximal congruence of A separating a and 0. Then
A/θ will be subdirectly irreducible. To see that it is infinite we argue that θ separates τ− j (a) and τ−q (a),
whenever j and q are distinct positive integers.

Notice

a = sA (
τ−1(a),τ−1(d̄)

)
⇓

τ−1(a) = sA (
τ−2(a),τ−2(d̄)

)
Combining these, we see

a = sA (
sA (

τ−2(a),τ−2(d̄)
)

,τ−1(d̄)
)

In general, we obtain

a = sA
(
. . . (sA(τ− j (a),τ− j (d̄)) . . .τ−1(d̄)

)
.

Claim. Let j and q be natural numbers, with j < q and let ϕ be any congruence of A. Then

τ− j (a)ϕτ−q (a) =⇒ a ϕ 0.

Proof. As we saw above,

a = sA
(
. . . (sA(τ− j (a),τ− j (d̄)) . . .τ−1(d̄)

)
.

Consider the deepest piece: sA(τ− j (a),τ− j (d̄)). Recall the subterm w =Qu0 . . .ur−1 of the term s(x, y1, . . . , yk ).
We make the harmless supposition that u0, . . .uc−1 contain no variables other than x and uc , . . . ,ur−1 have
variables drawn only from y0, . . . . Let

ec = uA
c (τ− j (d̄)), . . . ,er−1 = uA

r−1(τ− j (d̄)).

Likewise, let
e0 = uA

0 (τ− j (a)), . . . ,ec−1 = uA
c−1(τ− j (a)).

Because n is at least as large as the rank of any fundamental operation, we see that e0, . . . ,ec , . . . ,er−1 ac-
count for no more than n elements. These elements are all operationally related by Q. The subalgebra of A
generated by the union of the τ-orbits of these elements is τ-decomposable. Since the e0 . . . ,er−1 are oper-
ationally related, they must belong to the same core of the τ-decomposition. But recall that τ− j (a) belongs
to the core S− j . Since S− j is a subuniverse. So e0, . . . ,ec−1 must belong to S− j . It follows that e0, . . . ,er−1 all
belong to S− j .



4.5 Examples of Inherently Nonfinitely Based Finite Algebras 48

But our hypothesis is that τ− j (a)ϕτ−q (a). So we see that

QA(uA
0 (τ− j (a)), . . . ,uA

c−1(τ− j (a)),ec , . . . ,er−1)ϕQA(uA
0 (τ−q (a)), . . . ,uA

c−1(τ−q (a)),ec , . . . ,er−1)

But on the right side of this congruence we see that the first c entries belong to S−q and so are operationally
unrelated to the last r − c entries. This means that right side evaluates to 0. Taken altogether, we have

a = sA
(
. . . (sA(τ− j (a)),τ− j (d̄)) . . .τ−1(d̄)

)
ϕ sA

(
. . . (sA(τ−q (a)),τ− j (d̄)) . . .τ−1(d̄)

)
= sA (

. . . (0) . . .τ−1(d̄)
)= 0.

This is the desired result.

We could reframe the last claim to assert that any congruence ϕ of A that separates a and 0 must also
separate all the elements of the form τ− j (a) where j is any natural number. Invoking Zorn as needed, take
θ to be a maximal congruence separating a and 0. Then A/θ is a subdirectly irreducible algebra is V and it
is infinite since there must be infinitely many congruence classes to accomodate all those τ− j (a)’s.

As a and 0 are not related by θ, we have shown that(
τ− j (a),τ−q (a)

)
6∈ θ

for any distinct natural numbers j and q . The quotient algebra A/θ will have countably infinitely many
elements and it is subdirectly irreducible by the maximality of θ with respect to separating a and 0. Fur-
thermore, this algebra is in V.

Taking everything into account, we have shown that V is a locally finite variety, that V(n) fails to be locally
finite in the finite sense, for all large enough values of n (so V is inherently nonfinitely based in the finite
sense), and that V contains an infinite subdirectly irreducible algebra. This finishes the proof of the Shift
Automorphism Theorem.

The Shift Automorphism Theorem asserts two conclusions beyond the central conclusion that shift au-
tomorphism algebras are inherently nonfinitely based. The first conclusion, that they are inherently non-
finitely based in the finite sense, means that the Shift Automorphism Theorem cannot be used to directly
construct a counterexample to the Eilenberg-Schützenberger Conjecture. The second conclusion, that
shift automorphism varieties must always have infinite subdirectly irreducible members, means that this
theorem cannot be used directly not construct a counterexample to

Jónsson’s Speculation
Is every finite algebra of finite signature, which generates a variety with the finite residual
bound, actually finitely based?

A variety is said to have residual bound κ provided every subdirectly irreducible algebra in the variety
has cardinality less than κ. Bjarni Jónsson offered this speculation in the mid-1970’s, noting finite algebras
that generate varieties so that the congruence lattice of each algebra in the variety is distributive have finite
residual bounds. In 1971, Kirby Baker had proven that such finite algebras of finite signature are finitely
based.

4.5 EXAMPLES OF INHERENTLY NONFINITELY BASED FINITE ALGEBRAS

Our first example is like Lyndon’s algebra. It is the automatic algebra R associated with the automaton
displayed below:
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q r

0

2

13

McKenzie’s algebra R

Of course, R is finite, so we cannot apply the Shift Automorphism Theorem to it directly. Instead, we will
construct an algebra A ∈HSPR to which the Shift Automorphism Theorem does apply. Here it is.

a0 a1a−1 a2a−2 a3a−3

b2b1b0b−1b−2b−3

0
The algebra A

Here, we define the product · as follows:
bk ·ak+1 = ak

and all other products are 0. The automorphism σ that we need works as follows

σ(ak+1) = ak σ(bk+1) = bk σ(0) = 0.

So there are two infinite orbits and one finite orbit, namely {0}. The proper triples have the form (bk , ak+1, ak )
and σ induces just one orbit on these triples. Finally, σ(a1) = b0 · a1 = f (a1) where f (x) = b0 · x. So A is a
shift automorphism algebra.

Fact. A ∈HSPR.

Proof. In RZ, let B be the set of all Z-tuples of the following form: For each k ∈ Z, define αk and βk as
follows:

αk := . . . r r r q q q q . . .
βk := . . . 1 1 1 2 3 3 3 . . .

The k is meant to designate the rightmost occurrence of r in αk , and likewise the (only) occurrence of 2 in
βk . Notice that βk ·αk+1 =αk . No matter how we multiply some βn ·αm , we’ll either get someαm−1 or we’ll
get a string that contains a 0. Now let B consist of all the αk ’s and all the βk ’s as well as any member of AZ

that has at least one entry that is 0.

The point is that B is a subuniverse of RZ. Let θ be the equivalence relation on B that lumps together all
Z-tuples containing 0 and isolates everything else. That is, θ is going to isolate each αi with itself and it
will isolate each β j with itself.

We contend that θ is a congruence of the algebra B .
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Evidently, θ an equivalence relation. It’s also respects the operation. Just consider

δ θ γ

µ θ ν

µ ·δ θ ν ·γ

No matter how we pick δ,γ,µ, and ν in B , this will always work out. This is because our big lump will
absorb everything containing 0.

But we have arranged matters so that A ∼= B/θ. Hence, A ∈HSPR, as desired.

It follows that R is inherently nonfinitely based.

Our second example has only 3 elements. It is made from the graph below.

a b

0
Murskǐı’s algebra M

In graph algebras like M the universe consists of the vertices of the graph together with a default element
0 and the basic two place operation works are follows:

u · v =
{

u if u is adjacent to v

0 otherwise

Once more, we construct a shift automorphism algebra A ∈HSPM. Here it is

c−3 c−2 c−1 c0 c1 c2 c3

0

The Shift Automorphism Algebra A

In this algebra, the set A = {ck | k ∈Z}∪ {0} and the operation is defined as it was in M:

u · v =
{

u if u is adjacent to v

0 otherwise

The automorphism σ works so that σ(ck+1) = ck for all k ∈ Z and σ(0) = 0. Consequently, there are just
two orbits: {ck | k ∈ Z} and {0}. Finally, σ(c1) = c0 = c0 · c1 = f (c1), where f (x) = c0 · x. So A is a shift
automorphism algebra.
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As in the first example, it remains to show that A ∈HSP M. We will make short work of this. In MZ, for
each integer k,let

γk := . . . b b b a b b a b b b a b . . .

where the leftmost a occurs at position k. Observe that γk has an infinite string of b’s running to the left,
while to the right the occurrences of a are separated by longer and longer strings of b’s. Now note

γk+1 = . . . b b b a b b a b b b a b . . .
γk = . . . b b a b a b b a b b b a . . .

γk ·γk+1 = γk = . . . b b a b a b b a b b b a . . .

and
γk = . . . b b b a b a b b a b b b . . .

γk+1 = . . . b b b b a b a b b a b b . . .
γk+1 ·γk = γk+1 = . . . b b b b a b a b b a b b . . .

On the other hand, any other product of the γk ’s will produce a Z-tuple with at least one entry that is 0.
The rest of the argument proceeds as in the first example.

So Murskǐı’s algebra M is inherently nonfinitely based.

These two examples explain why we have called shift automorphism algebras what we did. The auto-
morphisms given here are indeed shifts.

4.6 PROBLEM SET 5

PROBLEM SET NONFINITELY BASED FINITE ALGEBRAS

PROBLEM 40.
Construct a locally finite algebra A so that the variety HSPA is not locally finite.

PROBLEM 41.
Prove that if A is uniformly locally finite, then HSPA is locally finite.

PROBLEM 42.
Prove that Lyndon’s algebra L and Lee’s algebra L∗ generate the same variety.

PROBLEM 43.
Add a couple of elements to Lyndon’s Algebra L to obtain a finite algebra B so that L is a subalgebra of B
and B is finitely based. In this way, establish that even though L fails to be finitely based, it also fails to be
inherently nonfinitely based.

PROBLEM 44.
Prove that the four-element algebra P, with just one basic operation and that atwo-place operation whose
operation, table is displayed below is inherently nonfinitely based

· 0 a b c
0 0 0 0 0
a 0 a b 0
b 0 b b c
c 0 0 c c
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EQUATIONAL THEORIES THAT ARE FINITELY AXIOMATIZABLE

5.1 EVERY FINITE LATTICE IS FINITELY BASED

Ralph McKenzie proved, around 1967, that every finite lattice is finitely based McKenzie1970 Subsequently,
this theorem was extended, first by Kirby Baker Baker1977 to finite algebras that belong to congruence
distributive varieties, then by McKenzie McKenzie1987 to finite algebras that belong to congruence mod-
ular varieties with a finite residual bound, and then by Ross Willard 2000 to finite algebras that belong
to congruence meet-semidistributive varieites with a finite residual bound. And there have been alterna-
tive proofs to many of these results as well as various extensions to quasivarieties. The proofs of all these
generalizations have a heavily algebraic character. In particular, they all depend on an analysis of subdi-
rectly irreducible algebras in some way. It is striking, then, in retrospect, that McKenzie’s original proof is
completely syntactic. So it seems to me reasonable to take another look at McKenzie’s original argument
with an eye toward seeing if the argument itself can suggest a fresh more syntactic approach to finite basis
theorems. What follows is, to all intents and purposes McKenzie’s original published argument, although I
have taken the liberty to frame it a little differently.

For every natural number n let `(n) := nm + 1, where m is the smallest integer bigger than 1 so that
n < 2m+1. For example, `(2) = 22+1 = 5, `(12) = 123+1 and `(120) = 1206+1. The function `(n) is, roughly,
2(log2(n))2 = nlog2(n) and it gets above and stays above any polynomial.

McKenzie’s Finite Basis Theorem For Finite Lattices.
Every finite lattice L of cardinality n has an equational basis using no more than `(n) variables.

Proof. We let L be a lattice of cardinality n and we put ` := `(n). We also take the number m described
during the definition of ` as fixed.

Let V denote the variety generated by L. Our aim is to show that V=V(`).

The variety of all lattices has a base using just 3 variables. Since we want all the algebras we have to
contend with to be lattices we insist that that n be large enough so that 3 ≤ `(n).

Observe, `(1) = 2. So the proof below won’t apply to lattices of cardinalities 1. But the trivial lattice is
based on x ≈ y , an equation of 2 = `(1) variables, as required by the theorem.

Let X be any finite set of variables. Below, we will define a (normal form) function ηX on terms whose
variables are drawn from X that has the following properties for all terms s and t whose variables lie in X .
In what follows, X can always be understood from the context so we use η in place of ηX .

(A) If s ≈ t is true in L, then η(s) ≈ η(t ) is true in V(`), and

52
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(B) s ≈ η(s) is true in V(`).

Once such normal form functions are in hand, the proof of the theorem will be complete.

Let Y be a set of variables, let A be any finite set, and let f : Y → A. If s is a term whose variables are all
drawn from Y we let µ f (s) be the result of the substitution y 7→∧

f (z)= f (y) z, for all y ∈ Y . We also let µo
f (s)

be the term resulting from s by the substitution y 7→ y f , where y f is the variable in Y of least index such
that f (y f ) = f (y).

The normal form function we want is defined by

η(s) :=1 f :X→L (µ f (s)).

For any terms s and t whose variables all come from Y and for all f : Y → A all of the following hold.

(i) µ f (s ∧ t ) =µ f (s)∧µ f (t ).

(ii) µ f (s ∨ t ) =µ f (s)∨µ f (t ).

(iii) µ f (s) =µ f (µo
f (s)).

The first two items follow since substitutions are endomorphisms of the algebra of terms, while the third
follows directly from the definitions.

The first of the two things we have to verify, namely (A), is in reach. Suppose s and t are terms whose
variables are drawn for X and that s ≈ t is true in L. We need to prove that η(s) ≈ η(t ) holds in every lattice
in V(`). Let f : X → L. From s ≈ t we derive µo

f (s) ≈ µo
f (t ). This is just a substitution instance of s ≈ t and

it as at most n variables. Since n ≤ `, we see that µo
f (s) ≈ µo

f (t ) is true in V(`). Any substitution instance of

this equation must also be true in V(`). In particular,

µ f (µo
f (s)) ≈µ f (µo

f (t )) is true in V(`).

But we saw above that µ f (µo
f (r )) =µ f (r ) for any term r . So we have

µ f (s) ≈µ f (t ) is true in V(`).

Now just form the joins of both sides as f runs through all the functions from X in L, to conclude that the
equation below is true in V(`).

η(s) =1 f :X→L µ f (s) ≈1 f :X→L µ f t ) = η(t )

So it only remains to show (B), that is

s ≈ η(s) is true in V(`).

Observe that µ f (s) ≤ s holds in every lattice. since the lattice operations are monotone. It follows that
η(s) ≤ s in every lattice, as well. So we only need to show that s ≤ η(s) holds in V(`). We prove this by
induction on the complexity of s. The base step (when s is just a variable) is trivial. The induction step falls
into two parts depending on whether s = u ∨ v or s = u ∧ v . The case with ∨ presents no difficulties. So we
are left with establishing

If s = u ∧ v and both u ≤ η(u) and v ≤ η(v) hold in V(`), then s ≤ η(s) holds in V(`). (?)

Before tackling (?) we develop some further properties of the kind of substitutions defined above.
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Fact. Let f : X → A and g : X → B so that f (x) = f (y) =⇒ g (x) = g (y) for all x, y ∈ X . Then µg (s) ≤ µ f (s)
holds in all lattices for all terms s with variables drawn from X .

This is a simple consequence of the monotonicity of the lattice operations.

Fact. Suppose f : Y → A. Let Y f := {y f | y ∈ Y }. Let g : Y f → B . Let h : Y → B be defined via h(y) := g (y f ).
The equation µh(t ) ≈µ f (µg (µo

f (t ))) is true in all lattices, for any term t with variables from Y .

Proof. We prove this by induction on the complexity of t .

The base step is that t is a variable, say x. Then

µ f (µg (µo
f (x))) =µ f (µg (x f ))

=µ f (
∧

g (y f )=g (x f )
y f )

= ∧
g (y f )=g (x f )

µ f (y f )

= ∧
g (y f )=g (x f )

∧
f (z)= f (y f )

z

= ∧
g (y f )=g (x f )

∧
z f =y f

z

= ∧
g (y f )=g (x f )

y

= ∧
h(y)=h(x)

y

=µh(x).

The part of lattice theory that enters here is just the commutative and associative laws for ∧.

The inductive step is immediate, since µ f ,µg , and µo
f are all endomorphisms of the term algebra.

Key Lemma.
Let g : X → Lm . Let s be any term with variables drawn from X and let y be a variable not belonging to X .
The following inequalities all hold in V(`).

(a) y ∧µg (s) ≤1 f :X→L (y ∧µ f (s)).

(b) µg (s) ≤ η(s).

(c) y ∧η(s) ≤1 f :X→L (y ∧µ f (s)).

Proof. Let X ′ = {xg | x ∈ X }. Let t be any terms with variables drawn from X ′. Notice that the inequality

y ∧ t ≤1h:X ′→L (y ∧µh(t ))

has no more than nm +1 = ` distinct variables. We will show that this inequality holds in L and therefore
also in V(`).

Let ā be any X ′-tuple of elements of L and let b ∈ L. In the left side of our inequality, plug b in for y and
ā in for the variables in t . The effect of µo

g is to identify certain variables.

Now the maps h appearing on the right side area assignments of elements of L to the variables in X ′. One
of these assignments h is precisely the assignment ā. This means that h(x) = c ∈ A exactly when the entry
on the tuple ā associated with x is c. Hence, when

∧
h(y)=h(x) y is evaluated under the assignment ā the
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result will be c ∧ c ∧ c ∧ . . .∧ c = c. Consequently, the particular joinand on the right associated with this h,
when evaluated at ā is actually the value of the left side at ā. This verifies the inequality in L.

Now let t =µo
g (s). So

y ∧µo
g (s) ≤1h:X ′→L (y ∧µh(µo

g (s))

holds in V(`). Now apply µg to both sides:

µg (y ∧µo
g (s)) ≤µg

(
1h:X ′→L (y ∧µh(µo

g (s)))
)

µg (y)∧µg (µo
g (s)) ≤1h:X ′→L (µg (y)∧ (µg (µh(µo

g (s))))

y ∧µg (s) ≤1h:X ′→L (y ∧µg (µh(µo
g (s))))

y ∧µg (s) ≤1h:X ′→L (y ∧µh∗(s))

where h∗(y) = h(yg ) for all y ∈ X , according to the Fact preceding the statement of the Key Lemma. Since

1h:X ′→L (y ∧µh∗(s)) ≤1 f :X→L (y ∧µ f (s))

we are finished with (a).

Part (b) is an immediate consequence of part (a), obtained by setting y to the join of all the µ f (s)’s and
µg (s).

To establish (c) we need a bit more groundwork. First consider the following equation:

y∧1i<m+1 xi ≈1 f :m→m+1
(
y∧1 j<m x f ( j )

)
. (∗)

This equation has m+2 variables. Some simple calculations show that m+2 ≤ `. To see that this equation
is true in V(`) we only need to see that it is true in L.

Let A ⊆ L have m +1 elements. So A has 2m+1 subsets. Since n < 2m+1 we see that two distinct subsets of
A must have the same joins. It follows that A has a proper subset A′ so that A and A′ have the same joins.
This means that under any assignment of members of L to the variables in (∗) the left side of the equation
will be one of the joinands on the right side. On the other hand, each joinand on the right is dominated
by the left side. Hence, the equation (∗) holds in L and hence in V(`). Actually, from (∗), with the help of
lattice theory, we can deduce

y∧1i<k xi ≈1 f :m→k
(
y∧1 j<m x f ( j )

)
. (∗∗)

for every k > m. So (∗∗) holds in V(`) for every k > m.

Here is what we have to prove to finish this lemma.

y∧1 f :X→L (µ f (s)) ≤1 f :X→L (y ∧µ f (s)) (c)

holds in V(`). Now the join on the left has n|X | joinands. It is easy to see that n > m, so we can use the
equation (∗∗) to change (c) to

1h:m→K
(
y∧1 j<m µh( j )(s)

)≤1 f :X→L (y ∧µ f (s)) (c’)

where K is the set of functions from X into L. This reduces our task to demonstrating that each joinand on
the left is dominated by the right side. So let f0, . . . , fm−1 be functions from X to L. Let g : X → Lm be the
function defined via

g (x) := ( f0(x), . . . , fm−1(x)).

Observe that µ fi (s) ≤µg (s) holds in all lattices for all i < m, by a fact we proved above. So we get

y∧1i<m µ fi (s) ≤ y ∧µg (s) ≤1 f :X→L y ∧µ f (s).

The rightmost inequality follows from part (a). This concludes the demonstration of part (c).
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With the help of the Key Lemma, we can complete the inductive step to establish (B) and finish the proof
of the Theorem.

Recall that we were left with establishing

If s = u ∧ v and both u ≤ η(u) and v ≤ η(v) hold in V(`), then s ≤ η(s) holds in V(`). (?)

Observe

s = u ∧ v ≤ η(u)∧η(v) ≤1 f :X→L η(u)∧µ f (v)

≤1 f ,h:X→L µh(u)∧µ f (v)

by two applications of part (c) of the Key Lemma. So we need to show that

µh(u)∧µ f (v) ≤ η(s)

holds in V(`) for all f ,h : X → L. Let g : X → Am be the function defined via

g (x) := (h(x), f (x), f (x), . . . , f (x)).

Here is where we need that 2 ≤ m. By the monotonicity fact we have that µ f (w) ≤ µg (w) and µh(w) ≤
µg (w) for all terms w with variables from X .

Finally we see
µh(u)∧µ f (v) ≤µg (u)∧µg (v) =µg (u ∧ v) =µg (s) ≤ η(s),

where the rightmost inequality is part (b) of the Key Lemma. This is what we needed.

5.2 FINITE LALLTICE-ORDERED ALGEBRAS

We will say that A is a lattice-ordered algebra provided

(a) A as among its basic operations two binary operations so that, reduced to just these two operations
A is a lattice.

(b) Every basic operation of A is monotone with respect to the lattice order established by (a).

As McKenzie noted, his theorem applies to lattice-ordered algebras.

McKenzie’s Theorem for Finite Lattice-Ordered Algebras.
Every finite lattice-ordered algebra of finite signature is finitely based.

Proof. The idea is simply to reprise the proof above, but in the inductive argument for (B) to replace the
∧ by an arbitrary basic operation symbol Q. Were Q of rank 2 no particular, apart from replacing ∧ by Q,
would have to change. If, however, the rank of Q is larger then we are forced to change the value of m and
hence that of `. We need to require that m is an upper bound on the rank of any operation of our algebra.

Here is how the Key Lemma would go with Q being a 3-place operation symbol.

Key Lemma, take II.
Let g : X → Lm . Let s and t be any terms with variables drawn from X and let y be a variable not belonging
to X . The following inequalities all hold in V(`).

(a) Q(y,µg (s),µg (t )) ≤1 f :X→L (Q(y,µ f (s),µ f (t )).



5.2 Finite lalltice-ordered algebras 57

(b) µg (s) ≤ η(s) and µg (t ) ≤ η(t ).

(c) Q(y,η(s),η(t )) ≤1 f :X→L (Q(y,µ f (s),µ f (t )).

Proof. Let X ′ = {xg | x ∈ X }. Let s and t be any terms with variables drawn from X ′. Notice that the in-
equality

Q(y, s, t ) ≤1h:X ′→L (Q(y,µh(s),µh(t )))

has no more than nm +1 = ` distinct variables. We will show that this inequality holds in L and therefore
also in V(`).

Let ā be any X ′-tuple of elements of L and let b ∈ L. In the left side of our inequality, plug b in for y and
ā in for the variables in s and t . The effect of µo

g is to identify certain variables.

Now the maps h appearing on the right side area assignments of elements of L to the variables in X ′. One
of these assignments h is precisely the assignment ā. This means that h(x) = c ∈ A exactly when the entry
on the tuple ā associated with x is c. Hence, when

∧
h(y)=h(x) y is evaluated under the assignment ā the

result will be c ∧ c ∧ c ∧ . . .∧ c = c. Consequently, the particular joinand on the right associated with this h,
when evaluated at ā is actually the value of the left side at ā. This verifies the inequality in L.

Now let t =µo
g (s). So

y ∧µo
g (s) ≤1h:X ′→L (y ∧µh(µo

g (s))

holds in V(`). Now apply µg to both sides:

µg (y ∧µo
g (s)) ≤µg

(
1h:X ′→L (y ∧µh(µo

g (s)))
)

µg (y)∧µg (µo
g (s)) ≤1h:X ′→L (µg (y)∧ (µg (µh(µo

g (s))))

y ∧µg (s) ≤1h:X ′→L (y ∧µg (µh(µo
g (s))))

y ∧µg (s) ≤1h:X ′→L (y ∧µh∗(s))

where h∗(y) = h(yg ) for all y ∈ X , according to the Fact preceding the statement of the Key Lemma. Since

1h:X ′→L (y ∧µh∗(s)) ≤1 f :X→L (y ∧µ f (s))

we are finished with (a).

Part (b) is an immediate consequence of part (a), obtained by setting y to the join of all the µ f (s)’s and
µg (s).

To establish (c) we need a bit more groundwork. First consider the following equation:

y∧1i<m+1 xi ≈1 f :m→m+1
(
y∧1 j<m x f ( j )

)
. (∗)

This equation has m+2 variables. Some simple calculations show that m+2 ≤ `. To see that this equation
is true in V(`) we only need to see that it is true in L.

Let A ⊆ L have m +1 elements. So A has 2m+1 subsets. Since n < 2m+1 we see that two distinct subsets of
A must have the same joins. It follows that A has a proper subset A′ so that A and A′ have the same joins.
This means that under any assignment of members of L to the variables in (∗) the left side of the equation
will be one of the joinands on the right side. On the other hand, each joinand on the right is dominated
by the left side. Hence, the equation (∗) holds in L and hence in V(`). Actually, from (∗), with the help of
lattice theory, we can deduce

y∧1i<k xi ≈1 f :m→k
(
y∧1 j<m x f ( j )

)
. (∗∗)

for every k > m. So (∗∗) holds in V(`) for every k > m.
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Here is what we have to prove to finish this lemma.

y∧1 f :X→L (µ f (s)) ≤1 f :X→L (y ∧µ f (s)) (c)

holds in V(`). Now the join on the left has n|X | joinands. It is easy to see that n > m, so we can use the
equation (∗∗) to change (c) to

1h:m→K
(
y∧1 j<m µh( j )(s)

)≤1 f :X→L (y ∧µ f (s)) (c’)

where K is the set of functions from X into L. This reduces our task to demonstrating that each joinand on
the left is dominated by the right side. So let f0, . . . , fm−1 be functions from X to L. Let g : X → Lm be the
function defined via

g (x) := ( f0(x), . . . , fm−1(x)).

Observe that µ fi (s) ≤µg (s) holds in all lattices for all i < m, by a fact we proved above. So we get

y∧1i<m µ fi (s) ≤ y ∧µg (s) ≤1 f :X→L y ∧µ f (s).

The rightmost inequality follows from part (a). This concludes the demonstration of part (c).

5.3 EVEN MORE ALGEBRAIC PRELIMINARIES

Let A be an algebra and X ⊆ A×A. This collectionF of congruences of A that include the set X is nonempty,
since the largest congruence 1A is the set A× A. This makes

⋂
F the smallest congruence that includes X .

We denote this congruence by CgAX and call it the congruence generated by X . Of course, we would like
to replace this shrink-wrap definition by a characterization of more constructive character.

By a basic translation of A we mean a function λ : A → A so that there is a basic operation symbol Q of
positive rank r , elements a0, a1, . . . , ar−1 ∈ A, and some j < r so that

λ(a) =QA(a0, . . . , a j−1, a, a j+1, . . . , ar−1) for all a ∈ A.

That is, a basic translation is a polynomial obtained by taking a basic operation of A of positive rank, pick-
ing one input position of the basic operation as the input of λ, and then plugging in elements of A in the
other positions to play the role of coefficients. By a translation of A we mean a function that is the com-
position of some finite number of basic translations. We take the composition of zero basic translations
to be the identity function on A. A given translation might arise in many ways as a composition of basic
translations. We say a translationλ is a k-translation providedλ is a composition of k or fewer basic trans-
lations. We will call the smallest such k the complexity of λ. It is easy to check that if a,b,c, and d belong
to A and λ is any translation of A such that {a,b} = {λ(c),λ(d)}, then (a,b) ∈ CgA(c,d). (Try induction on
the complexity of λ. . . .) The following theorem was proven by A. I. Mal’cev in 1954.

The Congruence Generation Theorem.
Let A be an algebra and a,b,c, and d be elements of A. Then 〈a,b〉 ∈ CgA(c,d) if and only if there is a natural
number n and elements a0, a1, . . . , an ∈ A and translations λ0,λ1, . . . ,λn−1 of A so that a = a0 and an = b and

{ai , ai+1} = {λi (c),λi (d)} for all i < n.

Here is a diagram of the condition in this theorem.
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c

d

a0 = a

a1λ0

a2

λ1

a3

λ2

a4

λ3

...
an−1

λn−1

an = b

Proof. The condition given implies that 〈a,b〉 ∈ CgA(c,d) since each links is in the congruence and con-
gruences are transitive relations.

For the converse, let

θ = {(u, v) | for some n, some a0, a1, . . . , an ∈ A, and some translations λ0,λ1, . . . ,λn−1

so that u = a0 and an = v and {ai , ai+1} = {λi (c),λi (d)} for all i < n.}.

Taking n = 1 and λ0 to be the identity function, we see that 〈c,d〉 ∈ θ. Also only a little work is required to
see that θ ⊆ CgA(c,d). So we only need to proved that θ is a congruence relation. That θ is an equivalence
relation is straightforward. So consider an operation symbol Q. To simplify notation, we suppose that the
rank of Q is 3. So let u0,u′

0,u1,u′
1, and u2,u′

2 be elements of A such that

u0 θ u′
0

u1 θ u′
1

u2 θ u′
1

We need the conlcusion that QA(u0,u1,u2) θQA(u′
0,u′

1,u′
2).

The idea is the same one we used in the proof of the Completeness Theorem for Equational Logic. Let
a0, . . . , an be elements of A and λ0, . . . ,λn−1 be translations witnessing that u0 θ u′

0. For each i ≤ n let
a∗

i := QA(ai ,u1, v1) and let λ∗(x) := QA(λi (x),ui ,u2). Then the elements a∗
0 , . . . , a∗

n and the translations
λ∗

0 , . . . ,λ∗
n−1 witness that QA(u0,u1,u2) θ QA(u′

0,u1,u2). Now repeat this process for u1 and, after that, for
u2. By concatenating the results, we arrive at a sequence of elements and a sequence of translations that
witness QA(u0,u1,u2) θQA(u′

0,u′
1,u′

2), as desired.

While we have framed the Congruence Generation Theorem of Mal’cev just for principal congruences,
it can be easily adapted two use a set X of ordered pairs of elements of A in place of the single ordered
pair (c,d). This Congruence Generation Theorem was, in fact, the inspiration for our system of inference
in equational logic, since Birkhoff had already shown that the equational theories where exactly the con-
gruence relations of T∗, the term algebra expanded by taking each endomorphism as a new one-place
operation.

As a consequence of this theorem, we see that the congruences of A are just those equivalence relations
that respect all the translations of A. Let TrA denote the set of all translations of A. Let A∗ = 〈A,λ〉λ∈TrA.
Then ConA = ConA∗.

We use {c,d}#n
`

{a,b} to denote that there is a sequence a0, . . . , an of n+1 elements of A and a sequence
λ0, . . . ,λn−1 of n translations of A, each of complexity no more than `, that witnesses (a,b) ∈ CgA(c,d).
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In case the sginature is finite, for variables x, y, z, and w , we can regard {x, y}#n
`

{z, w} as an elementary
formula (a formula of first order logic) with free variables x, y, z, and w that has a string of existential quan-
tifiers (here asserting the existence of n +1 elements, as well as the existence of lots of coefficients for the
translations) followed by a disjuntion of a conjnction of a lot of equations.

5.4 WILLARD’S FINITE BASIS THEOREM

In 2000 Ross Willard proved the following theorem.

Willard’s Finite Basis Theorem.
Every congruence meet-semidistributive variety of finite signature with a finite residual bound is finitely
based.

Recall that a lattice is meet-semidistributive provided the following implication holds in the lattice:

x ∧ y ≈ x ∧ z ⇒ x ∧ (y ∨ z) ≈ (x ∧ y)∨ (x ∧ z).

This is a weakening of the distributive property. A variety is congruence meet-semidistributive provided
Con A is a meet-semidistributive lattice for each algebra A in the variety. There are several different char-
acterizations of this property. We will use one that applies in case the variety is locally finite.

We will say a variety V has half ♦-terms if there are three terms s0(x, y, z), s1(x, y, z), and s2(x, y, z) so that
all the equations below are true in V.

s0(x, y, y) ≈ s2(x, y, y)

s1(x, x, y) ≈ s2(x, y, x)

s0(x, x, y) ≈ s0(y, x, y)

s1(x, y, y) ≈ s1(x, y, x)

s2(x, x, y) ≈ s1(x, x, y)

s0(x, x, x) ≈ s1(x, x, x) ≈ s2(x, x, x) ≈ x

These equations are called the half ♦-equations.

A Characterization of Locally Finite Congruence Meet-Semidistributivity.
Every locally finite congruence meet-semidistributive variety has half ♦-terms. Every variety with half ♦-
terms is congruence meet-semidistributive.

We will not prove this theorem here.

A proof of Willard’s Finite Basis Theorem.
Our proof relies on three lemmas. The first, which lays out the organization of the proof, requires another
notion.

Let K be a class of algebras of the same signature. We will say that K has the definite atoms property
provided there is an elementary sentence σ so that

• The sentence σ is true in K, and

• For all A such that A |= σ and for all a,b, p, q ∈ A such that p 6= q , and for all natural numbers n and
m such that {a,b}#n

m {p, q} we have and

A |= ∃u, v
[¬u ≈ v ∧∧ {a,b}#1

m ◦#2
1 {u, v} and {p, q}#1

1 {u, v}
]

.
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• There is a natural number ` such that for all A such that A |= σ and for all a,b ∈ A and all atoms
α⊆ CgA(a,b), and for all (p, q) ∈α such that p 6= q , we have

A |= ∃u, v
[¬u ≈ v ∧∧ {a,b}#1

` ◦#2
1 {u, v}∧∧ {p, q}#1

1 {u, v}
]

.

We need three lemmas. The first traces its ancestry back to Bjarni Jónsson’s proof of Kirby Baker’s Finite
Basis Theorem.

The Definite Atoms Finite Basis Lemma.
Let V be a variety in a finite signature.
If

• the variety V has the definite atoms property,

• V is locally finite, and

• Vfsi is finitely axiomatizable,

then V is finitely based.

Proof. Let n and m be natural numbers and let πm(x0, y0, x1, y1) denote the formula

∃u, v
[¬u ≈ v ∧∧ {x0, y0}#1

m ◦#2
2 {u, v}∧∧ {x1, y1}#1

m ◦#2
2 {u, v}

]
.

Let θn
m be the following sentence

∀x, y, z, w
[
πm(x, y, z, w) ⇒π2

`+2(x, y, z, w)
]

.

Contention. If A ∈V and a,b,c,d ∈ A so that CgA(a,b)∩CgA(c,d) is not trivial, then A |=π`(a,b,c,d).

Proof. Suppose that A ∈V and that a,b,c,d ∈ A so that CgA(a,b)∩CgA(c,d) is not trivial. So pick p ′, q ′ ∈ A
with p ′ 6= q ′ so that (p ′, q ′) ∈ CgA(a,b)∩CgA(c,d). The computations witnessing this can be carried out in
a finitely generated subalgebra B of A. But V is locally finite, so B is finite. Observe that B ∈ V. Since B is
finite every nontrivial congruence of B lies above an atom. Now pick p, q with p 6= q and (p, q) ∈ CgB(p ′, q ′)
and CgB(p, q) is an atom. Using the definite atoms property, we pick p0, p1 ∈ B with p0 6= p1 so that

B |= {a,b}#1
` ◦#2

1 {p0, p1}∧∧ {p, q}#1
1 {p0, p1}.

Notice that (p0, p1) ∈ CgB(c,d). So invoke the definite atoms property again to obtain r0,r1 ∈ A with r0 6= r1

so that
B |= {c,d}#1

` ◦#2
1 {r0,r1}∧∧ {p0, p1}#1

1 {r0,r1}.

Now {a,b}#1
`
◦#2

1 {p0, p1}#1
1 {r0,r1} yields {a,b}#1

`
◦#2

2 {r0,r1}. This means

B |= {a,b}#1
` ◦#2

2 {r0,r1}∧∧ {c,d}#1
` ◦#2

2 {r0,r1}.

That is B |=π`(a,b,c,d). But this is an existential formula. So A is a model as well, as desired.

Let ψ be the following sentence

∀x0, y0, x1, y1
[
π`+1(x0, y0, x1, y1) =⇒ π`(x0, y0, x1, y1)

]
It follows from the contention above that V |=ψ. Let W= Mod{σ,ψ}. So W is a finitely axiomatizable class
that includes V. Let ϕ be the sentence

∀x0, y0, x1, y1
[
(¬x0 ≈ y0 ∧∧¬x1 ≈ y1) ⇔π`(x0, y0, x1.y1)

]
.
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It is our contention that {σ,ψ,ϕ} axiomatizes Wfsi. Certainly every model of those three sentencs belongs
to Wfsi. So we will concern ourselves with the reverse inclusion. Let A ∈ Wfsi. So we know A |= {σ,ψ}.
We have to establish A |= ϕ. To this end, let a,b,c,d ∈ A. First suppose that a 6= b and c 6= d . Since A is
finitely subdirectly irreducible, we can pick r, s ∈ A with r 6= s and (r, s) ∈ CgA(a,b)∩CgA(c,d). By Mal’cev’s
description of principal congruences, there are numbers n and m so that

{a,b}#n
m {r, s, } and {c,d}#n

m {r, s, }

Since A |=σ, we can apply the definite atom property (twice as we did above) to obtain

A |=πm(a,b,c,d).

This doesn’t quite get us A |=ϕ since m might be larger than `. But now we can invokeψ to decrease m step
by step to `. So we have established the left-to-right direction within ϕ. To obtain the other implication,
let us suppose a = b. π`(a,b,c,d) cannot hold since we would have to have some r0,r1 ∈ A with r0 6= r1 and
(r0,r1) ∈ CgA(a,b). The case when c 6= d is similar. This means that A |=ϕ as desired.

Let us gather together what we know. There is a finitely axiomatizable class W such that V⊆W and Wfsi

is finitely axiomatizable. We also know that Vfsi is finitely axiomatizable (its one of our hypotheses).

Now let τ be a sentence that axiomatizes Vfsi. Then we have V |= (σ∧∧ψ∧∧ϕ) =⇒ τ. Let Γ be a finite set
of equations true in V so that Γ |= Σ∪ {θ→ τ} and put V′ = ModΓ. So V ⊆ V′ ⊆ W . But then Vfsi = V′

fsi. So
V=V′. Since V′ is finitely based, we conclude that V is finitely based.

So we need to show that a variety of finite signature that has a finite residual bound and half ♦-terms,
must have the definite atoms property and Vfsi is finitely axiomatizable. Our second lemma addresses the
last point.

Folklore Lemma.
Let V be a variety such that Vsi is axiomatizable by a set of elementary sentences. Every finitely subdirectly
irreducible algebra in V is embeddable into some subdirectly irreducible algebra in V.

Proof. Let B be a finitely subdirectly irreducible algebra belonging to V and let Φ be a set of elementary
sentences which axiomatizes Vsi. Expand the signature by adding a new constant to name each element
of B . We use B∗ to denote the corresponding expansion of B. Let ∆ be the atomic diagram of B. To prove
the Lemma we need to show that ∆∪Φ has a model. In view of the Compactness Theorem, we need only
show that Γ∪Φ has a model whenever Γ is a finite subset of ∆. So consider such a Γ. Without loss of
generality, we assume that the only negated equations in Γ are of the form c 6= d were c and d are constant
symbols. Let S be the set of all elements of B named by constants occurring in Γ. Since S is finite and
B is finitely subdirectly irreducible, pick p, q ∈ B with p 6= q and so that 〈p, q〉 ∈ CgB(r, s) whenever r and
s are distinct elements of S. Let θ be a maximal congruence of B which separates r and s. Then B/θ is
subdirectly irreducible. So B∗/θ |=Φ. Now the equations in Γ hold in B∗/θ since equations are preserved
in the passage to quotient algebras. The negated equations in Γ also hold in B∗/θ since θ separates all the
elements of S. Therefore, B∗/θ |= Γ∪Φ, as desired.

Thus in a variety V of finite signature with a finite residual bound b, every finitely subdirectly irreducible
algebra must have cardinality bounded by b as well. It follows that every finitely subdirectly irreducible
algebra is finite and so it is subdirectly irreducible. Thus, Vfsi = Vsi. In consequence, Vfsi is also finitely
axiomatizable.

We still need to obtain the definite atoms property. The third lemma does that. It traces its heritage
ultimately back to Kriby Baker’s original proof of Baker’s Finite Basis Theorem.
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The Half ♦ Single Sequence Lemma.
Let W be a class of algebras of finite signature with half di amond sui t-terms. Let A ∈W and a,b, p, q ∈ A
with p 6= q and n and ` be natural numbers such that {a,b}#n

`
{p, q}. Then there are elements e, f ∈ A so

that

{a,b}#1
` ◦#2

1 {e, f }

{p, q}#1
1 {e, f }, and

e 6= f .

Moreover, if W is a variety with a finite residual bound, then there is a positive natural number ` such that
for every A ∈V and a,b ∈ A and every atom α⊆ CgA(a,b) and every (p, q) ∈α with p 6= q, there are elements
e, f ∈ A so that

{a,b}#1
` ◦#2

1 {e, f }

{p, q}#1
1 {e, f }, and

e 6= f .

Here is a diagram of this Lemma.

`

1

1

1

a c p
e

b d q
f

Proof of the Single Sequence Lemma.
We see that there is a sequence p = r0,r1, . . . ,rn = q of elements of A and translations of λ0, . . . ,λn−1 of
complexity no more than ` so that

{λ j (a),λ j (b)} = {r j ,r j+1} for all j < n.

Observe that p 6= q . Since the half ♦ equations hold in A, we see

A |= ∀x, y
[(

s0(x, y, y) ≈ y ∧∧ s1(x, x, y) ≈ x ∧∧ s2(x, y, y) ≈ s2(x, y, x)
) =⇒ x ≈ y

]
.

Establishing this uses the first two of the half ♦-equations. This means that there are three alternatives:

sA
0 (p, q, q) 6= q or sA

1 (p, p, q) 6= p or both sA
2 (p, q, q) 6= sA

2 (p, q, p) and sA
1 (p, p, q) = p.

Alternative I: sA
0 (p, q, q) 6= q = sA

0 (q, q, q)
Observe that sA

0 (p, p, q) = sA
0 (q, p, q) by the third half♦-equation.. This means that the equation sA

0 (p, x, q) =
sA

0 (q, x, q) holds at the left end of the sequence p = r0,r1, . . . ,rn−1,rn = q but fails at the right end. There
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must be a leftmost place in this sequence where the equation fail. Let this element at this position be
ri+1 = c and put ri = d . Then

sA
0 (p,c, q) 6= sA

0 (q,c, q) and sA
0 (p,d , q) = sA

0 (q,d , q).

Let e = sA
0 (p,c, q) and f = sA

0 (q,c, q). This completes the proof of the first part of the Lemma under Alter-
native I.

Alternative II: sA
1 (p, p, q) 6= p = sA

1 (p, p, p)
Observe that sA

1 (p, q, q) = sA
1 (p, q, p) by the fourth half♦-equation. This means that the equation sA

1 (p, x, q) =
sA

1 (p, x, p) holds at the right end of the sequence p = r0,r1, . . . ,rn−1,rn = q but fails at the left end. There
must be a rightmost place in this sequence where the equation fails. Let this element at this position be
ri+1 = d and put ri = c. Then

sA
1 (p,c, q) 6= sA

1 (p,c, p) and sA
1 (p,d , q) = sA(p,d , p).

Let e = sA
1 (p,c, q) and f = sA

1 (p,c, p). This completes the proof of the first part of the Lemma under Alter-
native II.

Alternative III: sA
2 (p, q, q) 6= sA

2 (p, q, p) and sA
1 (p, p, q) = p

The equation sA
2 (p, x, q) = sA

2 (p, x, p) fail at the right end of the sequence p = r0,r1, . . . ,rn−1,rn = q but hold
at the left end, since s2(x, x, y) ≈ s1(x, x, y) is from the fifth half ♦ equation. So sA

2 (p, p, q) = sA
1 (p, p, q) =

p = sA
2 (p, p, p) by an idempotence equation among the half ♦-equations. There must be a leftmost place

in this sequence where the equation fails. Let this element at this position be ri+1 = c and put ri = d . Then

sA
2 (p,c, q) 6= sA

2 (p,c, p) and sA
2 (p,d , q) = sA

2 (p,d , p).

Let e = sA
2 (p,c, q) and f = sA

2 (p,c, p).

This completes the proof of the first part of the Lemma under Alternative III.

For the second part of the Lemma, we have the additional assumption that W is a variety with a finite
residual bound. So we know that, up to isomorphism, there are only finitely many subdirectly irreducible
algebras in W and they are all finite. Each of these subdirectly irreducible algebras can have only finitely
many translations. So there is a positive natural number ` that is an upper bound on the complexity of all
the translations in all the subdirectly irreducible algebras in W. The point of this part of the Lemma is that
this bound applies to all A and all a,b, p, q ∈ A with p 6= q such that (p, q) ∈ CgA(a,b) such that CgA(p, q) is
an atom in ConA.

Pick a congruence θ ∈ ConA that is maximal with respect to separating p and q . Then A/θ is subdirectly
irreducible and (p/θ, q/θ) is a critical pair of A/θ. Notice that θ must also separate a and b

Now (p/θ, q/θ) ∈ CgA/θ(a/θ,b/θ). According to Mal’cev there is finite sequence r ′
0, . . . ,r ′

k in A/θ and trans-
lations λ′

0, . . . ,λ′
k such that

p/θ = r ′
0

{λ′
i (a/θ),λ′

i (b/θ)} = {r ′
i ,r ′

i+1} for all i < k

r ′
k = q/θ

and, moreover, the complexity of the translations λ′
i never exceeds `. We pick representatives of the con-

gruence classes and denote this by removing the primes. So we get

p θ r0

{λi (a),λi (b)} θ {ri ,ri+1} for all i < k

rk θ q
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To make the middle line of the above display more specific, for each i < k pick ai and bi so that {ai ,bi } =
{a,b} and

λi (ai ) θ ri

λi (bi ) θ ri+1

We obtain

p θ r0 θ λ0(a0)

λ1(a1) θ r1 θ λ0(b0)

λ1(b1) θ r2 θ λ2(a2)

...

λ2 j+1(a2 j+1) θ r2 j+1 θ λ2 j (b2 j )

λ2 j+1(b2 j+1) θ r2 j+2 θ λ2 j+2(a2 j+2)

...

λk−1(bk−1) θ rk θ q

where we have made the harmless assumption that k is even. Of course, this leads to

p θ λ0(a0)

λ1(a1) θ λ0(b0)

λ1(b1) θ λ2(a2)

...

λ2 j+1(a2 j+1) θ λ2 j (b2 j )

λ2 j+1(b2 j+1) θ λ2 j+2(a2 j+2)

...

λk−1(bk−1) θ q

Consider the single sequence made by traversing the display above in a back-and-forth manner:

p,λ0(a0),λ0(b0),λ1(a1),λ1(b1), . . . ,λk−1(ak−1),λk−1(bk−1), q.

Again, there are two alternatives.

Alternative I: sA
0 (p, q, q) 6= q = sA

0 (q, q, q)
Observe that sA

0 (p, p, q) = sA
0 (q, p, q). This means that the equation sA

0 (p, x, q) = sA
0 (q, x, q) holds at the left

end of the single sequence but fails at the right end. There must be a leftmost place in this sequence where
the equation fails. There are three cases.

Case (a): sA
0 (p,λ j (a j ), q) = sA

0 (q,λ j (a j ), q) and sA
0 (p,λ j (b j ), q) 6= sA

0 (q,λ j (b j ), q)
In this case, we can let d =λ j (a j ) and c =λ j (b j ) to reach the desired conclusion.

Case (b): sA
0 (p,λ j (b j ), q) = sA

0 (q,λ j (b j ), q) and sA
0 (p,λ j+1(a j+1), q) 6= sA

0 (q,λ j+1(a j+1), q)
We will reject this case. To simplify notation, let u =λ j+1(a j+1) and let v =λ j (b j ). So we have

sA
0 (p, v, q) = sA(q, v, q) and sA

0 (p,u, q) 6= sA
0 (q,u, q).
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Notice that 〈sA
0 (p,u, q), sA

0 (q,u, q)〉 ∈ CgA(p, q). Since CgA(p, q) is an atom we have

CgA(p, q) = CgA(sA
0 (p,u, q), sA

0 (q,u, q)).

But v θ u. This leads to
sA

0 (p,u, q) θ sA
0 (p, v, q) = sA

0 (q, v, q) θ sA
0 (q,u, q).

As θ is not above CgA(p, q) we reject this case.

Case (c): sA
0 (p,λk−1(bk−1), q) = sA

0 (q,λk−1(bk−1), q) and sA
0 (p, q, q) 6= sA

0 (q, q, q)
We will reject this case as well. Again, to simplify notation we take v =λk−1(bk−1). So we have

sA
0 (p, v, q) = sA(q, v, q) and sA

0 (p, q, q) 6= sA
0 (q, q, q).

As above, we deduce that
CgA(p, q) = CgA(sA

0 (p,u, q), q).

But v θ q . This leads to
sA

0 (p,u, q) θ sA
0 (p, v, q) = sA(q, v, q) θ sA

0 (q, q, q) = q.

As θ is not above CgA(p, q) we reject this case.

Alternative II: sA
1 (p, p, q) 6= p = sA

1 (p, p, p)
Observe that sA

1 (p, q, q) = sA
1 (p, q, p). This means that the equation sA

1 (p, x, q) = sA
1 (p, x, p) holds at the right

end of the single sequence but fails at the left end. There must be a rightmost place in this sequence where
the equation fails. Again, there are three cases.

Case (a): sA
1 (p,λ j (b j ), q) = sA

1 (p, p,λ j (b j )) and sA
1 (p,λ j (a j ), q) 6= sA

1 (p, p,λ j (a j ))
In this case, we let c =λ j (a j ) and d =λ j (b j ) to reach the desired conclusion.

Case (b): sA
1 (p,λ j+1(a j+1), q) = sA

1 (p,λ j+1(a j+1), p) and sA
1 (p,λ j (b j ), q) 6= sA

1 (p, p,λ j (b j ))
We will reject this case. To reduce notation, let u =λ j (b j ) and v =λ j+1(a j+1). Then we have

sA
1 (p, v, q) = sA

1 (p, p, v) and sA
1 (p,u, q) 6= sA

1 (p, p,u).

Notice that 〈sA
1 (p,u, q), sA

1 (p,u, p)〉 ∈ CgA(p, q). Since CgA(p, q) is an atom we have

CgA(p, q) = CgA(sA
1 (p,u, q), sA

1 (p,u, p)).

But v θ u. This leads to

sA
1 (p,u, q) θ sA

1 (p, v, q) = sA
1 (p, p, v) = sA

1 (p, v, p) θ sA
1 (p,u, p).

As θ is not above CgA(p, q) we reject this case.

Case (c): sA
1 (p,λ0(a0), q) = sA

1 (p,λ0(a0), p) and sA
1 (p, p, q) 6= sA

1 (p, p, p)
We will reject this case. Again, to simplify notation we take v =λ0(a0). So we have

sA
1 (p, v, q) = sA

1 (p, v, p) and sA
1 (p, p, q) 6= sA

1 (p, p, p).

As above, we deduce that
CgA(p, q) = CgA(sA

1 (p, v, q), p).

But v θ p. This leads to
sA

1 (p, v, q) = sA
1 (p, v, p) θ sA

1 (p, p, p) = p
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As θ is not above CgA(p, q) we reject this case.

Alternative III: sA
2 (p, q, q) 6= sA

2 (p, q, p) and sA
1 (p, p, q) = p

The equation sA
2 (p, x, q) = sA

2 (p, x, p) fail at the right end of the single sequence but hold at the left end,
since s2(x, x, y) ≈ s2(x, y, x) ≈ s1(x, x, y) are among the half ♦ equations. There must be a leftmost place in
this sequence where the equation fails. There are three cases.

Case (a): sA
2 (p,λ j (a j ), q) = sA

2 (p, p,λ j (a j )) and sA
1 (p,λ j (b j ), q) 6= sA

1 (p, p,λ j (b j ))
In this case, we let c =λ j (b j ) and d =λ j (a j ) to reach the desired conclusion.

Case (b): sA
2 (p,λ j (b j ), q) = sA

2 (p,λ j (b j ), p) and sA
2 (p,λ j+1(a j+1), q) 6= sA

2 (p, p,λ j+1(a j+1))
We will reject this case. To reduce notation, let u =λ j (b j ) and v =λ j+1(a j+1). Then we have

sA
2 (p,u, q) = sA

2 (p,u, p) and sA
2 (p, v, q) 6= sA

2 (p, v, p).

Notice that 〈sA
2 (p, v, q), sA

2 (p, v, p)〉 ∈ CgA(p, q). Since CgA(p, q) is an atom we have

CgA(p, q) = CgA(sA
2 (p, v, q), sA

2 (p, v, p)).

But v θ u. This leads to
sA

2 (p, v, q) θ sA
2 (p,u, q) = sA

2 (p,u, p) = sA
2 (p, v, p).

As θ is not above CgA(p, q) we reject this case.

Case (c): sA
2 (p,λk−1(bk−1), q) = sA

2 (p,λk−1(bk−1), p) and sA
2 (p, p, q) 6= sA

2 (p, p, p)
We will reject this case. Again, to simplify notation we take v =λk−1(bk−1). So we have

sA
2 (p, v, q) = sA

2 (p, v, p) and sA
2 (p, p, q) 6= sA

2 (p, p, p) = p.

As above, we deduce that
CgA(p, q) = CgA(sA

2 (p, v, q), p).

But v θ p. This leads to
sA

2 (p, v, q) = sA
2 (p, v, p) θ sA

2 (p, p, p) = p.

As θ is not above CgA(p, q) we reject this case.

This completes the proof of the Half ♦ Single Sequence Lemma.

Now we put the pieces together to prove Willard’s Finite Basis Theorem. According to the Half ♦ Single
Sequence Lemma, we see that V has the definite atoms property, where σ is the conjunction of the half
♦-equations. As a consequence of the Folklore Lemma, we see Vfsi is finitely axiomatizable. So Willard’s
Finite Basis Theorem follows from the Definable Atoms Finite Basis Lemma.
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THE LATTICE OF EQUATIONAL THEORIES

For a fixed signature, the equational theories are ordered by set-inclusion ⊆. More is true. There is a largest
equational theory >: the set of all equations of the signature. The set {x ≈ y}, where x and y are different
variables, is a base for >. Equational theories other than > are called proper equational theories. There is
a smallest equational theory ⊥: the set of all equations of the form s ≈ s, where s is a term. These equations
are called tautologies. The theory ⊥ is the trivial equational theory and is based on {x ≈ x}. Mostly we will
be interested in proper nontrivial equational theories. Moreover every set F of equational theories has a
greatest lower bound or meet, namely

⋂
F, provided F is not empty and the largest equational theory if F

is empty. In symbols we write ∧
F=

{⋂
F if F 6=∅

> otherwise

Also, every set F has a least upper bound or join, namely ThMod(
⋃
F). In symbols∨

F= ThMod
⋃

F.

Indeed, all these things hold for the closed sets on either side of any Galois connection. Any ordered set
with all these properties is referred to as a complete lattice.

Suppose L is a complete lattice. An element c ∈ L is said to be compact provide if c ≤∨
F, then c ≤∨

F∗

for some finite F∗ ⊆ F. The complete lattice L is said to be algebraic, provided each element of L is the
join of some set of compact elements. It is not hard to see that the compact elements of the lattice of
all equational theories are just those equational theories that are finitely based. It is also clear that every
equational theory is the join of all finitely based theories it contains. That is, for any fixed signature, the
lattice of all equational theories is an algebraic lattice.

The ordering in the lattice of equational theories provides a way to compare the strength of equational
theories—the larger the theory the stronger it is. So understanding the structure of the lattice of equational
theories of a given signature is one of the routes to a deeper study of equational logic.

6.1 MAXIMAL AND MINIMAL EQUATIONAL THEORIES

Once a signature is given, the lattice of equational theories will always have a top element. An equational
theory T is said to be maximal or equationally complete provided T is a proper theory and if T ′ is an
equational theory such that T ⊆ T ′, then either T = T ′ or T ′ = >. That is, there is no equational theory
properly between T and >.
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Theorem 6.1.1. Every proper equational theory is contained in a maximal equational theory.

Proof. This is a more or less standard Zorn’s Lemma argument. Let T be a proper equational theory and
let

F= {S : T ⊆ S and S is a a proper equational theory}.

Suppose C⊆F is linearly ordered by ⊆. We claim
⋃
C ∈F. Certainly, T ⊆⋃

C since T ⊆ S for all S ∈C.

Notice that
⋃
C is an equational theory since it’s closed under logical consequence. To see this, suppose⋃

C |= s ≈ t . Then there is a finite ∆ ⊆ ⋃
C so that ∆ |= s ≈ t . Pick S0,S1, . . . ,Sn ∈ C so that ∆ ⊆ S0 ∪ ·· ·Sn .

Without loss of generality, since C is a chain, we have S0 ⊆ S1 ⊆ ·· · ⊆ Sn . So Sn |= s ≈ t , so s ≈ t ∈ Sn since Sn

is an equational theory.

Lastly,
⋃
C is proper. To see this, suppose to the contrary that C |= x ≈ y . This would imply that ∆ |= x ≈ y

for some finite ∆⊆⋂
C, which would imply that S |= x ≈ y for some S ∈C.

On the other hand, apart from certain meager signatures, the lattice of equational theories has no min-
imal nontrivial elements. In the language of lattices theory we would say that the lattice of equational
theories has no atoms.

Theorem 6.1.2. If the signature provides an operation symbol of positive rank, then any nontrivial equa-
tional theory has a proper nontrivial subtheory.

Proof. Let s ≈ t ∈ T with s 6= t . Let Q be an operation symbol of positive rank. Pick m larger than the length
of s and t . Let T ′ = The{Qm ss . . . s ≈ Qm t t . . . t }. So T ′ ⊆ T since Qm ss . . . s ≈ Qm t t . . . t is a consequence
of s ≈ t . T ′ is not trivial, since s 6= t . Finally, s ≈ t 6∈ T ′, because the terms s and t are too short for the
equation in the basis of T ′ to come into play in any deducation. So T ′ 6= T . That is, T ′ is a proper nontrivial
subtheory of T .

For signatures that do not provide operation symbols of positive rank, it is possible to describe the lattice
of equational theories. If fewer than 2 constant symbols are provided, then there are only two equational
theories: > and ⊥. If at least 2 constant symbols are available, then the lattice of equational theories is
isomorphic to the lattice of equivalence relations on the set of constant symbols with a new top element
adjoined.

Theorem on the Number of Equational Complete Theories.
Suppose the signature provides at least two operation symbols of rank 1 or at least one operation symbols of
rank at least 2. Then there are at least 2ω equationally complete theories.

Proof.
First consider the case that the signature provides at least two one-place operations symbols F and G .

Let n be any natural number. Put the term

sn := FGF n+1G2x

where x is a variable.

Let X be a set of natural numbers. Define

ΣX = {sn ≈ x : n ∈ X }∪ {sn ≈ sn(y) : n 6∈ X }

Recall that sn(y) is the result of substituting y for x in sn . That first set says that FGF n+1G2 is the identity
function when n ∈ X and the second set says that FGF n+1G2 is a constant function when n 6∈ X .

Let TX be the equational theory based on ΣX . We establish two claims:

Claim 0: TX is a proper theory.
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Proof of Claim 0.
TX is a proper theory is equivalent to saying that ΣX has a nontrivial model which is equivalent to saying
ΣX 6` x ≈ y .

Let A be the set of terms—this is an infinite set. Let A be the algebra on the set of terms where each
operation symbol, except F , denotes the same basic operation that it does in the term algebra. So G , for
example, denotes in A the operation

GA(t ) =Gt

for any term t in A. We change only the basic operation denoted by F in A. Let it be

F A(t ) =


v0 if F t = sn(u) for some n 6∈ X and for some term u

u if F t = sn(u) for some n ∈ X and some term u

F t otherwise

It is a consequence of unique readability of terms that F A is well-defined.

Let n be a natural number and let p be a proper subterm of FGF n+1G2x. Our contention is that

pA(u) = p(u).

We proceed by induction. If p = x, then xA(u) = u = x(u). For the inductive step, there are two cases.
Suppose first that p =Gq . Then pA(u) =GA

(
qA(u)

) =GA(q(u)) =Gq(u) = p(u). Second, suppose p = F q .
Then pA(u) = F A

(
qA(u)

)
. By the inductive hypothesis, qA(u) = q(u) so we get pA(u) = F A

(
q(u)

)
. Since

p is a proper subterm of FGF n+1G2x we must fall into the “otherwise” case of the definition of F A. So
p |mathb f A(u) = F mathb f A(q(u)) = F q(u) = p(u). So the contention is established.

Now observe

(FGF n+1G2)A(t ) = F A((GF n+1G)A(t )) = F A(GF n+1G2t ) =
{

v0 if n ∉ X

t if n ∈ X

This means that FGF n+1G2 denotes a constant function, if n ∉ X and it denotes the identity function, if
n ∈ X . We conclude that A is a model (nontrivial) of ΣX . So TX is a proper equational theory.

Claim 1: ΣX ∪ΣY has only trivial (1-element) models when X and Y are different.

Proof of Claim 1.
Well, if ΣX and ΣY are different, then we can pick n ∈ X with n 6∈ Y (or the other way around). Without loss
of generality, we’ll pick n ∈ X with n 6∈ Y . Then

ΣX ∪ΣY ` x ≈ sn , sn ≈ sn(y)

with the first equation belongs to ΣX and the second to ΣY . So

ΣX ∪ΣY ` x ≈ sn(y)

but then of course
ΣX ∪ΣY ` x ≈ y
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We already saw that we can extend a proper theory to a maximal theory. So we’ll extend TX to MX where
MX ⊇ TX and MX is maximal. Then MX ∪MY has only trivial models if X 6= Y . Hence MX 6= MY if X 6= Y .
Hence, the number of equationally complete theories is at least as large has the number of subsets of the
set of natural numbers. This concludes the first case.

For the second case, we suppose that the signature provides an operation symbol Q of rank at least 2.
Our plan is to follow the reasoning used in the first case. To simplify matters, we describe how to do this in
case the rank of Q is 3. Then extending the reasoning to arbitrary ranks large than 1 is easy.

Let n be a natural number and let
sn :=QxxQn+1xx . . . x

where that final string of x’s has length 2n +3. Here is the term s2 depicted as a tree:

Q

Q

Q

Q

x x x

x x

x x

xx

As this tree makes plain, sn is unbalanced in favor of the rightmost node beneath the top. On the other
hand, every proper subterm of sn that is not a variable is either perfectly balanced, or unbalanced in favor
of the leftmost node beneath its top.

Now the argument we used in the case of two one-place operation symbols goes through, provided we
can establish here a version of Claim 0. We devise an infinite algebra by modifying the term algebra. So
again let A be the set of all terms and take as basic operations of A all the basic operations of the term
algebra with the exception of the basic operation QA associated with the operation symbol Q. We define
that via

QA(t0, t1, . . . , tr−1) :=


v0 if Qt0t1 . . . tr−1 = sn(u) for some n ∉ X and for some term u

u if Qt0t1 . . . tr−1 = sn(u) for some n ∈ X and for some term u

Qt0t1 . . . tr−1 otherwise

where r is the rank of Q and t0, t1, . . . , tr−1 are any terms. Now the crucial contention in the proof of Claim 0
above will hold in present case because none of the proper subterms of sn are unbalanced to right—that is
if p is a proper subterm of sn that is not a variable, then no substitution instance of p is also a substitution
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instance of sm for any natural number m. This ensure that pA is always evaluated as if it were being evalu-
ated in the term algebra. In this way, a version of Claim 0 for the present case can be established and, with
it, the remainder of the proof goes as before.

6.2 SUBLATTICES OF THE LATTICE OF EQUATIONAL THEORIES
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SECOND INTERLUDE: THE RUDIMENTS OF COMPUTABILITY
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UNDECIDABILITY IN EQUATIONAL LOGIC

8.1 A FINITELY BASED UNDECIDABLE EQUATIONAL THEORY

Let T be an equational theory. How can we decide whether s ≈ t ∈ T ? If writing such a program is possible,
we say T has a decidable equational theory. Sad to say, but most of the equational theories are undecidable.

Definition. An equational theory T is decidable provided it is possible to write a computer program to do
the job. If this is not possible, we say that T is undecidable.

This idea really only works if you have a friendly-enough signature. If your signature is uncountable, for
instance, you’d run into problems.

In order to formalize what it means to be a “computer program”, we’re going to talk about Turing Ma-
chines.

Definition. A Turing Machine is a device consisting of a finite tape alphabet Σ, a finite set of states Q, and
a transition process. Given a ∈Σ and q ∈Q, there is only one instruction

〈
a, q, . . .

〉
. The Turing Machine is

just a finite list of 5-tuples subject to the restriction just mentioned.

Theorem 8.1.1 (The Halting Problem; Turing, Post, Kleene 1936, Markov 1944). • There is a Turing Ma-
chine M so that the set of strings for which M halts is undecidable.

• The set of Turing Machines which halt when launched on the empty string (blank tape) is undecidable.

We begin with some more about Turing Machines. We’ll use the symbol [ (“flat”) for the blank square. We
will make the signature as follows:

• Fa will be a unary operation symbol for each tape symbol a;

• Gq will be a unary operation symbol for each state q ;

• For housekeeping purposes, we’ll make unary operation symbols H ,K , and J .

We’re going to make a finite set of equations Σ that will completely describe our Turing machine. We’ll
write

FcGq Fa x ≈Gr Fc Fb x.

This goes into Σm for every c in the tape alphabet.
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Given an word w on the tape alphabet, there is a term tw which looks like

HGq0 FaFbFaFaFb · · ·H x

where q0 is the initial state and w is abaab · · · corresponding to the subscripts of the F ’s.

Definition. A Post term looks like
H AT B H x

where A and B are (possibly empty) strings of Fc ’s for various c’s and T is one of J ,K ,Gq where q is a state.

Theorem 8.1.2. Let M be a Turing Machine and w be a word on the tape alphabet of M. Then M halts on
input w if and only if

ΣM ` tw ≈ H J H x

Proof. (⇒) Clear from the construction. If we’re in state q0 reading the letter a, and our instruction set has
aq0cRr , we overwrite a with c, move to the Right, and become state r . As far as the terms go, we’re starting
with

HGq0 FaFb · · ·H x

and we want to get
HFcGr Fb · · ·H x.

We’ll do this using the equation from our set of axioms that says

Gq0 FaFb ≈ FcGr Fb x.

(⇐) We begin in the middle of the proof from last time. We were still trying to reject the two cases that we
had before.

Case: t is HQt0 · · · tr−1, where H is some string of unary operation symbols. X

We also need to see that d and d̂ are ω-universal. Let f , g : ω→ ω. Since d∂ and d̂∂ are ω-universal, we
can pick A so that

(d∂)A = f

and
(d̂∂)A = g .

Expand A to A∗ by making all the unary operation symbols name the identity function. So

d A∗ = (d∂)A = f

and
d̂ A∗ = . . . = g

So d and d̂ are ω-universal.

8.2 ω-UNIVERSAL SYSTEMS OF DEFINITIONS

The finitely based undecidable equational theory described in the last section had a signature consisting of
some large finite number of unary operation symbols. In this section we show how to construct such equa-
tional theories in any signature with at least two distinct unary operation symbols or with some operation
symbol of rank at least two.
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Let σ denote a signature with exclusively unary operation symbols. We suppose σ provides only count-
ably many (perhaps finitely many) operation symbols F0,F1,F2, . . . . Let τ be some other countable signa-
ture.

Suppose that a system d = 〈d0,d1,d2, . . .〉 of distinct terms of signature τ has been given so that x is the
only variable to occur in each of the di ’s. We call d a system of definitions for σ in τ. The system d offers
us the means to translate terms of signature σ into terms of signature τ. We define Trs : Teσ → Teτ by the
following recurision:

(a) When t is variable, let Trd (t ) = t .

(b) When t = Fi t̂ ,let Trd (t ) = di (Trd (t̂ )).

We apply Trd to equations by taking Trd (s ≈ t ) to be Trd (s) ≈ Trd (t ). We apply Trd to sets Σ of equations by
putting

Trd (Σ) = {Trd (s ≈ t ) | s ≈ t ∈Σ}.

Let A be an algebra of signature τ and d be a system of definitions for σ in τ. Let A(← d) be the algebra of
signature σ with universe A so that

F A(←d)
i = d A

i

for all i . A straight forward induction of the complexity of a term t of signature σ shows

t A(←d) = (Trd (t ))A.

So for any equation s ≈ t of signature σ we have

A(← d) |= s ≈ t if and ony if A |= Trd (s ≈ t ).

It is easy, as we shall see below, to prove that if Σ ` s ≈ t in signature σ, then Trd (Σ) ` Trd (s ≈ t ) in
signature τ. However, in general the converse fails without some further restriction on the system d of
terms.

We will say that the system d of distinct terms of signature τ is ω-universal provided for every system
〈g0, g1, g2, . . .〉 of functions from ω into ω there is an algebra A of signature τ with universe ω such that
d A

i = gi for all i .

Theω-Universal Translation Theorem.
Let σ be a countable unary signature and let τ be a countable signature. Let d be an ω-universal system of
definitions for σ in τ. Then for any set Σ∪ {s ≈ t } of equations of signature σ,

Σ` s ≈ t if and only if Trd (Σ) ` Trd (s ≈ t ).

Proof. First, let us suppose that Σ` s ≈ t and deduce that Trd (Σ) ` Trd (s ≈ t ). So suppose that A |= Trd (Σ).
Then A(← d) |=Σ. So also A(← d) |= s ≈ t . But then A |= Trd (s ≈ t ) as desired.

Now let us suppose that Σ0 s ≈ t and deduce that Trd (Σ)0Trd (s ≈ t ). Let B〈ω, g0, g1, g2, . . .〉 be a model of
Σ in which s ≈ t fails. Let A be an algebra of signature τ with universe ω such that d A

i = gi for all i . Such an
algebra exists since d isω-universal. Then it is clear that A(← d) = B. Consequently, A is a model of Tr)d(Σ)
in which Trd (s ≈ t ) fails, as desired.

Of course the usefulness of this theorem depends on the availability of an ω-universal system d of defi-
nition for σ in τ.

Definition. A set ∆ of terms is nonoverlapping provided
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• No variable belongs to ∆; and

• For all d ,d ′ ∈∆ and p a subterm of d and u0,u1, . . . and v0, v1, . . . terms, if

p(u0,u1, . . .) = d ′(v0, v1, . . .)

then p = d = d ′ and ui = vi for all i occurring in d .

Theorem 8.2.1. Every nonoverlapping set of terms is ω-universal.

Proof. Let ∆ be a set of nonoverlapping terms. Let F assign to each term d in ∆ a function Fd :ωω →ω so
that Fd depends on coordinate i only if xi occurs in d. We want:

“There is an algebra A with universe ω (or the set of terms T ) so that Fd = d A for all d ∈∆.”

This is what it meant to be ω-universal. It meant that when you took an assignment that assigned to each
term in ∆ a function that had any chance at all of being a term function, then there was an algebra that
would make it work.

Let Q be an operation symbol and let r be the rank of Q. Then for terms ti , we have

QA (t0, . . . , tr−1) :=
{

Fd (ū) if Qt0 · · · tr−1 = d(u0,u1, . . .) for some d ∈∆ and some ū ∈ Tω

Qt0 · · · tr−1 otherwise

Is this definition okay? It looks like there are only two cases, but there really are a bunch more: there’s a
case for each d ∈∆ and ∆ could be really big. In other words, we need to make sure that our cases do not
conflict.

Suppose d ,d ′ ∈∆ and ū, v̄ ∈ Tω so that

d(ū) =Qt0 . . . tr−1 and d ′(v̄) =Qt0 . . . tr−1

that is, d(ū) = d ′(v̄). By nonoverlapping of ∆, we get d ′ = d and ui = vi if xi occurs in d . So Fd (ū) = Fd ′(v̄).

Our contention:

“If d ∈∆ and s is a proper subterm of d , then sA(u0,u1, . . .) = s(u0,u1, . . .) = sT(u0,u1, . . .) for all
ū ∈ Tω.”

We will prove this by induction on the complexity of s. The base step is too easy.

For the inductive steps, say s =Qs0 · · · sr−1. Then

sA =QA (
sA

0 (ū), . . . , sA
r−1(ū)

)
=QA (s0(ū), . . . , sr−1(ū))

=Qs0(ū) · · · sr−1(ū) = s(ū)

So QA (s0(ū), . . . , sr−1(ū)) = s(ū) = sA(ū).

Now we claim that Fd = d A for all d ∈∆. To prove this, let d ∈∆ and ū ∈ Tω. Well,

d A(ū) =QA (
t A

0 (ū), . . . , t A
r−1(ū)

)
d =Qt0 · · · tr−1 =QA (

t A
0 (ū), . . . , t A

r−1(ū)
)

= T̄d (ū)

So we’ll just test
Qt0(ū) · · · tr−1(ū) = d(ū)
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Example. Let B and D be two binary operation symbols. Consider the term DDx yB x y . It looks like

D

D B

x y x y

Notice that Dx y is a proper subterm of d . But

x 7→ Dx y and y 7→ B x y

which sends D(Dx y)(B x y) to d .

We claim that {d} is ω-universal but fails to be nonoverlapping.

Let F :ω×ω→ω. Define A so that A =ω and

B A = F (a,b) and DA(a,b) = b

Notice that

d A(a,b) = D A (
D A(a,b),B A(a,b)

)
= D A (b,F (a,b))

= F (a,b)

So d A = F .

Example. Let Q be a binary operation symbol. Let

dn =QxQn xn+1 =QxQQ · · ·Qxxx · · ·x

We claim that {dn : n ∈ ω} is nonoverlapping and hence is ω-universal. So let s be a subterm of dn with
s 6= x. Suppose u and v are terms and m ∈ω and s(u) = dm(v). To have nonoverlapping, we need to check
that s = dn = dm and u = v .

There were some cases that went along with this that required rather intricate tree diagrams.

8.3 BASE UNDECIDABILITY: THE SET UP

Here we will use σ to denote a fixed signature which provides just two operation symbols D and E , both
unary. We reserveΨ to denote a finite set of equations in the variable x of signature σ that is the base of an
undecidable equational theory. Let H and K be two new unary operation symbols.

Now let τ be another signature and let d = 〈dD ,dE ,dH ,dK 〉 be a system of definitions for σ in τ.

For any equation s ≈ t of signature σ we put

Ψ(s ≈ t ) :=Ψ∪ {H s(K x) ≈ H s(K y), H t (K x) ≈ x}.

Lemma.
Let s, t ,r, and q be terms of signature σ in the variable x such thatΨ0 s ≈ t . Then

Ψ(s ≈ t ) ` q ≈ r if and only ifΨ` q ≈ r.

Conseuqently, if s and t are terms of signature σ in the variable x, then

Ψ(s ≈ t ) ` s ≈ t if and only ifΨ` s ≈ t .
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Proof. The implication from right to left is clear. So suppose thatΨ0 q ≈ r andΨ0 s ≈ t . We have to show
Ψ(s ≈ t )0 q ≈ r . Let A be a countably infinite model ofΨ in which both q ≈ r and s ≈ t fail. Pick a,b ∈ A so
that qA(a) 6= r A(a) and sA(b) = c 6= d = t A(b). Now A is an algebra of signature σ. We start by improving A
so that s ≈ t will have, loosely speaking, infinitely many disjoint failures. As a first step, let ∞∉ A and put
A′ = A ∪ {∞}. Make A′ by extending the operations of A so that DA′∞=∞= E A′

(∞). Since Ψ consists of
regular equations we will have A′ |=Ψ. Let

B = {ē | ē ∈ A′ω and at most one coordinate of ē differs from ∞}.

It is easy to see that B is a subuniverse of A′ω and that B is countably infinite. Let B be the subalgebra of
A′ω with universe B . So we have B |=Ψ.

For e ∈ A and i ∈ ω, let e[i ] be the ω-tuple with e at the i th position and ∞ at all the other positions. So
we have sB(b[i ]) = c[i ] 6= d [i ] = t B(b[i ]) for all i ∈ω.

Now let B∗ be the expansion of B by taking K B∗
to be a one-to-one function from B onto {b[i ] | i ∈ω} and

by defining H B∗
as follows:

H B∗
(u) =

{
(K B∗

)−1(b[i ]) if u = d [i ] for some i ∈ω
d [0] otherwise

We contend that B∗ |=Ψ(s ≈ t ). We already have that B∗ |=Ψ, so what we need is that B∗ |= H s(K x) ≈
H s(K y) and B∗ |= H t (K x) ≈ x.

Consider the first equation. Because K B∗
produces only the values b[i ] for various i ∈ ω and because

sB∗
(b[i ]) = c[i ], we will end up evaluating H B∗

(c[i ]). But sinces c[i ] 6= d [ j ] for any choices of i and j , we
see that H B∗

(c[i ]) = d [0], no matter what value i has. Thus both sides of H s(K x) ≈ H s(K y) evaluate to d [0]
and the equation holds.

Now consider the second equation. Let u ∈ B∗. Pick i ∈ ω so that K B∗
(u) = b[i ]. Then t B∗

(b[i ]) = d [i ].
Now the definition of H B∗

gives us H B∗
(d [i ]) = u. Putting this together, we have B∗ |= H t (K x) ≈ x, as

desired.

The Base Undecidability Lemma.
Let τ be any recursive signature. Let Γ be any finite set of equations of signature τ. If there are two distinct
terms d and d̂ in the variable x such that

• {d , d̂} is ω-universal.

• Γ` d ≈ x, d̂ ≈ x.

Then the equational theory based on Γ is base undecidable.

Proof. First put

dD := d 2(d̂(d(d̂)))

dE := d 2(d̂ 2(d(d̂)))

dH := d 2(d̂ 3(d(d̂)))

dK := d 2(d̂ 4(d(d̂)))

It routine to verify that Γ` dD ≈ x,dE ≈ x,dH ≈ x,dK ≈ x. That {dD ,dE ,dH ,dK } is ω-universal follows from
the fact that {d , d̂} is ω-universal and the fact that {F 2Gk+1FGx | k ∈ ω} is nonoverlapping and hence ω-
universal. To simpify notation we use Tr to denote the translation function with respect to {dD ,dE ,dH ,dK }.
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We put

B(Γ, s ≈ t ) := Tr(Ψ)∪ {Tr(H s(K x))(p) ≈ Tr(H s(K x))(q) | p ≈ q ∈ Γ}∪ {Tr(H t (K x)) ≈ x}

We reduce the decision problem for the equational theory based on Ψ to the base decidability problem
for the equational theory based on Γ. What we need is to show, for each equation s ≈ t of signature σ,
where x is the only variable to occur in s ≈ t and neither s nor t is itself a variable,

Ψ` s ≈ t if and only if B(Γ, s ≈ t ) and Γ are bases for the same equational theory.

By the previous lemma and the ω-Universal Translation Lemma, we have

Ψ` s ≈ t ⇐⇒ Ψ(s ≈ t ) ` s ≈ t
m m

Tr(Ψ) ` Tr(s) = Tr(t ) ⇐⇒ Tr(Ψ(s ≈ t )) ` Tr(s) ≈ Tr(t )

First, let us suppose that Ψ ` s ≈ t . Then Tr(Ψ) ` Tr(s) ≈ Tr(t ). Consequently, Tr(Ψ) ` Tr(H s(K x)) ≈
Tr(H t (K x)). From the definition of B(Γ, s ≈ t ) we find that B(Γ, s ≈ t ) ` Γ. On the other hand, since Γ `
dQ ≈ x for all Q ∈ {D,E , H ,K }, we have that Γ` B(Γ, s ≈ t ). So we conclude that Γ and B(Γ, s ≈ t ) are bases
for the same equational theory.

Now let us suppose that Ψ 0 s ≈ t . So Tr(Ψ(s ≈ t )) 0 Tr(s) ≈ Tr(t ). All the equations in B(Γ, s ≈ t ) are
substitution instances of equations in Tr(Ψ(s ≈ t )), so we have that Tr(Ψ(s ≈ t )) ` B(Γ, s ≈ t ). So B(Γ, s ≈
t )0 Tr(s) ≈ Tr(t ). But we know that Γ` Tr(s) ≈ Tr(t ) ≈ x. This means that B(Γ, s ≈ t ) and Γ cannot be bases
for the same equational theory.

8.4 THE BASE UNDECIDABILITY THEOREM

The Base Undecidability Theorem.
Let T be a finitely based equational theory in a recursive signature such that there is a term t such that
t ≈ x ∈ T and either two different unary operation symbols occur in t or some operation symbol of rank at
least 2 occurs in t . Then T is base undecidable.

Proof. We can assume that x occurs in t and x is the only variable which occurs in t . We need to construct
two distinct terms d and d̂ so that {d , d̂} is ω-universal and t ≈ x ` d ≈ x, d̂ ≈ x.

We first note that we may assume that x occurs in t . Otherwise t ≈ x ` x ≈ y . In this case every equation
belongs to T so we may select a suitable replacement for t . We may also suppose that x is the only variable
to occur in t , since it does no harm to substitute x for every variable the the equation t ≈ x.

We consider three cases depending on the term t .

CASE: t has only unary operation symbols.
The term t is F n+1GMF k x where F and G are unary operation symbols, M is a (possibly empty) string of
unary operation symbols not ending in F , and n and k are natural numbers.

Claim. F n+1GMF k x ≈ x ` F n+k+1GM x ≈ x.

Proof. Suppose k > 0, as there is nothing to prove otherwise. In any model of the equation F n+1GMF k x ≈
x the function denoted by F must be bijective and so it is invertible. Hence F k denotes an invertible
function, as well. Thus, F n+k+1GM x ≈ x must also be true in the model.
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This claim allows us to assume, without loss of generality, that k = 0 and t is F n+1GM x where M is a
(possibly empty) string of unary operation symbols not ending in F . Let p−1 be the number of occurences
of F in M . Then define

d := (F n+1)3p (GM)3p x

d̂ := (F n+1)2p (GM)2p (F n+1)p (GM)p x

It is evident that t ≈ x ` d ≈ x, d̂ ≈ x. To see that d and d̂ are nonoverlapping, observe that d begins with
a string of 3p(n +1) occurences of F , but after this initial string no strings of consecutive F ’s can be longer
than p −1. Likewise d̂ begins with a string of 2p(n +1) occurences of F , but after this there is one string of
p(n +1) consecutive F ’s. Elsewhere in d̂ no string of consecutive F ’s is longer than p −1. Thus no proper
subterm q of d such that q is not x can have a substitution instance q(u) which is of the form d(w) or d̂(w).
And likewise for any proper subterm of d̂ . It is also plain that d(u) and d̂(w) are never the same, regardless
of how u and w are chosen. So d and d̂ are nonoverlapping and therefore also ω-universal.

CASE: t begins with an operation symbol of rank at least 2.
We suppose that t is Qt0t1 . . . tr−1 where r is the rank of Q. So r ≥ 2. Without loss of generality we will
suppose that x occurs in t0.

Our plan is to construct to terms from t which which will be nonoverlapping or at least ω-universal. We
will need some easily established symbol counting principles. We are able to limit our attention to those
terms in which no variable other than x occurs. For a term q we use |q|x to denote the number of times
the variable x occurs in q and |q|c to denote the numberof occurences of constant symbols in q . We use
q(w) to denote the result of substituting the term w for the variable x in q . Last qn is defined recursively
by q0 = x and qn+1 = q(qn). The following are easily established:

|q(w)|x = |q|x |w |x
|qn |x = |q |nx

|q(w)|c = |q |c +|q |x |w |c

|qn |c =


|q|c if |q|x = 0

n|q |c if |q|x = 1
|q|nx−1
|q|x−1 |q |c if |q|x > 1.

Let n̄ be any r -tuple of natural numbers. We say that d is the associate of Qt0t1 . . . tr−1 corresponding to
n̄ provide d is Qt n0 (t0)t n1 (t1) . . . t nr−1 (tr−1). We see immediately that t ≈ x ` s ≈ x for every associate d of
t . Our plan is to produce two nonoverlapping associates of t by chosing the r -tuples of natural numbers
with care.

Let n̄′ be any r -tuple of natural numbers and let d̂ be the associate of t corresponding to n̄′. Suppose
q is a proper subterm of d̂ and q is not a variable. So q is a subterm of t n′

i (ti ) for some i < r . It follows
that q is a substitution instance of a subterm of t . Now let d be the associate of t corresponding to the
r -tuple n̄. Below we will have to exclude the possibility that there are terms w and u so that q(w) = d(u).
We can achieve this by instead letting q range over the (finite) collection of subterms of t which are not
variables. It is also clear that since d is an associate of t we need only consider those subterms q of t where
q =Qq0q1 . . . qr−1.

We consider two subcases.
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SUBCASE: NO CONSTANT SYMBOLS OCCUR IN t .
We need to find two r -tuple n̄ and n̄′ such that the corresponding associates d and d̂ of t are nonoverlap-
ping. There are two situations which must be rejected:

(a) q is a proper subterm of d̂ which is not a variable and q(w) = d(u) for some terms w and u.

(b) d̂(u) = d(w) for some terms w and u.

In either of these situations, if constant symbols occurred in w or u we could change all the constant
symbols to the variable x and obtain a situation without constants. So we assume no constants occur.
Moreover, in situation (a) we can instead consider that q is a subterm of t of the form Qq0 . . . qr−1.

Consider situation (a). For each i < r we have

|qi (w)|x = |t ni (ti (u))|x
|qi |x |w |x = |t |ni

x |ti |x |u|x
|q0|x |w |x
|q1|x |w |x

= |t |n0
x |t0|x |u|x

|t |n1
x |t1|x |u|x

|q0|x
|q1|x

= |t |n0
x |t0|x

|t |n1
x |t1|x

|q0|x |t1|x
|q1|x |t0|x

|t |n1
x = |t |n0

In this subcase |t |x ≥ 2, so let m be a natural number large enough so that

|q0|x |t1|x
|q1|x |t0|x

|t |2x < |t |m

for all subterms q0 and q1 of t . Here are the desired r -tuples:

n̄ = 〈m +1,1,1, . . . ,1〉
n̄′ = 〈m,2,1, . . . ,1〉

With these choices, the situation (a) is rejected.

Now consider situation (b). With our n̄ and n̄′ were d̂(u) = d(w) we would have

t m(t0(u)) = t m+1(t0(w))

t 2(t1(u)) = t 1(t1(w))

Since t m+1(t0) is longer than t m(t0), the first equation entails that u is longer than w . However the second
equation entails that u is shorter than w , which is impossible since |t |x ≥ 2. So the associates d̂ and d of t
are indeed nonoverlapping, as desired.

SUBCASE: CONSTANT SYMBOLS OCCUR IN t .
As in the last subcase, we need to find two r -tuple n̄ and n̄′ such that the corresponding associates d and
d̂ of t are nonoverlapping. Again, there are two situations which must be rejected:

(a) q is a proper subterm of d̂ which is not a variable and q(w) = d(u) for some terms w and u.

(b) d̂(u) = d(w) for some terms w and u.
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Moreover, in situation (a) we can instead consider that q is a subterm of t of the form Qq0 . . . qr−1. Recall
that x occurs in t and we have assumed (without loss of generality) that x occurs in t0.

Since x occurs in t we know that |t k (t0)|c and |t k (t1)|c are strictly increasing functions of k. Pick m so
large that

|q|c < |t m(t0)|c and |q |c < |t m(t1)|c for all subterms q of t .

Next pick ` so large that

|t`(t0)|c > |q0|x
|q1|x

|t m+1(t1)|c +|q0|c

|t`(t0)|x > |q0|x
|q1|x

|t m+1
x |t1|x

for all subterms q0 and q1 of t such that |q1|x 6= 0.

We take

n̄ := 〈`+1,m,1, . . . ,1〉
n̄′ := 〈`,m +1,1, . . . ,1〉

and let d and d̂ be the associates of t corresponding to n̄ and n̄′.
Consider situation (a). We have

|q0(w)|c = |t`+1(t0(u))|c
|q1(w)|c = |t m(t1(u))|c

|q0|c +|q0|x |w |c = |t`+1(t0)|c +|t`+1(t0)|x |u|c
|q1|c +|q1|x |w |c = |t m(t1)|c +|t m(t1)|x |u|c

In the event that |q1|x = 0 we get

|q1|c = |t m(t1)|c +|t m(t1)|x |u|c

But this violates the choice of m. So |q1|x 6= 0, allowing us to solve the next to the last displayed equation
for |w |c . After some manipulation, we obtain

|q0|x
|q1|x

|t m(t0)|c +|q0|c + |q0|x
|q1|x

|t m(t1)|x |u|c = |t`+1(t0)|c +|t`+1(t0)|x |u|c + |q0|x
|q1|x

|q1|c .

But this violates the choice of `. A similar analysis works with d̂ in place of d . So the situation (a) is rejected.

Situation (b) is rejected in this subcase the same way it was rejected in the first subcase. Some we see that
the associates d and d̂ of t are nonoverlapping.

CASE: t begins with a unary operation symbol and has operation symbols of rank at least 2.
In this case, it turns out not to be possible always to obtain two associates of t which are nonoverlapping.
But we can still find two associates of t which are ω-universal.

For any term q let q∂ be the term obtained from q by deleting all the unary operation symbols. Now t∂ is
a term that falls into the last subcase. Let n̄ and n̄′ be two distinct r -tuples whose corresponding associates
are nonoverlapping. Let d and d̂ be the associates of t corresponding to n̄ and n̄′ respectively. Then d∂ and
d̂∂ are the corresponding associates of t∂. To see that d and d̂ are ω-universal, let f :ω→ω and g :ω→ω
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be any functions onω. Since d∂ and d̂∂ are nonoverlapping, they areω-universal. Let A be an algebra with
universeω and a basic operation for each operation symbol in t∂ so that (d∂)A = f and (d̂∂)A = g . Expand A
to B by interpreting all the unary operation symbols as the identity function onω. Then d B = f and d̂ B = g ,
establishing that d and d̂ are ω-universal associates of t .
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RESIDUAL BOUNDS

Let K be a class of algebras of the same signature. The residual bound of K is the least cardinal κ so that
every subdirectly irreducible algebra in K has fewer than κ elements. We also refer to this cardinal as the
residual character of K. If no such κ exists, then we say K is residually large and we put ∞ as the residual
bound. Most varieties are residually large.

We say K is residually finite if the residual bound κ is either finite or equals ω. That is, K is residually
finite provided its residual bound is countable. We say K is residually very finite if the residual bound κ is
finite. We say K is residually small if the residual bound κ for some cardinal κ.

The next two theorems are offered for information. Their proof lie beyond the scope of this exposition.

Theorem 9.0.1 (Walter Taylor, 1970). A variety V of countable signature is residually small if and only if V
has residual bound of ≤ (2ω)+.

A variety with residual bound ℵ0 has arbitrarily large finite subdirectly irreducible algebras but no infinite
subdirectly irreducible algebra. A variety with residual bound ℵ1 must have a countably infinite sudirectly
irreducible algebra but no uncountable subdirectly irreducible algebra.

Theorem 9.0.2 (McKenzie and Shelah, 1970). Every variety of countable signature that has uncountable
subdirectly irreducible algebras must have a subdirectly irreducible algebra of cardinality at least 2ℵ0 .

Notice the following:

I. The variety of one-element algebras has no subdirectly irreducible algebra. This variety will have
residual bound 0, since 0 is certainly larger than the cardinality of any subdirectly irreducible alge-
bra in the variety.

II. 1 cannot be a residual bound of a variety, since this entails that the variety has a subdirectly irre-
ducible algebra of cardinality 0. Algebras cannot have cardinality 0.

III. 2 cannot be the residual bound of a variety because there are no 1-element subdirectly irreducible
algebras.

IV. There are varieties of countable signature with residual bounds of 3,4,5, . . . ,ℵ0,ℵ1, (2ℵ0 )+, as well as
varieties that are residually large.

85
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9.1 THE VARIETY GENERATED BY MCKENZIE’S ALGEBRA R IS RESDUALLY LARGE

Recall McKenzie’s algebra from Section 4.5:

q r

0

2

13

Figure 9.1: McKenzie’s Automatic Algebra R

This is an automatic algebra. It has just one operation and that operation is a two-place operation, which
we denote be juxtaposition. The elements of this algebra fall into the set {1,2,3} of letters and the disjoint
set {q,r } of states, with an additional default element 0. The operation is defined so that

1r = r 2r = q 3q = q

with all other products resulting in 0. We proved that the variety generated by R contains a shift automor-
phism algebra. As a consequence, we know that HSP R has an infinite subdirectly irreducible algebra,
according to the Shift Automophism Theorem. However it is easy to construct subdirectly irreducible al-
gebras in this variety that have any cardinality greater than 1.

c

a1

a3a5

a7

a0

a2

a4

a6

0

b0 b1

b2

b3

b4
b5

b6

b7

Figure 9.2: The Subdirectly Irreducible Algebra S8

Figure 9.2 gives a diagram of a subdirectly irreducible algebra with 18 elements in this variety and it is
plainly possible to replace 8 with any cardinal greater than 1 and also to vary and elaborate this diagram
to obtain quite complicated subdirectly irreducible algebras of arbitrary infinite cardinalities. The node in
the middle of the diagram is c. Moreover, the operation is defined by following the arrows, just as it was for
R.
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Fact. S8 is subdirectly irreducible.

Proof. We argue that (c,0) is a critical pair. What we must show is that if u 6= v is S8, then any congruence
θ that collapse u and v must also collapse c and 0. Notice that c = bi ai for all i and, moreover, that this
product is the only nonzero product that involves either bi or ai . Without loss of generality, we can suppose
that u 6= 0. There are three cases: u = ai for some i , u = bi , for some i , and u = c. We consider just the first
case and the last case, leaving the middle case in the hands of the diligent graduate students.

Case: u = ai

We know that c = bi ai and 0 = bi v , since v 6= ai = u. Thus c = bi ai θ bi v = 0, as desired.

Case: u = c
If v = 0 there is nothing to prove. So consider that c = u 6= v 6= 0. So v = ai for some i or v = bi for some i .
We only deal with first alternative. So we have c = ai bi = vbi θ ubi = cbi = 0, as desired.

Fact. S8 ∈HSPR.

Proof. We ω-tuples. αi , βi , and γ, for i < 8, like we did in Section 4.5. Were we to replace 8 by another car-
dinal κ, this construction can be modified (we would have to replaceω by a suitable ordered set). Actually,
in the present case, we could replace ω by 8.

αi := q q q q r q q q . . .
βi := 3 3 3 3 2 3 3 3 . . .
γ := q q q q q q q q . . .

where the r and the 2 occur at the i th position. As in Section!4.5, we consider the subalgebra B of Rω

generated by the tuples displayed above. The equivalence relation θ that lumps together all tuple in B that
contain a 0 and isolates everthing else is a congruence. Moreover, S8

∼= B/θ. So S8 ∈HSP (R).

So HSP R is residually large. To devise finite algebras that generate residually small varieties we need a
method to limit the subdirectly irreducible algebras in the variety.

9.2 FINITE SUBDIRECTLY IRREDUCIBLES GENERATED BY FINITE FLAT ALGEBRAS

In this section we will suppose that A is a finite flat algebra (that is, an algebra among whose operations ∧
and 0 can be found which provide the algebra with the structure of a meet-semilattice of height one with
least element 0) and that S is a finite subdirectly irreducible algebra in the variety generated by A.

Now according to Birkhoff’s HSP Theorem, S will always arise as a quotient of some B, which is in turn
a subalgebra of AT for some T . Since S is subdirectly irreducible, we know that there is a strictly meet
irreducible θ ∈ ConB such that S ∼= B/θ. The restriction of strictly meet irreducibility means that there is a
congruence µ of B so that any congruence of properly above θ must include µ. This µ is just the inverse
image under that quotient map established by θ of the monolith of S. It is more convenient to work with B
than with S. Since S is finite, we can choose T to be finite. Indeed, in this section we assume the following:

• B ⊆ AT

• θ ∈ ConB

• θ is strictly meet-irreducible in Con B.

• S ∼= B/θ

• T is as small as possible for representing S in this way.
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In particular this last condition entails that if t ∈ T , then there must be u, v ∈ B so that (u, v) ∉ θ but u(s) =
v(s) for all s ∈ T − {t }. Our effort at understanding the finite subdirectly irreducible S is largely focussed on
θ.

First, we locate an element in B element b0 whose image in S will be part of a critical pair. Since B has a
semilattice operation, there are elements u, v ∈ B with u < v and (u, v) critical over θ, that (u, v) ∈µ. Using
the finiteness of B pick p to be minimal, with respect to the semilattice order, among all those v ∈ B such
that (u, v) is critical over θ for some u < v .

Fact 0. If w < p, then (w, p) ∉ θ.

Proof. Suppose w < p but w θ p. Pick u < p with (u, p) critical over θ. Then w = p ∧ w ϕ u ∧ w , for all
ϕ ∈ ConB with θ <ϕ. But this means that either (w,u ∧w) ∈ θ or that (w,u ∧w) is critical over θ. So by the
minimality of p, we have u ∧w θ w . But then u = u ∧p θ u ∧w θ w θ p, contradicting (u, p) ∉ θ.

Now for each t ∈ T pick (x, y) ∈ B 2 −θ so that x(t ) 6= y(t ) but x(s) = y(s) for all s ∈ T − {t }. Pick u < p so
that (u, p) is critical over θ. So (u, p) ∈ θ∨CgB(x, y). Then according to Mal’cev’s Congruence Generation
Theorem there is a finite sequence e0,e1, . . . ,en of elements of B , of translations λ0, . . . ,λn−1 of B, and of
two-element subsets {z0, w0}, . . . , {zn−1, wn−1} each belonging the θ∪ {x, y} such that

u = e0 {ei ,ei+1} = {λi (zi ),λi (wi )} for all i < n en = p.

But now, meeting every element in the sequence with p, we have

u = u ∧p = e0 ∧p {ei ∧p,ei+1 ∧p} = {λi (zi )∧p,λi (wi )∧p} for all i < n en ∧p = p ∧p = p

Since u < p there must be some i < n so that p ∈ {λi (zi )∧p,λi (wi )∧p} where λi (zi )∧p 6= λi (wi )∧p. Let
χt denote the element of {λi (zi )∧p,λi (wi )∧p} which is different from p. Evidently χt < p. By Fact 0 we
see that (χt , p) ∉ θ. Hence, (zi , wi ) = (x, y) and {p,χt } = {λi (x)∧ p,λi (y)∧ p}. From this construction we
obtain:

• χt (s) = p(s) for all s ∈ T − {t }.

• χt (t ) < p(t ) for all t ∈ T .

• χt (t ) = 0 and 0 < p(t ) for all t ∈ T .

The last item listed above is a consequence of the flatness of A. Thus, χt agrees with p at all coordinates
with the exception of t , where χt is 0 while p is not 0. So χt is uniquely determined by p and t (and is
independent of the choices of x, y, and λi made above). We will eventually see—once enough is specified
about A—that p is also uniquely determined.

Fix t0 ∈ T so that u ≤χt0 for some u < p for which (u, p) is critical over θ. Let q =χt0 .

Fact 1. p is a maximal element of AT . χt ∈ B and p covers χt in AT for all t ∈ T . (q, p) is critical over θ.
Finally, if u ∈ AT and u < p, then u ∈ B .

Proof. Essentially, Fact 1 gathers the conclusions we drew above. To see that (q, p) is critical, notice (q, p) ∉
θ according to Fact 0. Let u ≤ q < p with (u, p) critical over θ. Then we have pϕu = q ∧uϕq ∧p = q , for all
ϕ> θ. The elements of AT less than or equal to p form a Boolean algebra in which every element is a meet
of the coatoms χt .

Fact 2. If p θ x, then p = x
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Proof. Suppose p θ x. Meeting both sides with p we also get p θ p ∧ x. From Fact 0, we conclude that
p ≯ p ∧x. Thus p ≤ x. But since p is a maximal element, we arrive at p = x.

Fact 3. x θ y if and only if µ(x) = p ⇔µ(y) = p for all translations µ of B.

Proof. In the forward direction the result follows from Fact 2.

Now for the converse direction, suppose (x, y) ∉θ. By Fact 1, we know (q, p) ∈θ ∨CgB(x, y). Now repeating
the analysis that led to the χt ’s we obtain a translation µ=λ∧p so that µ(x) 6=µ(y) but p ∈ {µ(x),µ(y)}.

Fact 4. If x < p, then (x, x ∧q) ∈ θ.

Proof. (q, p) is critical over θ by Fact 1, so x = x ∧ pϕx ∧ q , for all ϕ > θ. Hence, either (x, x ∧ q) ∈ θ or
(x, x ∧q) is critical over θ. Since p > x ≥ x ∧q , it follows from the minimality of p that x θ x ∧q .

Suppose that x, y, and z ∈ B . Then (x ∧ y) and (x ∧ z) also belong to B and the element x is a common
upper bound. Recalling that B has the structure of a finite ∧-semilattice, it follows that (x ∧ y) and (x ∧ z)
must have a least upper bound—we denote it by (x ∧ y)∨ (x ∧ z).

Fact 5. S ∈HSA or (x ∧ y)∨ (x ∧ z) is not a polynomial of B.

Proof. Suppose S ∉HSA. Then T has at least two elements. Let t1 ∈ T with t0 6= t1. Let q ′ = χt1 . Since
q ′ < p we have by Fact 4 that q ′ θ q ′∧q . But then, were (x ∧ y)∨ (x ∧ z) a polynomial of B, we would have
p = (p ∧q)∨ (p ∧q ′) θ (p ∧q)∨ (p ∧q ∧q ′) = q . Since (p, q) ∉ θ, we conclude that (x ∧ y)∨ (x ∧ z) is not a
polynomial.

Fact 5 reveals that our investigation of (finite) subdirectly irreducible algebras can be split in two. Since
A is finite, a complete description of the subdirectly irreducible algebras in HSA can be devised given
a description of A. We only note the obvious upper bound on their cardinality. Most of our effort will
concern the alternative case when (x ∧ y)∨ (x ∧ z) is not a polynomial of B. It is th subdirectly irreducible
algebras arising from these algebras that we want to show must be isomorphic to our Qn ’s.

Here is a lemma that simply gathers together the most salient of the facts just listed.

Lemma 9.2.1. Suppose that A is a finite flat algebra and that S is a finite subdirectly irreducible algebra in
HSPA. Choose T , B, and θ ∈ ConB so that

• B is a subalgebra of AT ,

• θ is (strictly) meet irreducible in ConB.

• S ∼= B/θ, and

• T is as small as possible subject to fulfilling the conditions above.

Then there is an element p ∈ B such that

i. (0, p) is critical over θ,

ii. p/θ = {p},

iii. p is a maximal element of AT (so p(s) > 0 for all s ∈ T ), and

iv. for all x, y ∈ B, x θ y if and only if µ(x) = p ⇔µ(y) = p for all translations µ of B.

Moreover, S ∈HSA or (x ∧ y)∨ (x ∧ z) is not a polynomial of B.
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THE EIGHT ELEMENT ALGEBRA A

The six element algebra R which was constructed at the end of Lecture ?? generates a variety with a lot of
finite subdirectly irreducible algebras in addition to the Qn ’s. An example is the flat automatic algebra S8

described next. For each i < 8, define the following elements of the 8-fold direct power of the algebra R:

c = 〈q,q,. . . ,q,q,q,. . .〉
di = 〈q,q,. . . ,q, r,q,. . .〉
ri = 〈3,3, . . . ,3, 2,3, . . .〉

where the sole r in di and the sole 1 in ri occur at position i . Let B8 be the subset of the 8-fold direct power
consisting of c, all the di ’s, all the ri ’s, and all the 8-tuples which have 0 in at least one position. Then

ri ·di = c

for every i < 8, but any other product of elements of B8 results in an 8-tuple with 0 in at least one position.
This means that B8 is a subuniverse of the eightfold direct power of R. Let θ8 be the equivalence relation
on B8 which collapses into one big block all the 8-tuples in B8 which have 0 in at least one position, but
which isolates all the other members into singletons. It is easy to see that θ8 is a congruence relation of B8.
Let S8 = B8/θ8. S8 is displayed below in Figure 10.1.
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Figure 10.1: The directed graph for S8

Plainly, S8 is an algebra in the variety generated by the flat automatic algebra R. A routine calculation
shows that (c,0) is a critical pair in S8. Consequently, S8 is subdirectly irreducible, as desired. Evidently,
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there is nothing special in the choice of 8. A similar construction can be carried out for any cardinal in
place of 8. A little reflection reveals that there must be, in the variety generated by R, other subdirectly
irreducible algebras, each having the appearance of a tree with branches directed toward the root.

We must modify our little 6-element algebra from Lecture ?? to eliminate subdirectly irreducible algebras
like S8, whose diagrams are not (finite) directed paths. Evidently, for our subdirectly irreducible algebras,
we need a kind of unique factorization property:

a ·b = c ·d 6= 0 ⇒ a = c and b = d .

To accomplish this we are going to add some new basic operations and some new elements to the algebra
R, but we need to have some care since we want QZ to remain essentially unchanged and still to belong to
the variety generated by the finite algebra we are trying to devise.

To obtain the unique factorization property we introduce the new basic 4-place operation U 0:

U 0(x, y, z, w) =


x y if x y = zw 6= 0 and x = z and y = w ,

x̄ y if x y = zw 6= 0 and either x 6= z or y 6= w ,

0 otherwise.

At the moment, we should understand that the first case corresponds to the situation when the unique fac-
torization property prevails, the second case corresponds to the failure of the unique factorization prop-
erty, and the remaining case is just a default. For the moment, x y is simply a reminder that the output in
this case should depend on x y but differ from x y . Our hope is to obtain the unique factorization property
by forcing the first case to happen. In essence, this means preventing the second case. For this purpose we
introduce a new basic 5-place operation S2:

S2(u, v, x, y, z) =
{

(x ∧ y)∨ (x ∧ z) if u = v̄ ,

0 otherwise.

Recall the algebra B from the preceding lecture. In B we know from Fact 5 that (x ∧ y)∨ (x ∧ z) cannot be
a polynomial. So S2 is designed to prevent B from having elements u and v so that u = v̄ . This in turn will
prevent the second case in the definition of U 0 from arising.

To give more sense to this, notice that in six element algebra R, a product x y could have only q,r , or 0
as a value. So we introduce two elements q̄ and r̄ in addition to the six with which we have been dealing.
Further, we stipulate that ū = q if u = q̄ and likewise ū = r if u = r̄ . In this way, both U 0 and S2 have
unambiguous definitions, once the product and meet have been extended to operations on the new set
with eight elements.

These two additional operations and two additional elements are not quite enough.

S1(u, v, x, y, z) =
{

(x ∧ y)∨ (x ∧ z) if u ∈ {1,3},

0 otherwise.

The role of S1, as we will see, is ensure that our finite subdirectly irreducible algebra S has another property
that each Qn has—namely, that the labels of the edges are not repeated. Last, here are the operations J and
J ′ which are 3=-place operations:

J (x, y, z) =


x if x = y 6= 0,

x ∧ z if x = ȳ ,

0 otherwise.

J ′(x, y, z) =


x ∧ z if x = y 6= 0,

x if x = ȳ ,

0 otherwise.



Lesson 10 The Eight Element Algebra A 92

The role of these operations is less forthright. Since we are really working inside a subalgebra of a direct
power, we have to contend with coordinate-wise properties. The role of these last two operations is to
ensure that we fall into the “good” case at every coordinate.

We are led to a flat algebra A with eight elements and eight basic operations.

The universe is A = {0}∪ {1,2,3}∪ {q, q̄ ,r, r̄ }. We set U = {1,2,3} and W = {q, q̄ ,r, r̄ }. We regard ¯ as an
involution on W . The basic operations of A are denoted by 0,∧, ·, J , J ′,U 0,S1, and S2. 〈A,∧,0〉 is a flat
semilattice with least element 0. The operation · is defined to give the default value 0 except when

1 · r = r 1 · r̄ = r̄

2 · r = q 2 · r̄ = q̄

3 ·q = q 3 · q̄= q̄

This is an automatic operation. Ordinarily, we represent the product · simply by juxtiposition. Here is the
diagram of the automatic algebra A:

q r
2

13

0

q̄ r̄

2

13

The following fact is evident from the definition of the product.

Fact 6. If λ is a basic translation on A associated with the product ·, and λ(a) = λ(b) 6= 0, then a = b. The
same is true for every translation built using only the product.
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PROPERTIES OF B BASED ON THE EIGHT ELEMENT ALGEBRA A

With the description of our eight element algebra A in hand, we continue to develop facts about B and its
congruence θ. Denote by B1 the set consisting of p and all its factors with respect to the product ·. That is

B1 = {u : λ(u) = p for some nonconstant translation λ of B built only from the product}

So u ∈ B1 if and only if u = p or u = ci for some factorization p = c0c1 . . .cm (where this latter product is
associated to the right).

Let B0 denote that set of those tuples in B which contain at least one 0. Plainly B0 ⊆ B −B1. It is also clear
that if S ∉ HSA, then the ranges of the operations S1 and S2 are contained in B0 and hence in B −B1.

The basic operation J of A is monotone in the sense that if a ≤ a′,b ≤ b′ and c ≤ c ′ where all these
elements belong to A, then J (a,b,c) ≤ J (a′,b′,c ′).

Fact 7. Let f be a monotone unary polynomial of B. If x < p and f (x) = p, then f (q) = p.

Proof. By Fact 4 we have x θ x ∧ q . This entails p = f (x) θ f (x ∧ q). So by Fact 2 we get p = f (x ∧ q). But
then p ≤ f (q) by the monotonicity of f . Thus p = f (q) by the maximality of p.

PROVISO: The facts below are established under the assumption that the ranges of S1 and S2 are contained
in B −B1.

Fact 8. If u ∈ B1 and v ∈ B so that for all s ∈ T either u(s) = v(s) or u(s) = v(s) ∈W , then u = v .

Proof. First suppose u = p.

Let Y = {s : p(s) = v(s)}.

CLAIM: Y is empty.

Proof of the Claim: Since the range of the operation S2 is disjoint from B1, it follows that T 6= Y . Pick
t ′ ∈ T −Y and let q ′ =χt ′ . So for each s ∈ T we have

J (p(s), v(s), q ′(s)) =
{

p(s) if s ∉ Y ,

p(s)∧q ′(s) if s ∈ Y .
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But this entails J (p, v, q ′) = p, since q ′(s) = p(s) for all s ∈ Y because t ′ ∉ Y . Therefore, by Fact 7 and the
monotonicity of J , we have J (p, v, q) = p. But then the definition of J gives us q(s) = p(s) for all s ∈ Y . Since
q(t0) = 0, it follows that t0 ∉ Y .

Now observe that J ′(p(t0), v(t0), q(t0)) = p(t0)∧0 = 0. Hence, J ′(p, v, q) 6= p. So by Fact 7 and the mono-
tonicity of J ′, we conclude that J ′(p, v,χt ) 6= p for all t ∈ T . But for all s, t ∈ T

J ′(p(s), v(s),χt (s)) =
{

p(s)∧χt (s) if s ∉ Y ,

p(s) if s ∈ Y .

It follows that t ∉ Y for all t ∈ Y . This means Y is empty. So the Claim is established.

Since Y is empty, we also know that p(s) = v(s) for all s ∈ T . Hence u = v as desired.

Now suppose u ∈ B1 − {p}. There are two kinds of elements in B1 − {p}—those in U T and those in W T .
Clearly, we can restrict our attention to the case when u ∈W T . Letλ be a translation built from the product
such that λ(u) = p. Set p ′ = λ(v). Since the product respects bars on elements, we see that for each s ∈ T ,
either p(s) = p ′(s) or p(s) = p ′(s). So by the claim just established, we have λ(u) = p = p ′ = λ(v). But then
u = v by Fact 6

Our basic strategy calls for θ to isolate the members of B1 and to lump all the elements of B −B1 together.
To see that this really does happen, in view of Fact 3 we need the following.

Fact 9. If u ∈ B and λ(u) ∈ B1 for some nonconstant translation λ, then u ∈ B1.

Proof. The proof is by induction on the complexity of λ. The initial step of the induction is obvious, since
the identity function is the only simplest nonconstant translation. The inductive step breaks down into
seven cases, one for each basic operation of positive rank.

CASE ∧: λ(x) =µ(x)∧ r , where r ∈ B .

We have λ(u) ≤µ(u). But every element of B1 is maximal with respect to the semilattice order. So λ(u) =
µ(u) ∈ B1. Now µ must be nonconstant. Invoking the induction hypothesis, we get u ∈ B1.

CASE ·: λ(x) =µ(x)r or λ(x) = rµ(x).

Under the first alternative we have µ(u)r = λ(u) ∈ B1. So µ(u),r ∈ B1. Since µ must be nonconstant, we
can invoke the induction hypothesis to conclude that u ∈ B1. The other alternative is similar.

CASE J : λ(x) = J (µ(x),r, s) or λ(x) = J (r,µ(x), s) or λ(x) = J (r, s,µ(x)).

Consider the first alternative. We have λ(u) = J (µ(u),r, s) ≤µ(u). By the maximality of λ(u) we get

λ(u) = J (µ(u),r, s) =µ(u) ∈ B1.

Now µ cannot be constant. Hence we can invoke the inductive hypothesis to conclude that u ∈ B1. The
second alternative is similar, except that Fact 8 comes into play. Under the last alternative, since r ≥
J (r, s,µ(u)) =λ(u) is maximal, we see that r and s fulfill the hypotheses of Fact 8. Consequently, r = s ∈ B1.
But then, λ(x) = J (r, s,µ(x)) = r according to the definition of J . This means the third alternative is impos-
sible, since λ(x) is not constant.

CASE J ′: λ(x) = J ′(µ(x),ν(x),ρ(x)).

This case is easier than the last one and is omitted.

CASES S1 AND S2: Too easy.

CASE U 0: λ(x) =U 0(µ(x), s,r ′, s′) orλ(x) =U 0(r,µ(x),r ′, s′) orλ(x) =U 0(r, s,µ(x), s′) orλ(x) =U 0(r, s,r ′,µ(x)).

Consider the first alternative. We have λ(u) =U 0(µ(u), s,r ′, s′) ∈ B1. Evidently, λ(u) and µ(u)s satisfy the
hypotheses of Fact 8. So λ(u) =µ(u)s. Since λ(u) ∈ B1, we know that µ(u) ∈ B1 by the definition of B1. Now
µ is nonconstant. So u ∈ B1 by the inductive hypothesis. The second alternative is similar.
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Consider the third alternative. We have λ(u) = U 0(r, s,µ(u), s′). Evidently, λ(u) and r s satisfy the hy-
opetheses of Fact 8. So λ(u) = r s. Then by the definition of T , we have λ(u) = r s = µ(u)s′. But then
µ(u) ∈ B1 and the induction hypotheses applies to yield u ∈ B1. The fourth alternative is similar.

Fact 10. u/θ = {u} for each u ∈ B1 and 0/θ = B −B1.

Proof. Suppose u ∈ B1 and that u θ v . Let λ(u) = p for some translation λ built just using ·. It follows that
λ(v) = p by Fact 3. By Fact 6, we conclude that u = v .

Fact 9 says that B −B1 is closed with respect to nonconstant translations. Since p ∈ B1, we have that
λ(u) 6= p for all u ∈ B −B1 and all nonconstant translations λ. Hence, by Fact 3, B −B1 is collapsed by θ.
But, as we just saw, B1 is the union of (singleton) θ-classes. Hence B−B1 is a θ-class. Clearly, 0 ∈ B−B1.

To establish that S ∼= Qn for some natural number n we need to analyze each of our basic operations. We
deal with the product first.

Here is the unique factorization property for the product that we require.

Fact 11. If ab = cd ∈ B1, then a = c and b = d .

Proof. Let u = ab and v =U 0(a,b,c,d). From the definition of the operation U 0, we see that u and v satisfy
the hypotheses of Fact 8. Hence, ab =U 0(a,b,c,d). But then the definition of U 0 gives a = c and b = d .

In QZ none of the labels of the edges were repeated. We need this property as well. It is the reason why
we introduced the operation S1. The relevant fact is next.

Fact 12. No factorization of p has repeated factors.

Proof. It is clear that if d0d1 . . .dm−1e = p then e ∈ W T while d0, . . . ,dm−1 ∈U T . Suppose that di = d j with
i < j . Since the range of the operation S1 is disjoint from B1, we conclude that B contains no elements
from {1,2}T . So pick s ∈ T so that di (s) = d j (s) = H . Now we see

p(s) = d0(s) . . .di−1(s)Hdi+1(s) . . .d j−1(s)Hd j+1(s) . . .dm−1(s)e(s)

So p(s) = 0, violating the maximality of p.

We are now in a position to describe B1 more explicitly. Consider the following factorization of p:

p = b0

= a0b1

= a0a1b2

...

= a0a1 . . . an−1bn

...

Evidently, ai ∈U T for all i and according to Fact 12 all the ai ’s are distinct. But B1 is finite, so we suppose
without loss of generality that bn cannot be factored. But the unique factorization property Fact 11 entails
that the factorization of p displayed above is the only way p can be factored. Consequently,

B1 = {a0, a1, . . . , an−1}∪ {b0,b1, . . . ,bn}
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It is also evident that bi ∈ W T for all i . Were bi = b j for some i 6= j , it would be easy to construct a factor-
ization of p with repeated factors, in violation of Fact 12. This means that B1 has 2n+1 elements, and that
bi = ai bi+1 for each i < n. That all the other products of elements chosen from B1 will belong to B0, follows
easily from the unique factorization property Fact 11. Consequently, at least with respect to the product
operation, S and Qn are isomorphic.

Now consider the operation ∧. Since ∧ is obviously a semilattice operation on S, what we need is that S
is flat.

Fact 13. If x, y ∈ B1 and x 6= y , then x ∧ y ∈ B −B1.

Proof. Since x 6= y there is t ∈ T with x(t ) 6= y(t ). But then ((x ∧ y)(t ) = 0. So x ∧ y ∈ B −B1.

Finally, we need to know that the remaining basic operations on S can be construed as term operations
built up from ·,∧, and 0 in a manner dependent only on the hypotheses that S is a finite subdirectly irre-
ducible algebra in HSPA and that S ∉ HSA. That is the content of the next sequence of facts.

Fact 14. U 0(x, y, z, w) θ (x y)∧ (zw) for all x, y, z, w ∈ B .

Proof. We must show that either U 0(x, y, z, w) and (x y)∧(zw) both belong to B −B1 or else U 0(x, y, z, w) =
(x y)∧ (zw) ∈ B1. Since B −B1 is a θ-class, Fact 8 forces U 0(x, y, z, w) ∈ B −B1 except in the case that x y =
zw ∈ B1. In that case, U 0(x, y, z, w) = x y = zw = (x y)∧ (zw) ∈ B1. But also, (x y)∧ (zw) ∈ B −B1 except in
the case that x y = zw ∈ B1. In that case, U 0(x, y, z, w) = x y = (x y)∧ (zw) ∈ B1. Therefore, U 0(x, y, z, w) θ
(x y)∧ (zw).

Fact 15. J (x, y, z) θ x ∧ y for all x, y, z ∈ B .

Proof. Again, we must show that either J (x, y, z) and x∧y both belong to B−B1 or else J (x, y, z) = x∧y ∈ B1.
Now again using that B −B1 is a θ-class and Fact 8, J (x, y, z) ∈ B −B1, except in the case that x = y ∈ B1. In
that case, J (x, y, z) = x = y = x ∧ y ∈ B1. But also, x ∧ y ∈ B −B1, except in the case that x = y ∈ B1. In that
case, x ∧ y = x = J (x, y, z) ∈ B1. Therefore, J (x, y, z) θ x ∧ y .

Fact 16. J ′(x, y, z) θ x ∧ y ∧ z for all x, y, z ∈ B .

Proof. This is too easy.

Fact 17. S1(u, v, x, y, z) θ 0 θ S2(u, v, x, y, z) for all u, v, x, y, z ∈ B.

For each natural number n, we take Qn to be an algebra on 2n+2 elements with the basic operations ·,∧,
and 0 as described in Lecture 0, and the remaining basic operations determined by the stipulation that the
following equations are true in Qn :

U 0(x, y, z, w) ≈ (x y)∧ (zw)

J (x, y, z) ≈ x ∧ y S1(u, v, x, y, z) ≈ 0

J ′(x, y, z) ≈ x ∧ y ∧ z S2(u, v, x, y, z) ≈ 0

Thus we arrive at the desired conclusion.

Lemma 11.0.1. Let S be a finite subdirectly irreducible algebra in HSPA. Either S ∈ HSA or else there is a
natural number n such that S ∼= Qn .

What we haven’t done in this lecture is prove that any of these expanded Qn ’s belong to the variety gen-
erated by our 8-element algebra A.
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A IS INHERENTLY NONFINITELY BASED AND HAS RESIDUAL CHARACTER ω1

The algebra QZ and its subalgebras Qω, and Qn for each n ∈ω, were introduced in Lecture ??. The opera-
tions 0,∧, and · were examined in detail, but the only stipulation about any remaining operations was that
they must be defined as term operations of these first three. In Lecture ??, five more operation symbols
were introduced: U 0, J , J ′,S1, and S2. In the algebras QZ,Qω, and Qn these five further basic operations are
defined so that the following equations are true:

U 0(x, y, z, w) ≈ (x y)∧ (zw)

J (x, y, z) ≈ x ∧ y S1(u, v, x, y, z) ≈ 0

J ′(x, y, z) ≈ x ∧ y ∧ z S2(u, v, x, y, z) ≈ 0

The whole discussion of these algebras in Lecture ?? goes through in this expanded setting, with the
exception of the last phase. The five new operations were not defined on the six element algebra R in
Lecture 0. We now want to replace that algebra with the eight element algebra A introduced in Lecture ??.
What we need is the following theorem to replace Theorem ?? of Lecture ??.

Theorem 12.0.1. QZ belongs to the variety generated by A.

Proof. We retrace the proof of Theorem ??. First, for each p ∈Zwe designate elements αp and βp of AZ as
before:

αp := . . . 1 1 1 2 3 3 3 . . .

βp := . . . r r r q q q q . . .

where the change is taking place at the pth position. Next we let B1 = {αp : p ∈Z}∪ {βp : p ∈Z} and we let B
be the subalgebra of AZ generated by B1. B0 be the set of all elements of B in which 0 occurs. Now letΦ be
the map defined from B to AZ via

Φ(x) =


ap if x =αp for some p ∈Z,

bp if x =βp for some p ∈Z,

0 otherwise
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We contend that B0 ∪B1 is a subuniverse of B (and so B = B0 ∪B1) and also that Φ is a homomorphism
from B onto QZ. Checking either of these contentions can be done by examining the behavior of each
baisc operation case by case. We will do this simultaneously.

CASE 0. Plainly, 0 ∈ B0 andΦ(0) = 0. So this case is secure.

CASE ∧. Suppose that u, v ∈ B0 ∪B1. Then either u = v and u ∧ v = u ∈ B0 ∪B1 or else u 6= v and u ∧ v ∈ B0.
Hence, B0 ∪B1 is closed under ∧. But also,Φ(u ∧ v) =Φ(u)∧Φ(v).

CASE ·. Suppose that u, v ∈ B0 ∪B1. Then either uv ∈ B0 or for some p we have u = αp , v = βp+1 and
uv =βp ∈ B1. It follows that B0 ∪B1 is closed under · and thatΦ preserves ·.

To handle the remaining cases, the following property of x, y ∈ B0 ∪B1 proves useful:

If for each s ∈Z, either x(s) = y(s) 6= 0 or x(s) = y(s), then x = y . (?)

Since any x, y ∈ B0 ∪B1 for which the hypothesis of ? holds must both belong to B1, and since bars occur
in no member of B1, ? is true.

CASE J . For J (x, y, z) ∉ B0, observe that the inputs x and y must satisfy the hypothesis of ?. Hence, either
J (x, y, z) ∈ B0 or x = y ∈ B1 and J (x, y, z) = x ∈ B1. So B0 ∪B1 is closed under J andΦ preserves J .

CASE J ′. This case is very similar to the last case.

CASE U 0. Let x, y, z, w ∈ B0 ∪B1. Let u =U 0(x, y, z, w) and v = x y . Then U 0(x, y, z, w) ∈ B0 unless u and v
fulfill the hypothesis of ?. In that case, we must have U 0(x, y, z, w) = u = v ∈ B1. Consequently, B0 ∪B1 is
closed under U 0 andΦ preserves U 0.

CASE S1. Let u, v, x, y, z ∈ B0 ∪B1. Then S1(u, v, x, y, z) ∈ B0 unless u ∈ {1,2}Z. But {1,2}Z and B0 ∪B1 are
disjoint. Consequently, B0 ∪B1 is closed under S1 andΦ preserves S1.

CASE S2. Let u, v, x, y, z ∈ B0 ∪B1. Then S2(u, v, x, y, z) ∈ B0 unless u(s) = v(s) for all s ∈ Z. But no element
of B1 has a bar at any of its entries. Consequently, B0 ∪B1 is closed under S2 andΦ preserves S2.

At this point we know that the eight element algebra A, which has eight basic operations, is inherently
nonfinitely based, that the finite subdirectly irreducible algebras in the variety generated by A are the sub-
directly irreducible algebras in HSA and the algebras Qn for each n ∈ω, and that Qω is a countably infinite
subdirectly irreducible member of the variety.

We will demonstrate that our variety has no other infinite subdirectly irreducible algebras.

Let S be any infinite subdirectly irreducible algebra in the variety generated by A. According to the The-
orem of Dziodiak and Quackenbush (see the Toolbox), any finite subalgebra of S can be embedded into
arbitrarily large finite subdirectly irreducible algebras in the variety generated by A, i.e. into Qn for all
large enough n. This means that every finitely generated (= finite) subalgebra of S is embeddable into Qω.
Consequently, every universal sentence true in Qω must be true in S.

Here are some interesting properties of Qω which can be expressed with universal sentences:

• Any equation true in QZ. For example: U 0(x, y, z, w) ≈ (x y)∧ (zw).

• The height is no bigger than 1: x 6≈ y → x ∧ y ≈ 0.

• x y ≈ zw 6≈ 0 → (x ≈ z & y ≈ w).

• x y 6≈ 0 6≈ xz → y ≈ z.

• x y 6≈ 0 6≈ z y → x ≈ z.
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• x y 6≈ 0 → zx ≈ 0 ≈ y w .

Consequently, in S, the operations U 0, J , J ′,S1, and S2 are term functions (using the same terms as in Qω)
in 0,∧, and ·. We ignore them from now on. With respect to ∧ and 0, S is a height 1 meet-semilattice with
least element 0. So the balance of our analysis depends primarily on the product ·. Since (x y)z ≈ 0 is true in
Qω, we see that in S, just as in Qω, only right-associated products can differ from 0. The last four properties
itemized above put further and severe restrictions on the product in S.

We make S − {0} into a labelled directed graph as follows. We take as the vertex set those elements which
are right factors, outputs or do not occur in nonzero products. We take as the set of labels those elements
which are left factors in nonzero products. Our itemized properties entail that the set of vertices and the
set of labels are disjoint. We put an edge from b to c and label it with a provided ab = c in S. Our itemized
assertions ensure that a vertex can have outdegree at most 1, indegree at most 1, and that every edge has a
uniquely determined label which occurs as a label of exactly one edge in the whole graph.

Let C be a connected component of our graph. Let θC be the equivalence relation that collapses all the
vertices and labels in C to 0, but which isolates every other point. θC is a congruence of S. Since S is
subdirectly irreducible, it follows that our graph has only one component. This already implies that S is
countably infinite. But more is true. There are only three possible countable connected graphs of this kind:
the one associated withZ (and then we would have S ∼= QZ), the one associated withω (and then we would
have S ∼= Qω), and the one associated with the set of nonnegative integers (and then S would be isomorphic
to an algebra we might as well call Q−ω). But neither QZ nor Q−ω is subdirectly irreducible. So S must be
isomorphic to Qω.

We summarize the results in the following theorem.

Theorem 12.0.2. The eight element algebra A, which has only eight basic operations, is inherently non-
finitely based. The subdirectly irreducible algebras in the variety generated by A are, up to isomorphism,
exactly the subdirectly irreducible homomorphic images of subalgebras of A, the algebra Qω, and the algebra
Qn for each n ∈ω.

This theorem settles in the negative some outstanding problems. We will say that a variety is finitely
generated provided it is generated by a finite algebra with only finitely many fundamental operations. It
is residually small if there is an upper bound on the cardinalities of its subdirectly irreducible algebras. It
is residually finite if all its subdirectly irreducible algebras are finite. It is residually very finite if there is a
finite upper bound on the cardinalities of its subdirectly irreducible algebras.

The R-S Conjecture: Every finitely generated residually small variety is residually very finite.

The Broader Finite Basis Speculation: Every finitely generated residually small variety is finitely based.

Theorem 12.0.2 is a counterexample to both of these. However, the two problems below are closely re-
lated and still open.

The Quackenbush Conjecture: Every finitely generated residually finite variety is residually very finite.

Park’s Conjecture: Every finitely generated residually finite variety is finitely based.
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HOW A(T) ENCODES THE COMPUTATIONS OF T

In this lecture we describe, in part, McKenzie’s machine algebras and show how they capture the computa-
tions of Turing machines. Turing machines are finite objects, but the computations that they produce can
be endless. So it is reasonable to expect to use a finite algebra to convey the information of any particular
Turing machine. However, finite algebras are too small to hold arbitrary computations. The algebra QZ,
however, suggests a way to grapple with arbitrary computations. The idea is to designate certain elements
of the algebra as configurations of a Turing machine and draw labeled directed edges between configura-
tions to represent the transitions of the machine computation. Then we try to realize these directed edges
by new operations applied to certain elements. Next we try to find a finite algebra so that the whole thing
is happening coordinatewise inside a big direct power. Finally, we will have to add further operations to
control all the finite subdirectly irreducible algebras.

For a Turing machine T, we devise a finite algebra A(T) which enlarges A (in order to have enough dis-
tinct elements to code configurations) by adding finitely many elements and which expands A by adjoining
operations to emulate the transitions between configurations, as well as to keep control of the finite sub-
directly irreducible algebras. But the analysis of computation itself will go on in A(T)X for some large set X
[think of X =Z].

We conceive of a Turing machine T as having finitely many internal states 0,1, . . . ,m. The machine is
always launched in state 1 and we take 0 to be the unique halting state. The Turing machine T has a tape
alphabet consisting of the symbols 0 and 1. The Turing machine itself is a finite collection of 5-tuples each
of the form:

[i ,γ,δ, M , j ]

This 5-tuple is the instruction, “If you are in state i and you are examining a tape square containing the
symbol γ, then write the symbol δ on that square, move one square in the direction M (M must be either
L for left or R for right), and pass into internal state j ”. We insist that no 5-tuple begin with 0 and that
otherwise the machine must have exactly one instruction which begins [i ,γ, . . . ] for each state i other than
the halting state 0 and each tape symbol γ.

We say Q is a configuration for a Turing machine T provided Q = 〈t ,n, i 〉 where t ∈ {0,1}Z, n ∈Z, and i is
one of the states of T. The idea is that at some stage of a computation, the tape of the machine looks like t ,
the machine is focussed on square n and is itself in state i .

100



Lesson 13 How A(T) Encodes The Computations of T 101

A significant problem we have to resolve comes from the fact that machine computations, at any given
stage, happen at a particular location on the tape, and that these locations are arranged in a sequence with
only the adjacent locations available for the next step in the computation. Thus some elements of our
“computation algebra” which are used to label those directed edges must also fall into a sequence of “tape
locations”. To make short work of this point we take the elements ap of QZ as a model of how elements fall
into sequence. Looking at what we had to have in A to get these ap ’s we recall:

αp : . . . 1 1 1 2 3 3 3 . . .
αp+1: . . . 1 1 1 1 2 3 3 . . .
αp+2: . . . 1 1 1 1 1 2 3 . . .

So in all our machine algebras we want a subset U = {1,2,3} making elements like the ones above avail-
able in direct powers. To impose the precedence above in the direct power, we impose 3 ≺ 3 ≺ 2 ≺ 1 ≺ 1 on
U . We also use ≺ to denote the coordinatewise relation in any direct power of a machine algebra. Suppose
B = A(T)X . A subset F ⊆ B is sequentiable provided

• F ⊆U X ,

• 2 occurs at least once in f , for each f ∈ F , and

• ≺ gives F a structure isomorphic to some convex substructure of the ordered set of integers.

Since 2 may occur at several places in such an f , sequentiable sets can be more complex than {αp : p ∈Z}.
For a fixed sequentiable set F the index set X falls into natural pieces that help us see the structure. Look
at the following display of the four element sequentiable set F = { f0, f1, f2, f3}.

f0: 1 1 2 3 3 3 2 3 3 3 1 2 1
f1: 1 1 1 2 3 3 1 3 3 3 1 1 1
f2: 1 1 1 1 3 3 1 2 3 2 1 1 1
f3: 1 1 1 1 3 2 1 1 3 1 1 1 1

Examining the 13 columns, we see that several are exactly the same. In this example the set X has 13
elements and some unspecified arrangement of these thirteen elements underlies the display above. But
the particular arrangement of X is immaterial from the point of view of the algebra A(T)X . Thus we are free
to rearrange X to make the precedence on F more transparent. Below is the result of such a rearrangement:

f0: 1 1 1 1 2 2 2 3 3 3 3 3 3
f1: 1 1 1 1 1 1 1 2 3 3 3 3 3
f2: 1 1 1 1 1 1 1 1 2 2 3 3 3
f3: 1 1 1 1 1 1 1 1 1 1 2 3 3

We have put all the columns consisting entirely of 1’s to the left. Next we put all the columns beginning
with 2 in position 0, then all columns with 2 in position 1, and so on. At the right we have placed all
columns consisting entirely of 3’s. Doing this, we see that there are only 6 = 4+2 different kinds of columns
possible:

1 2 3 3 3 3
1 1 2 3 3 3
1 1 1 2 3 3
1 1 1 1 2 3
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This means our sequentiable set F partitions the index set X into 6 blocks. The blocks can be labeled XL

for the set of all indices of columns that are constantly 1, XR for the set of all indices of columns that are
constantly 3, and Xn for the set of all indices where the necessarily unique 2 occurs at the nth position.

To simplify the presentation a bit and make the pictures understandable, once a sequentiable set F has
been specified, we will assume that X is arranged in such a line so that the set XL is an initial (or left)
segment, XR is a final segment (or right) segment, and the each Xn is placed at the obvious position on the
line. Since at its biggest, F can be indexed only byZ, we can accommodate such a line like picture if we are
willing to place XL at −∞ and XR at +∞.

Now let F be the four element sequentiable set above but with the columns collapsed to 6 and arranged
as in the last display, and let Q = 〈t ,2, i 〉 be a configuration. We code Q by

β: q0
i ,t (2) q t (0)

i ,t (2) q t (1)
i ,t (2) M t (2)

i r t (3)
i ,t (2) r 0

i ,t (2)

block: XL X0 X1 X2 X3 XR

This gives a real forest of superscripts and subscripts and the truth is that we will need a few more to get
to full generality. However, we can decode it a bit. The q’s mean “left of the reading head”. The r ’s mean “to
the right of the reading head”. M locates where the machine reading head is. The index i specifies the state
of the machine. The subscript t (2) tells what symbol is written on the tape square scanned by the reading
head. Finally, the indices t ( j ) tell us what is printed on the corresponding square of the tape, unless it is
too far off to the left (in XL) or too far off to the right (in XR ), in which case we have used 0 as a default
value (other choices would be okay). So reading across the superscripts is like reading across the tape. In
this way, each component of β carries a lot of information about the configuration.

Now X in this example had 13 elements rather than 6, so theβ above is too short. However, by duplicating
the entries in β the correct number of times (e.g. the first entry q0

i ,t (2) should occur 4 times while the last

entry r 0
i ,t (2) should occur twice) we would get a β of the correct length. That |X | = 13 is immaterial. But

our particular sequentiable set had only four elements, it was indexed with the convex set {0,1,2,3}, and
we took n = 2 in our configuration. To get the general case, let I be any convex subset of Z and suppose
that F is a sequentiable set indexed by I . Let n ∈ I and let Q = 〈t ,n, i 〉 be a configuration. Then we use the
β below as a code for Q and we say that β codes Q over F .

β(x) =



q0
i ,t (n) if x ∈ XL .

q t ( j )
i ,t (n) if x ∈ X j and j < n and j ∈ I .

M t (n)
i if x ∈ X j and j = n ∈ I .

r t ( j )
i ,t (n) if x ∈ X j and n < j ∈ I .

r 0
i ,t (n) if x ∈ XR .

CAPTURING THE TRANSITIONS BETWEEN CONFIGURATIONS

To get a grip on how to handle the transition between configurations let B = A(T)Z and let F = {αp : p ∈Z}.
Then F is a sequentiable set indexed by Z, and the partition imposed on Z by F consists of singleton sets
{p}. Let Q = 〈t ,n, i 〉 be a configuration of T, let t (n) = γ, and suppose that [i ,γ,δ,L, j ] is an instruction in
T. It also proves convenient to let t (n −1) = ε. Then T(Q) = 〈s,n −1, j 〉 is the configuration following Q in
the computation of T, where

s(k) =
{
δ if k = n,

t (k) otherwise.

The configuration Q is coded over F by
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β = . . . q t (n−3)
i ,γ q t (n−2)

i ,γ qεi ,γ Mγ

i r t (n+1)
i ,γ r t (n+2)

i ,γ r t (n+3)
i ,γ . . .

whereas the configuration T(Q) is coded over F by

T(β) = . . . q t (n−3)
j ,ε q t (n−2)

j ,ε Mε
j r δj ,ε r t (n+1)

j ,ε r t (n+2)
j ,ε r t (n+3)

j ,ε . . .

T(β) differs from β in several ways. First, the two positions indexed by n − 1 and n undergo a change
of character from q to M and from M to r . Second, the remaining changes amount to changing γ to ε

and i to j in various subscripts and superscripts. The idea is to effect this transition with a new operation
for the machine instruction [i ,γ,δ,L, j ]. Changes of the first kind have to do with two tape locations. Our
new operation must combine the two location elements,αn−1 andαn , with the configuration elementβ to
produce the new configuration element T(β)—our “instruction” operation should be ternary. To see what
is needed to accomplish this, look at

αn−1 = . . . 1 1 2 3 3 3 3 . . .

αn = . . . 1 1 1 2 3 3 3 . . .

β = . . . r t (n−3)
i ,γ r t (n−2)

i ,γ r εi ,γ Mγ

i q t (n+1)
i ,γ q t (n+2)

i ,γ q t (n+3)
i ,γ . . .

T(β) = . . . r t (n−3)
j ,ε r t (n−2)

j ,ε Mε
j qδj ,ε q t (n+1)

j ,ε q t (n+2)
j ,ε q t (n+3)

j ,ε . . .

The instruction [i ,γ,δ,L, j ] makes no reference to ε (the symbol written on square n − 1 of the tape).
Since our operation must act coordinatewise, we will build ε into the operation itself. So to each machine
instruction we will associate two ternary operations, one for each of the two possible values of ε. Since the
machine instructions for a fixed Turing machine T are determined by their first two components we will
denote the operations corresponding to the machine instruction above by Fiγε. What must happen in A(T)
to accomplish the transition above is

Fiγε(1,1,r νi ,γ) = r νj ,ε

Fiγε(3,3, qνi ,γ) = qνj ,ε

Fiγε(2,1,r εi ,γ) = Mε
j

Fiγε(3,2, Mγ

i ) = qδj ,ε

We would like to declare that in A(T) the operation Fiγε results in the default value 0 except in the cases
above. Ultimately, this won’t do since we will find it necessary to introduce barred versions of all those
q’s, r ’s, and M ’s with all the attached subscripts and superscripts in order to control the finite subdirectly
irreducible algebras. So we will have to revisit the definition of Fiγε. For the present, it is no great distortion
to think that all the other values are 0.

A similar analysis of right-moving instructions leads the ternary operations Fiγε being defined (with
caveats about barred elements) in A(T) via

Fiγε(1,1,r νi ,γ) = r νj ,ε

Fiγε(3,3, qνi ,γ) = qνj ,ε

Fiγε(2,1, Mγ

i ) = r δj ,ε

Fiγε(3, H , qεi ,γ) = Mε
j

With this definition, in A(T)Z

Fiγε(αn ,αn+1,β) =T(β)
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provided β is as above, ε is the symbol on tape square n +1, and [i ,γ,δ,R, j ] is an instruction of T. For a
given Turing machine T, the definition of Fiγε is unambiguous, since whether Fiγε should be left or right
moving can be determined from T, i , and γ.

These operations can be envisioned as edge operations, where, however, the edges representing a partic-
ular operation now have two labels.

q

q

q

q

q

q

q

q

q

q

q

q

�

�

�

�

�

�

r νi ,γ

qνi ,γ

r δj ,ε

qεi ,γ

r νj ,ε

qνj ,ε

r εi ,γ

qδj ,ε

Mε
j

Mγ

i

Mγ

i

Mε
j

Left-Moving Case Right-Moving Case

1 1

1 1

3 3

3 3

2 2

2 2

Here is a useful fact, apparent in the diagrams above.

Fact 18. If λ basic translation on A(T) associated with one of the operations Fiγε, and λ(a) =λ(b) 6= 0, then
a = b. The same is true for every translation built only using the basic operations Fiγε, various choices of
i ,γ, and ε allowed.

On the basis of these definitions, we obtain the following very useful conclusion.

The Key Coding Lemma: Let T be a Turing machine, and let X be a set. Let F be a sequentiable set for A(T)X

and let i be a nonhalting state of T. Finally, let γ,ε ∈ {0,1} and let f , g , and β be any elements of A(T)X .

Then Fiγε( f , g ,β) =T(β) if

• β codes a configuration Q over F ,

• i and γ are the first two components of the T instruction determined by Q,

• f , g ∈ F with f ≺ g and these two elements refer to the two adjacent tape squares involved in the
motion called for in the instruction,

• ε is the symbol in the square to which the reading head is being moved, and

• T(β) codes the configuration T(Q) over F ;

Otherwise 0 occurs in Fiγε( f , g ,β).
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A(T) AND WHAT HAPPENS IF T DOESN’T HALT

The basic plan is to do for A(T) what we did for A. We were able to prove for A three crucial things:

1. QZ is in the variety generated by A (and hence that variety was inherently nonfinitely based and had
a countably infinite subdirectly irreducible member).

2. Any finite subdirectly irreducible in the variety, except possibly a few very small ones, had a very well
determined structure (in fact they were all embeddable into QZ).

3. There were no other infinite subdirectly irreducible algebras in the variety.

It was the second point that compelled us to adjoin additional elements and operations to our original
6-element algebra. Having done that, we had to revisit the first point to assure ourselves that the new
elements and operations were innocuous. The third point depended on the first two and the Dziobiak-
Quackenbush Theorem.

Proceeding along the same lines with A(T) we are able to do the following:

1. QZ is in the variety generated by A(T), provided T does not halt.

2. In the event that T halts, the cardinality of any finite subdirectly irreducible can be bounded by a
function of the size of T and the number of tape squares it visits before halting.

3. In the event that T halts, the variety generated by A(T) has no infinite subdirectly irreducible alge-
bras.

4. In the event that T halts, the variety generated by A(T) is finitely based.

In the second point, at the cost of adding more elements and more operations to our 8-element algebra
A, we can ensure that any sequentiable set arising in the construction of a finite subdirectly irreducible
cannot be large enough to accommodate the full halting computation. (The idea is that being able to
reach a “halting configuration” would force the forbidden (x ∧ y)∨ (x ∧ z) to be a polynomial.) Then we
need to argue that bounding the size of sequentiable sets entails a bound on the subdirectly irreducible
algebra itself. In the first point, after making an inessential modification to QZ to make it into an algebra of
the correct similarity type, it is the inaccessibility of the codes of halting configurations that ensures that
the extra operations we had to add to accomplish the second point are innocuous. The third point is an
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immediate consequence of Quackenbush’s Theorem. The fourth point requires a tough proof due to Ross
Willard.

The Algebra A(T)

Let T be a Turing machine with states 0,1, . . . ,m. The universe of the algebra A(T) is easiest to describe
in pieces. For each of the 4m +4 choices of i = 0,1, . . . ,m and γ,δ ∈ {0,1}, we need four distinct elements

denoted by qδi ,γ, qδi ,γ,r δi ,γ, and r δi ,γ. For each of the 2m +2 choices of i = 0,1, . . . ,m and γ ∈ {0,1}, we need

two elements denoted by Mγ

i and Mγ

i . The unbarred versions were needed to code configurations. The
barred versions help us control the finite subdirectly irreducible algebras. Let V be the set comprised of all
20m+20 of these elements. We also let Vi denote the set of 20 elements of V whose first lower index is i . In
particular, V0 contains all the elements used in coding halting configurations. The universe of A(T) is just

A(T) = {0}∪U ∪W ∪V

where U = {1,2,3} and W = {q, q̄ ,r, r̄ }. Thus the size of A(T) is 20m+28 where m is the number of nonhalting
states of T.

The old algebra A will be a subreduct of A(T). Indeed, we insist that ∧ make A(T) into a height 1 meet-
semilattice with least element 0, and that any product involving a new element results in 0. The definitions
of the remaining old operations are changed little or not at all. Here are the J ’s:

J (x, y, z) =


x if x = y 6= 0

x ∧ z if x = ȳ ∈V ∪W

0 otherwise.

J ′(x, y, z) =


x ∧ z if x = y 6= 0

x if x = ȳ ∈V ∪W

0 otherwise.

Along with the old S’s we insert one more:

S0(u, v, x, y, z) =
{

(x ∧ y)∨ (x ∧ z) if u ∈V0,

0 otherwise.

S1(u, v, x, y, z) =
{

(x ∧ y)∨ (x ∧ z) if u ∈ {1,3},

0 otherwise.

S2(u, v, x, y, z) =
{

(x ∧ y)∨ (x ∧ z) if u = v̄ ∈V ∪W ,

0 otherwise.
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Along with the old U 0 we insert two new operations U 1
iγε and U 2

iγε for each of the 4m choices of i , γ, and
ε, where i is a nohalting state:

U 0(x, y, z, w) =


x y if x y = zw 6= 0 and x = z and y = w

x y if x y = zw 6= 0 and x 6= z or y 6= w

0 otherwise.

U 1
iγε(x, y, z, w) =


Fiγε(x, y, w) if x ≺ z and Fiγε(x, y, w) 6= 0 and y = z

Fiγε(x, y, w) if x ≺ z and Fiγε(x, y, w) 6= 0 and y 6= z

0 otherwise.

U 2
iγε(x, y, z, w) =


Fiγε(y, z, w) if x ≺ z and Fiγε(y, z, w) 6= 0 and x = y

Fiγε(y, z, w) if x ≺ z and Fiγε(y, z, w) 6= 0 and x 6= y

0 otherwise.

Finally, we need the 4m ternary operations Fiγε introduced in Lecture 13 (but extended to accommodate
the barred elements of V ) and one further unary operation which serves to set up initial configurations:

I (x) =


q0

1,0 if x = 1,

M 0
1 if x = 2,

r 0
1,0 if x = 3,

0 otherwise.

Notice that for outputs other than 0, the operation I is one-to-one. In this way, the next fact is an exten-
sion of Fact 18

Fact 19. If λ is any translation of A(T) build only from the basic operations I and Fiγε, various choices of
i ,γ, and ε allowed, and λ(a) =λ(b) 6= 0, then a = b.

While all this is relatively intricate, the F ’s and the I plainly help us emulate the computations of the
Turing machine. The role of the S’s is to prevent certain kinds of elements from getting into the picture
during the construction of finite subdirectly irreducible algebras. U 0 was crucial to get a kind of unique
decomposition result for · in the finite subdirectly irreducible algebras. The U 1 and U 2 operations play a
similar role in connection with the F operations.

What Happens If T Does Not Halt

Now we expand QZ to the similarity type appropriate to T by insisting that all the following equations
hold in the expansion:

U 0(x, y, z, w) ≈ (x y)∧ (zw) S0(u, v, x, y, z) ≈ 0

J (x, y, z) ≈ x ∧ y S1(u, v, x, y, z) ≈ 0

J ′(x, y, z) ≈ x ∧ y ∧ z S2(u, v, x, y, z) ≈ 0

Fiγε(x, y, w) ≈ 0 I (x) ≈ 0

U 1
iγε(x, y, z, w) ≈ 0 U 2

iγε(x, y, z, w) ≈ 0
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for all choices of i ,γ and ε.

This sort of inessential expansion leaves its key properties intact: any locally finite variety to which (this
expanded) QZ belongs will be inherently nonfinitely based, and QZ has a countably infinite subalgebra Qω

which is subdirectly irreducible.

Theorem 14.0.1. If T does not halt, then QZ belongs to the variety generated by A(T). In particular, if T
does not halt, then A(T) is inherently nonfinitely based and the variety it generates has a countably infinite
subdirectly irreducible algebra.

Proof. We follow the pattern set in the proofs of Theorems ?? and 12.0.1. For each p ∈ Z we take αp ,βp ∈
A(T)Z to be the same elements we used before:

αp := . . . 1 1 1 2 3 3 3 . . .
βp := . . . r r r q q q q . . .

where the change is taking place at the pth position. Next we let B1 = {αp : p ∈ Z}∪ {βp : p ∈ Z} and we
take B to be the subalgebra of A(T)Z generated by B1. Let B0 denote the subset of B consisting of all those
Z-tuples in B which contain at least one 0. The set {αp : p ∈Z} is sequentiable and consists of all the tuples
in B belonging to UZ, since none of the operations of A(T) ever produces an element of U . Now for every
p ∈Z

I (αp ):= . . . r 0
1,0 r 0

1,0 r 0
1,0 M 0

1 q0
1,0 q0

1,0 q0
1,0 . . .

which gives the code of a configuration (the all-0 tape with the machine in state 1 reading square p). The
Fiγε’s may now be applied, step by step, to produce the codes of further configurations reached as the
computation of T proceeds. Plainly, all these codes of configurations belong to B . Let C denote the set
of all these configuration codes. We will prove that C ∪B0 ∪B1 is a subuniverse of A(T)Z, and therefore
B =C ∪B0 ∪B1.

Now letΦ be the map defined from B to AZ via

Φ(x) =


ap if x =αp for some p ∈Z,

bp if x =βp for some p ∈Z,

0 otherwise

We contend that Φ is a homomorphism from B onto QZ. To verify this, as well as that C ∪B0 ∪B1 is a sub-
universe, requires us to examine the behavior of each of our operations on C ∪B0∪B1. For each operation
in turn, we show that this set in closed and thatΦ preserves the operation.

CASE 0: Evidently 0 = . . . ,0,0,0,0, · · · ∈ B0 and soΦ(0) = 0.

CASE ∧: Evidently, u∧v = u if u = v and u∧v ∈ B0 if u 6= v , for all u, v ∈C ∪B0∪B1. Hence, our set is closed
under ∧ andΦ(u ∧ v) =Φ(u)∧Φ(v).

CASE ·: Clearly, αp ·βp+1 =βp for all p ∈Z, with all other ·-products resulting in elements of B0. So our set
is closed under · andΦ preserves ·.
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CASE Fiγε: According to the Key Coding Lemma, the results of applying Fiγε to members of C ∪B0 ∪B1 lie
in C ∪B0. Hence, C ∪B0 ∪B1 is closed under this operation andΦ preserves the operation.

CASE I : Applied to elements of C ∪B0∪B1, I produces only elements of C ∪B0. Hence, C ∪B0∪B1 is closed
with respect to I , andΦ preserves I .

Observe that no barred elements occur in any of the members of C ∪B1. It follows that

if u, v ∈ C ∪B0 ∪B1 with u(p) = v(p) 6= 0 or u(p) = v(p) ∈ V ∪W for all
p ∈Z, then u = v .

(?)

CASE J : Evidently, J (x, y, z) ∈ B0 if x ∈ B0 or y ∈ B0 or x 6= y , according to (?). Otherwise, J (x, y, z) = x. This
entails that C ∪B0 ∪B1 is closed under J andΦ preserves J .

CASE J ′: Likewise, J ′(x, y, z) ∈ B0 if x ∈ B0 or y ∈ B0 or x 6= y , according to (?). Otherwise, J ′(x, y, z) = x ∧ z.
This entails that C ∪B0 ∪B1 is closed under J andΦ preserves J .

CASE U 0: If x y ∈ B0 or zw ∈ B0 or x y 6= zw , then we have U 0(x, y, z, w) ∈ B0 and (x y)∧ (zw) ∈ B0, for
any elements x, y, z, w ∈ C ∪B0 ∪B1. On the other hand, if x y = zw ∉ B0 it must be that x = z = αp and
y = w =βp+1 for some p ∈Z. In that case, U 0(x, y, z, w) = x y = zx = (x y)∧ (zw). Thus, C ∪B0∪B1 is closed
under U 0 andΦ preserves U 0.

Observe that for u, v ∈ C ∪B0 ∪B1, we have u ≺ v only when u = αp and v = αp+1 for some p ∈ Z. In
particular,

With respect to ≺, every element of C ∪B0 ∪B1 has at most one prede-
cessor and at most one successor.

(∗)

CASE U 1
iγε: In case Fiγε(x, y, w) ∈ B0 or x 6≺ z, we have U 1

iγε(x, y, z, w) ∈ B0. In the alternative case, it follows

from the definition of Fiγε that x ≺ y . In view of (∗) it must be that y = z. So U 1
iγε(x, y, z, w) = Fiγε(x, y, w) ∈

C . Therefore, the application of U 1
iγε always results in an element of C ∪B0. Consequently, C ∪B0 ∪B1 is

closed with respect to U 1
iγε andΦ preserves this operation.

CASE U 2
iγε: This case is like the one above, but it exploits the uniqueness of predecessors instead of suc-

cessors.

CASE S0: Since T does not halt, the set V Z
0 is disjoint from C ∪B0 ∪B1. It follows that the application of S0

always results in an element of B0. Thus S0 is preserved byΦ and C ∪B0∪B1 is closed with respect to S0. It
should be noted that this is the sole place in the argument where the fact the T does not halt comes into
play.

CASE S1: The set {1,3}Z is disjoint from C ∪B0∪B1. It follows that the application of S1 always results in an
element of B0. Thus S1 is preserved byΦ and C ∪B0 ∪B1 is closed with respect to S1.

CASE S2: It follows from? that the application of S2 always results in an element of B0. Thus S2 is preserved
byΦ and C ∪B0 ∪B1 is closed with respect to S2.

So QZ belongs to the variety generated by A(T).
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WHEN T HALTS: FINITE SUBDIRECTLY IRREDUCIBLE ALGEBRAS OF

SEQUENTIABLE TYPE

Throughout this lecture we assume that T is a Turing machine that eventually halts when started on the
all-0 tape. We denote by π(T) the number of squares examined by T in the course of its computation. Thus
π(T) is the length of the stretch of tape which comes into use for this computation. Our ambition is to
describe all the finite subdirectly irreducible algebras in the variety generated by A(T), or at any rate to
bound their size. From the facts developed in Lectures 1 and 2 we already have a lot of information at our
disposal. Once again we take S to be a finite subdirectly irreducible algebra in the variety and we fix a finite
set T , B, and θ, so that

• B ⊆ A(T)T

• θ is strictly meet-irreducible in ConB.

• S is isomorphic to B/θ.

• T is as small as possible for representing S in this way.

• |T | > 1 (i.e. S ∉ HSA(T)).

Among other things, we know that (x ∧ y)∨ (x ∧ z) is not a polynomial of B (Fact 5). We also have an
element p ∈ B so that (p,0) is critical over θ. In Lecture 2 the analysis revealed that all the elements of S,
except 0, arose from a unique longest factorization of p using the product ·. We want, loosely speaking, to
do the same thing now; but the machine operations I and Fiγε have to be considered along with ·. We will
change the definition of B1. Thus, the facts that grew out of our analysis of the old version of B1 must be re-
examined. Also, Fact 9 was proved using an analysis by cases, with one case for each basic operation. Now
we have more operations. Finally, we have modified all the old operations by extending their domains,
(in the case of J , J ′, and S2, we have done this by treating the new elements in V like the elements in W ).
However, in all its essential features the old analysis can be carried forward.

We take B0 to be the collection of all elements of B which contain at least one 0. In B the ranges of S0,S1,
and S2 lie entirely in B0. Moreover, V T

0 and {1,3}T are disjoint from B and there are no elements u, v ∈ B so
that u = v̄ ∈ (V ∪W )T . This is just a direct consequence of Fact 5.

Fact 20. Every sequentiable subset of B has fewer than π(T) members.
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Proof. By the Key Coding Lemma any large enough sequentiable set would allow us, using I and the Fiγε’s,
to emulate in B the entire halting computation of T, producing an element of V T

0 in B . Then, via S2,
(x ∧ y)∨ (x ∧ z) would be a polynomial of B.

Next we restate a part of Fact 8 in our expanded setting. The only difference is the insertion of V in the
statement and the proof.

Fact 21. If v ∈ B and p(s) = v(s) or p(s) = v(s) ∈V ∪W for all s ∈ T , then p = v .

The next fact splits our analysis into two cases.

Fact 22. Either p ∈V T or p ∈W T .

Proof. First notice that there must be a nonconstant unary polynomial f and u ∈ B with f (u) = p but
u 6= p. Otherwise, it follows from Fact 3 that B −{p} is a θ-class. This means that our subdirectly irreducible
algebra S has only two elements, and indeed is isomorphic to a subalgebra of A(T). This contradicts our
assumption that T has at least two elements.

Let λ be a nonconstant unary polynomial of least complexity so that for some u ∈ B with u 6= p we have
λ(u) = p. Also fix such a u. Now the rest of the argument falls into cases according to the leading operation
symbol of λ.

CASE ∧: λ(x) = µ(x)∧ r . Then p = µ(u)∧ r Since p is maximal, we conclude that p = µ(u). This leads to a
violation of the minimality of λ.

CASE ·: The range of λ is included in B0 ∪W T . This means p ∈W T .

CASE I : The range of λ is included in B0 ∪V T . This means p ∈V T .

CASES Fiγε: The range of λ is included in B0 ∪V T . So p ∈V T .

CASES Si : Impossible: the range of each Si is included in B0.

CASES U 0,U j
iγε: These cases put p ∈W T (for U 0) or p ∈V T (for U j

iγε’s).

CASE J : λ(x) = J (µ(x),r, s), or λ(x) = J (r,µ(x), s), or λ(x) = J (r, s,µ(x)). Under the first alternative, p =
λ(u) = J (µ(u),r, s) ≤ µ(u). Then p = µ(u) = r by Fact 21 and the maximality of p. This violates the
minimality of λ. The same reasoning applies to the second alternative. So consider the last alterna-
tive. Then p = J (r, s,µ(u)) ≤ r . Then p = r , and so Fact 21 implies that p = r = s. But this means that
λ(x) = J (p, p,µ(x)) = p, and so λ is constant. This case is impossible.

CASE J ′: This is like the last case, but easier.

S is of sequentiable type if p ∈W T and of machine type otherwise.

Fact 23. Finite subdirectly irreducibles of sequentiable type have fewer than 2π(T) members.

Proof. We can just follow the old analysis for A, paying a modest amount of attention to the additional
operations, and observing that a sequentiable set arises in a natural way.

Now p ∈ W T . Let B1 be the set of all factors of p with respect to ·. Now all our previously established
facts hold, as is evident in all cases except for Fact 9. This fact asserts that, if u ∈ B and λ(u) ∈ B1 for some
nonconstant translation λ, then u ∈ B1. The proof of Fact 9 relied on a case-by-case analysis according to
the leading operation symbol. To get a proof for Fact 9 in our expanded similarity type, we have to consider
the operations I ,Fiγε,U 1

iγε,U 2
iγε, and S0. (Actually, there are also minor changes in the definitions of J , J ′,

and S2, which merit a small amount of attention not provided here.) All these cases are trivial because
λ(u) ∉ B1 for any u if the leading operation is any of these, since B1 ⊆U T ∪W T .
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As in our analysis for A, we have B1 = {a0, a1, . . . , an−1}∪{b0,b1, . . . ,bn} where bk = ak bk+1 for all k < n and
b0 = p. Also B−B1 is the θ-class of 0, B1 splits into singletons modulo θ, and ak ∈U T and bk ∈W T for all k.
It remains to see that {ak : k < n} is a sequentiable set. Since π(T) bounds the size of sequentiable sets, we
would be finished. We need ak ≺ ak+1 for all k < n −1. Let t ∈ T , and suppose first that ak+1(t ) = 1. Then
bk (t ) ∈ {r,r }, so ak (t ) ∈ {1,2}. Hence ak (t ) ≺ ak+1(t ). Next, suppose that ak+1(t ) = 2. Then bk (t ) ∈ {q, q},
so ak (t ) = 3. Hence, ak (t ) ≺ ak+1(t ). Finally, suppose ak+1(t ) = 3. Then bk (t ) ∈ {q, q}, so ak (t ) = 3 ≺ 3 =
ak+1(t ). thus, ak ≺ ak+1 and {ak : k < n} is sequentiable.
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WHEN T HALTS: FINITE SUBDIRECTLY IRREDUCIBLE ALGEBRAS OF MACHINE

TYPE

We now consider the case when the finite subdirectly irreducible algebra S introduced in Lecture 6 is of
machine type. So we have p ∈V T . In this case, we let B1 be the smallest subset of B which includes p and
which is closed under the inverses of all the machine operations I and Fiγε. Hence,

B1 = {u :λ(u) = p for some nonconstant translation λ of A(T)
built only from the machine operations}

It is easy to see that since p ∈V T , then B1 ⊆U T ∪V T . It also follows that if λ is a translation built up from
the machine operations, and λ(u) = p, then all the coefficients of λ also belong to B1.

Since we have now substantially altered the definition of B1, we will need to re-examine Facts 8 and 9.
Here is the new version of Fact 8. It is an immediate consequence of Fact 21 and Fact 19.

Fact 24. If u ∈ B1 and v ∈ B so that for all s ∈ T either u(s) = v(s) or u(s) = v(s) ∈V ∪W , then u = v .

Here is the new version of Fact 9. The statement has not changed, but the proof is different, accommo-
dating the change in the definition of B1.

Fact 25. If u ∈ B and λ(u) ∈ B1 for some nonconstant translation λ, then u ∈ B1.

Proof. The proof is by induction on the complexity of λ. The initial step of the induction is obvious, since
the identity function is the only simplest nonconstant translation. For the inductive step we take λ(x) =
ν(µ(x)), where ν(x) is a basic translation andµ(x) is a translation with smaller complexity thanλ. The work
breaks down into cases according to the basic operation associated with ν.

CASE ∧: λ(x) = µ(x)∧ r . But every element of B1 is maximal with respect to the semilattice order. So
λ(u) =µ(u) ∈ B1. Invoking the induction hypothesis for µ(x), we get u ∈ B1.

CASE ·: This cannot happen since then the range λ would be included in B0 ∪W T , which is disjoint from
B1.

CASES Fiγε: Since ν(µ(u)) = λ(u) ∈ B1, it follows from the definition of B1, that µ(u) ∈ B1. Now the induc-
tion hypothesis applies.

CASE I : λ(x) = I (µ(x)). By the definition of B1, µ(u) ∈ B1. So the induction hypothesis applied.

CASE J : ν(x) = J (v, y, z), where x is one of v, y, and z, while the remaining two are coefficients. First,
suppose x is either v or y . From Fact 24 and the maximality of the members of B1 it follows that µ(u) =
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λ(u) ∈ B1. So the induction hypothesis applies. Now suppose x is z and son v and y are coefficients. In this
case, it follows from Fact 24 that v = y = λ(u) ∈ B1. But this means that ν(x) = v and so λ is constant. That
cannot happen.

CASE J ′: This case is easier than the last one and its discussion is omitted.

CASES S0,S1 AND S2: Too easy—the range of λ would be included in B0.

CASE U 0: This cannot happen since the range of λ would be included in B0 ∪W T , which is disjoint from
B1.

CASES U j
iγε: ν(x) = U j

iγε(v, y, z, w), where exactly one of v, y, z, and w is x and the reamining ones are
coefficients, which we will regard as constant functions.

The other case being similar, we suppose that j = 1. Evidently, λ(u) and Fiγε(v(u), y(u), w(u)) satisfy
the hypotheses of Fact 24. So λ(u) = Fiγε(v(u), y(u), w(u)) = Fiγε(v(u), z(u), w(u)) (since also y(u) = w(u))
follows from the definition of U 1

iγε. So v(u), y(u), z(u), w(u) ∈ B1, by the definition of B1. So µ(u) ∈ B1 and
the induction hypothesis applies.

Here is the new version of Fact 10. Again, the statement is the same, but B1 has a new meaning. The
proof it like that for Fact 10, but it uses Fact 25 in place of Fact 9 and Fact 19 in place of Fact 6.

Fact 26. u/θ = {u} for each u ∈ B1 and 0/θ = B −B1.

Thus to bound the cardinality of S we need to bound |B1|. This will be the focus of our efforts in the
next lecture. However, here we can remark that in fact a complete analysis of finite subdirectly irreducible
algebras of machine type, as well as those of sequentiable type, is at hand. This further analysis would
describe the behavior of all the operations. We will not pursue this more detailed analysis, except to point
out that all these subdirectly irreducible algebras are flat.
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In this lecture we will complete our analysis of the subdirectly irreducible algebras generated by A(T) in
the case when T halts. Fact 23 already provides a bound on the size of the finite subdirectly irreducible
algebras of sequentiable type. The last lecture provided a description of the finite subdirectly irreducible
algebras of machine type. Our next task is to bound the size of these algebras. So we continue to consider
the case when S is of machine type.

We can suppose that no component of p ∈ V T is a barred element. (The basic reason is that the opera-
tions Fiγε do not alter whether a symbol is barred. Hence the distribution of bars in any member of B1∩V T

is the same as the distribution of bars in p.) Now B1 ⊆U T ∪V T . Let Ω = B1 ∩V T and Σ = B1 ∩U T . Look
first in more detail atΩ. We defineΩn by the following recursion.

Ω0 = {p}

Ωn+1 =Ωn ∪ {u ∈ B1 : Fiγε( f , g ,u) ∈Ωn for some f , g ∈ B and some i ,γ,ε}

Evidently,Ω=⋃
n
Ωn . We will say that f ∈U T matches v ∈V T provided for all t ∈ T

f (t ) = 1 ⇔ v(t ) is a r νiγ

f (t ) = 2 ⇔ v(t ) is an Mγ

i

f (t ) = 3 ⇔ v(t ) is a qνiγ

Observe that every v ∈ V T matches exactly one f ∈ U T . For each natural number n, we let Σn = { f ∈
Σ : f matches v for some v ∈Ωn}. By referring to the definition of Fiγε, we have that the elements of the
two element set { f , g } match the elements of the two element set {u, v} whenever Fiγε( f , g ,u) = v ∈Ω (the
order in which this matching occurs depends on whether the underlying Turing machine instruction is
right-moving or left-moving). It follows that Σ=⋃

n
Σn .

Fact 27. Σ is a sequentiable set.

Proof. We argue by induction that Σn is sequentiable.

INITIAL STEP: Observe that Σ0 has only one element. (Σ0 cannot be empty, since then our subdirectly
irreducible S would be in HSA(T).) Since Σ0 ⊆ B1 ∩U T and B is disjoint for {1,2}T , we see that its element
has to have H in at least one place. Thus, Σ0 is a sequentiable set.
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INDUCTIVE STEP: Suppose h ∈ Σn+1 −Σn . Pick u ∈Ωn+1 −Ωn so that h matches u. Further, pick Fiγε, f , g ,
and v so that Fiγε( f , g ,u) = v ∈Ωn . It does no harm to suppose that we have a left-moving operation. So g
matches u and f matches v . It follows that h = g , that f ∈Σn , and that f ≺ g . By the inductive hypothesis,
we have that Σn is sequentiable. Let us display Σn as

fa ≺ fa+1 ≺ . . . fb

In the event that f = fb we have Ωn ∪ {h} sequentiable as desired. On the other hand, if f = fc for some
c < b, then, in view of Fact 24, we know U 1

iγε( f ,h, fc+1,u) = Fiγε( f ,h,u). So we would be able to conclude
that h = fc+1 ∈ Σn , contrary to our choice of h. Reasoning in the same way, we see that it is not possible
that Σn+1 extends Σn on the right in any more elaborate way. Indeed, suppose h′ ∈ Σn+1 −Σn and that
Fi ′γ′ε′( fb , g ′,u′) = v ′ ∈ Ωn , where h′ matches u′. We take this operation to be left-moving. Then from
U 1

i ′γ′ε′( fb ,h′,h,u′) = Fi ′γ′ε′( fb ,h′,u′) we are able to conclude that h = h′.
Right-moving operations are handled in a way similar to what we just did for left-moving operations, but

using U 2
iγε.

Fact 28. Σ has fewer than π(T) elements.

To obtain a bound on the cardinality of Ω we must recall that the sequentiable set Σ partitions T into
TL ,Ta , . . . ,Tb ,TR where Σ= { fa , . . . , fb}.

Fact 29. u � Tc is constant for each u ∈Ω and each c ∈ {a, . . . ,b}.

Proof. The proof is accomplished in stages, each stage showing that more elements of Ω are constant on
more Tc ’s until everything is accomplished. This proof needs some preliminary observations.

Suppose that u ∈ Ωn+1 −Ωn with Fiγε( fc , fc+1,u) = v ∈ Ωn . In this case we will say that u,c and c + 1
become active at stage n + 1. (We regard p as the only element active at stage 0 and no member of c ∈
{a, . . . ,b} as active at stage 0.) The definition of Fiγε entails that u � Tc ,u � Tc+1, v � Tc and v � Tc+1 are all
constant. Moreover, for all d , u � Td is constant if and only if v � Td is constant. In checking this, it helps to
notice that the relevant subscripts and superscripts can all be determined from Fiγε and the related Turing
machine instruction [i ,γ,δ, M , j ]. Also, if I ( f ) = u ∈Ω, then u � Td is constant for all d .

Now we argue by induction on n, that every member of Ωn is constant on Tc for all c that have become
active by stage n and that, for all d and all v, v ′ ∈Ωn , v � Td is constant if and only if v ′ � Td is constant.

The initial step of the induction holds vacuously.

For the inductive step, suppose u,u′ ∈Ωn+1 −Ωn with

Fiγε( fc , fc+1,u) = v ∈Ωn and Fi ′γ′ε′( fc ′ , fc ′+1,u′) = v ′ ∈Ωn

Now our preliminary observations give the conclusions that u and u′ are constant on all the d ’s active by
stage n as well as for c,c ′,c+1, and c ′+1, some of which may have become active for stage n+1. Moreover,
we also conclude that, for all d , u is constant on Td if and only if v is constant on Td if and only if v ′ is
constant of Td if and only if u′ is constant on Td . In this way, the inductive step is complete.

Now we just count things to obtain:

Fact 30. Ω has no more than 2sms elements where s = |Σ| and m is the number of nonhalting states of T.

Proof. For each u ∈Ω there are no more than s possibilities for c ∈ {a, . . . ,b} so that u(t ) = Mγ

i , for some i
and some γ and all t ∈ Tc . Having fixed one of these possibilities there are m choices for i and two choices
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for γ. Now for d with a ≤ d < c we must have a ν so that u(t ) =Cν
iγ for all t ∈ Td . Thus for each such d there

are no more than two possibilities for ν. Likewise, if c < d ≤ b, then there is some ν so that u(t ) = Dν
iγ for

all t ∈ Td . Again, for each such d there are no more than two possibilities for ν. Thus, far we have bounded
the number of possibilities for u by 2sms, as desired—but we still have to examine what u(t ) is like when
t ∈ TL ∪TR . Suppose t ∈ TL . Then fc (t ) = 1 for all c ∈ {a, . . . ,b}. From the definition of the operations Fiγε,
it follows that u(t ) = Cν

iγ, where ν is determined by p(t ) = Cν
i ′γ′ , and i and γ are the same subscripts that

occur throughout u. So u is determined on TL by our previous choices and by the structure of p. Likewise,
u is determined on TR . So the desired bound is established.

Theorem 17.0.1. If T halts, then the cardinality of any subdirectly irreducible member of the variety gener-
ated by A(T) is no greater than the maximum of 2π, 2(π−1)m(π−1)+π and 20m+28, whereπ is the number of
tape squares used by T in its halting computation and m is the number of nonhalting states of T; moreover,
every subdirectly irreducible algebra in the variety is flat.

The 20m+28 that occurs above is just the cardinality of A(T). It bounds the cardinalities of the subdirectly
irreducibles that belong to HSA(T). The 2π bounds the cardinalities of the subdirectly irreducible algebras
of sequentiable type. The 2(π−1)m(π−1)+π bounds the cardinalities of the subdirectly irreducible algebras
of machine type.

It is clear that much more was accomplished than just establishing the bound on subdirectly irreducible
algebras given above. Our analysis is very close to a complete description (given a description of the be-
havior of T) of all the subdirectly irreducible algebras, even in the case that T does not halt. The only way
in which the hypothesis that T does not halt entered into consideration of the finite subdirectly irreducible
algebras was in bounding their size. The analysis of their structure holds regardless. In the case that T
does not halt, McKenzie describes how to carry this description of the finite subdirectly irreducible alge-
bras up to the infinite subdirectly irreducibles, via an argument relying on Quackenbush’s Theorem. His
conclusion is that such varieties have residual characterω1: while they have countably infinite subdirectly
irreducible algebras, they have none of any larger cardinality.

Finally, we have in hand all the pieces of McKenzie’s first undecidability result about finite algebras:

Theorem 17.0.2. The set of finite algebras of finite type which generate residually very finite varieties is not
recursive. Indeed, that set is recursively inseparable from the set of finite algebras of finite type which generate
varieties of residual character ω1.
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