Ph.D. Comprehensive Examination In Algebras, Lattices, Varieties August 2007

Problem 0.

- a. Let \mathcal{K} be a class of algebras of the same signature. Prove that $\mathbf{PSK} \subseteq \mathbf{SPK}$.
- b. Provide an example of an algebra **A** such that $\mathbf{PSA} \neq \mathbf{SPA}$ and prove that your example works.

Problem 1.

Let ${\bf L}$ be a complete lattice. Prove that every element of ${\bf L}$ is compact if and only if ${\bf L}$ has is ascending chain condition.

Problem 2.

Let **A** be an algebra which belongs to a congruence modular variety. Suppose that the lattice \mathbf{M}_3 is isomorphic to a sublattice of Con **A** so that the top element of \mathbf{M}_3 is mapped to $\mathbf{1}_A$ and the bottom element is mapped to $\mathbf{0}_A$. Prove that **A** is Abelian.

Problem 3.

Prove that the join irreducible elements of a complemented modular lattice are exactly the atoms of the lattice.

Problem 4.

Let **L** be a lattice. Prove that **L** is distributive if and only if $(a \lor b) \land c \le a \lor (b \land c)$ for all $a, b, c \in L$.

Problem 5.

- a. Prove that if **A** is a congruence modular algebra and θ is a congruence of **A**, then \mathbf{A}/θ is also congruence modular.
- b. Prove that if A is a congruence permutable algebra and θ is a congruence of A, then A/θ is also congruence permutable.

Problem 6.

Prove that if \mathcal{V} is a congruence permutable variety such that every subdirectly irreducible algebra in \mathcal{V} is simple, then every finite directly indecomposable algebra in \mathcal{V} is also simple.

Problem 7.

Let **A** be an algebra which belongs to a congruence modular variety.

a. Prove that if $\theta, \varphi \in \text{Con } \mathbf{A}$ are nilpotent congruences then so is $\theta \lor \varphi$.

b. Prove that if Con \mathbf{A} satisfies the ascending chain condition, then \mathbf{A} has a unique largest nilpotent congruence.