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PREFACE

This exposition is for the use of first year graduate students pursuing advanced degrees in mathematics.
In the United States, people in this position generally find themselves confronted with a battery of exam-
inations at the beginning of their second year, so if you are among them a good part of your energy dur-
ing your first year will be expended mastering the essentials of several branches of mathematics, algebra
among them.

While every doctoral program in mathematics sets its own expectations, there is a fair consensus on those
parts of algebra that should be part of a mathematician’s repertoire. I have tried to gather here just those
parts. So here you will find the basics of (commutative) rings and modules in Part I. The basics of groups
and fields, constituting the content of second semester, are in Part II. The background you will need to
make good use of this exposition is a good course in linear algebra and another in abstract algebra, both at
the undergraduate level.

As you proceed through these pages you will find many places where the details and sometimes whole
proofs of theorems will be left in your hands. The way to get the most from this presentation is to take it
on with paper and pencil in hand and do this work as you go. There are also weekly problem sets. Most of
the problems have appeared on Ph.D. examinations at various universities. In a real sense, the problems
sets are the true heart of this presentation.

This work grew out of teaching first year graduate algebra courses. Mostly, I have done this at the Uni-
versity of South Carolina (but the first time I did it was at Dartmouth College and I had the delightful
experience of teaching this material at the University of the Philippines). Many of the graduate students in
these courses have influenced my presentation here. Before all others, I should mention Kate Scott Owens,
who had the audacity to sit in the front row with her laptop, putting my classroom discussions into LATEX
on the fly. She then had the further audacity to post the results so that all the flaws and blunders I made
would be available to everyone. So this effort at exposition is something in the way of self-defense. . . . I am
deeply grateful to Jianfeng Wu and Nieves Austria McNulty for catching an impressively large number of
flaws in earlier versions of this presentation. I own all those that remain.

During the final stages of preparing this account, the author was supported in part by National Science
Foundation Grant 1500216.

George F. McNulty
Columbia, SC
2016
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0
THE BASICS OF ALGEBRAIC SYSTEMS

0.1 ALGEBRAIC SYSTEMS

In your undergraduate coursework you have already encountered many algebraic systems. These probably
include some specific cases, like 〈Z,+, ·,−,0,1〉 which is the system of integers equipped with the usual
two-place operations of addition, multiplication, the one-place operation of forming negatives, and two
distinguished integers 0 and 1, which we will construe as zero-place operations (all output and no input).
You have also encountered whole classes of algebraic systems such as the class of vector spaces over the
real numbers, the class of rings, and the class of groups. You might even have encountered other classes of
algebraic systems such as Boolean algebras and lattices.

The algebraic systems at the center of this two-semester course are rings, modules, groups, and fields.
Vector spaces are special cases of modules. These kinds of algebraic systems arose in the nineteenth cen-
tury and most of the mathematics we will cover was well-known by the 1930’s. This material forms the
basis for a very rich and varied branch of mathematics that has flourished vigorously over the ensuing
decades.

Before turning to rings, modules, groups, and fields, it pays to look at algebraic systems from a fairly gen-
eral perspective. Each algebraic system consists of a nonempty set of elements, like the set Z of integers,
equipped with a system of operations. The nonempty set of elements is called the universe of the algebraic
system. (This is a shortening of “universe of discourse”.) Each of the operations is a function that takes as
inputs arbitrary r -tuples of elements of the universe and returns an output again in the universe—here,
for each operation, r is some fixed natural number called the rank of the operation. In the familiar alge-
braic system 〈Z,+, ·,−,0,1〉, the operations of addition and multiplication are of rank 2 (they are two-place
operations), the operation of forming negatives is of rank 1, and the two distinguished elements 0 and 1
are each regarded as operations of rank 0.

Aside. Let A be a set and r be a natural number. We use Ar to denote the set of all r -tuples of elements of
A. An operation F of rank r on A is just a function from Ar into A. There is a curious case. Suppose A is the
empty set and r > 0. Then Ar is also empty. A little reflection shows that the empty set is also a function
from Ar into A, that is the empty set is an operation of rank r . The curiosity is that this is so for any positive
natural number r . This means that the rank of this operation is not uniquely determined. We also note
that A0 actually has one element, namely the empty tuple. This means that when A is empty there can
be no operations on A of rank 0. On the other hand, if A is nonempty, then the rank of every operation of

2



0.1 Algebraic Systems 3

finite rank is uniquely determined and A has operations of every finite rank. These peculiarities explain, to
some extent, why we adopt the convention that the universe of an algebraic system should be nonempty.

The notion of the signature of an algebraic system is a useful way to organize the basic notions of our
subject. Consider these three familiar algebraic systems:

〈Z,+, ·,−,0,1〉
〈C,+, ·,−,0,1〉

〈R2×2,+, ·,−,0,1〉

The second system consists of the set of complex numbers equipped with the familiar operations, while
the third system consists of the set of 2×2 matrices with real entries equipped with matrix multiplication,
matrix addition, matrix negation, and distinguished elements 0 for the zero matrix, and 1 for the identity
matrix. Notice that + has a different meaning on each line displayed above. This is a customary, even well-
worn, ambiguity. To resolve this ambiguity let us regard+not as a two-place operation but as a symbol for a
two-place operation. Then each of the three algebraic systems gives a different meaning to this symbol—
a meaning that would ordinarily be understood from the context, but could be completely specified as
needed. A signature is just a set of operation symbols, each with a uniquely determined natural number
called its rank. More formally, a signature is a function with domain some set of operation symbols that
assigns to each operation symbol its rank. The three algebraic systems above have the same signature.

“Algebraic system” is a mouthful. So we shorten it to “algebra”. This convenient choice is in conflict with
another use of this word to refer to a particular kind of algebraic system obtained by adjoining a two-place
operation of a certain kind to a module.

As a matter of notation, we tend to use boldface A to denote an algebra and the corresponding normal-
face A to denote its universe. For an operation symbol Q we use, when needed, QA to denote the operation
of A symbolized by Q. We follow the custom of writing operations like + between its inputs (like 5+2), but
this device does not work very well if the rank of the operation is not two. So in general we write things like
QA(a0, a1, . . . , ar−1) where the operation symbol Q has rank r and a0, a1, . . . , ar−1 ∈ A.

Each algebra has a signature. It is reasonable to think of each algebra as one particular way to give mean-
ing to the symbols of the signature.

Homomorphisms and their relatives

Let A and B be algebras of the same signature. We say that a function h : A → B is a homomorphism
provided for every operation symbol Q and all a0, a1, . . . , ar−1 ∈ A, where r is the rank of Q, we have

h(QA(a0, a1, . . . , ar−1)) =QB(h(a0),h(a1), . . . ,h(ar−1)).

That is, h preserves the basic operations. We use h : A → B to denote that h is a homomorphism from
the algebra A into the algebra B. For example, we learned in linear algebra that the determinant det is a
homomorphism from 〈R2×2, ·,0,1〉 into 〈R, ·,0,1〉. The key fact from linear algebra is

det(AB) = det A detB.

We note in passing that the multiplication on the left (that is AB) is the multiplication of matrices, while
the multiplication on the right is multiplication of real numbers.

In the event that h is a homomorphism from A into B that happens to be one-to-one we call it an em-
bedding and express this in symbols as

h : A�B.
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In the event that the homomorphism h is onto B we say that B is a homomorphic image of A and write

h : A�B.

In the event that the homomorphism h is both one-to-one and onto B we say that h is an isomorphism
and we express this in symbols as

h : A��B

or as

A
h∼= B.

It is an easy exercise, done by all hard-working graduate students, that if h is an isomorphism from A to
B then the inverse function h−1 is an isomorphism from B to A. We say that A and B are isomorphic and
write

A ∼= B

provided there is an isomorphism from A to B.
The algebra 〈R,+,−,0〉 is isomorphic to 〈R+, ·,−1,1〉, where R+ is the set of positive real numbers. There

are isomorphisms either way that are familiar to freshmen in calculus. Find them.
A homomorphism from A into A is called an endomorphism of A. An isomorphism from A to A is called

an automorphism of A.

Subuniverses and sublagebras

Let A be an algebra. A subset B ⊆ A is called a subuniverse of A provided it is closed with respect to
the basic operations of A. This means that for every operation symbol Q of the signature of A and for all
b0,b1, . . . ,br−1 ∈ B , where r is the rank of Q we have QA(b0,b1, . . . ,br−1) ∈ B . Notice that if the signature of
A has an operation symbol c of rank 0, then cA is an element of A and this element must belong to every
subuniverse of A. On the other hand, if the signature of A has no operation symbols of rank 0, then the
empty set ∅ is a subuniverse of A.

The restriction of any operation of A to a subuniverse B of A results in an operation on B . In the event
that B is a nonempty subuniverse of A, we arrive at the subalgebra B of A. This is the algebra of the same
signature as A with universe B such that QB is the restriction to B of QA, for each operation symbol Q of
the signature. B ≤ A symbolizes that B is a subalgebra of A.

Here is a straightforward but informative exercise for hard-working graduate students. LetN= {0,1,2, . . . }
be the set of natural numbers. Discover all the subuniverses of the algebra 〈N,+〉.

Congruence relations

Let A be an algebra and h be a homomorphism from A to some algebra. We associate with h the following
set, which called here the functional kernel of h,

θ = {(a, a′) | a, a′ ∈ A and h(a) = h(a′)}.

This set of ordered pairs of elements of A is evidently an equivalence relation on A. That is, θ has the
following properties.

(a) It is reflexive: (a, a) ∈ θ for all a ∈ A.

(b) It is symmetric: for all a, a′ ∈ A, if (a, a′) ∈ θ,then (a′, a) ∈ θ.

(c) It is transitive: for all a, a′, a′′ ∈ A, if (a, a′) ∈ θ and (a′, a′′) ∈ θ, then (a, a′′) ∈ θ.
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This much would be true were h any function with domain A. Because θ is a binary (or two-place) relation
on A it is useful to use the following notations interchangeably.

(a, a′) ∈ θ
a θ a′

a ≡ a′ mod θ

Here is another piece of notation which we will use often. For any set A, any a ∈ A and any equivalence
relation θ on A we put

a/θ := {a′ | a′ ∈ A and a ≡ a′ mod θ}.

We also put
A/θ := {a/θ | a ∈ A}.

Because h is a homomorphism θ has one more important property, sometimes called the substitution
property:

For every operation symbol Q of the signature of A and for all a0, a′
0, a1, a′

1, . . . , ar−1, a′
r−1 ∈ A, where r is the

rank of Q,

if

a0 ≡ a′
0 mod θ

a1 ≡ a′
1 mod θ

...

ar−1 ≡ a′
r−1 mod θ

then

QA(a0, a1, . . . , ar−1) ≡QA(a′
0, a′

1, . . . , a′
r−1) mod θ.

An equivalence relation on A with the substitution property above is called a congruence relation of
the algebra A. The functional kernel of a homomorphism h from A into some other algebra is always a
congruence of A. We will see below that this congruence retains almost all the information about the
homomorphism h.

As an exercise to secure the comprehension of this notion, the hard-working graduate students should
try to discover all the congruence relations of the familiar algebra 〈Z,+, ·〉.

A comment of mathematical notation

The union A ∪B and the intersection A ∩B of sets A and B are familiar. These are special cases of more
general notions. Let K be any collection of sets. The union

⋃
K is defined via

a ∈⋃
K⇔ a ∈C for some C ∈K.

Here is the special case A∪B rendered in this way

a ∈ A∪B ⇔ a ∈⋃
{A,B} ⇔ a ∈C for some C ∈ {A,B} ⇔ a ∈ A or a ∈ B.

Similarly, the intersection
⋂
K is defined via

a ∈⋂
K⇔ a ∈C for all C ∈K.

Notice that in the definition of the intersection, each set belonging to the collection K imposes a con-
straint on what elements are admitted to membership in

⋂
K. When the collection K is empty there are
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no constraints at all on membership in
⋂
K. This means

⋂∅ is the collection of all sets. However, having
the collection of all sets in hand leads to a contradiction, as discovered independently by Ernst Zermelo
and Bertrand Russell in 1899. To avoid this, we must avoid forming the intersection of empty collections.
This situation is analogous to division by zero. Just as when division of numbers comes up, the careful
mathematician considers the possibility that the divisor is zero before proceeding, so must the careful
mathematician consider the possibility that K might be empty before proceeding to form

⋂
K.

We also use the notation ⋃
i∈I

Ai and
⋂
i∈I

Ai

to denote the union and intersection of K= {Ai | i ∈ I }. The set I here is used as a set of indices. In using
this notation, we impose no restrictions on I (save that in forming intersections the set I must not be
empty). In particular, we make no assumption that the set I is ordered in any way.

The familiar set builder notation, for example {n | n is a prime number}, has a companion in the function
builder notation. Here is an example

f = 〈ex | x ∈R〉.
The function f is just the exponential function on the real numbers. We take the words “function”, “se-
quence”, and “system” to have the same meaning. We also use the notation f (c) and fc interchangeably
when f is a function and c is a member of its domain.
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0.2 PROBLEM SET 0

ALGEBRA HOMEWORK, EDITION 0

FIRST WEEK

HOW IS YOUR LINEAR ALGEBRA?

PROBLEM 0.
Classify up to similarity all the square matrices over the complex numbers with minimal polynomial m(x) =
(x −1)2(x −2)2 and characteristic polynomial c(x) = (x −1)6(x −2)5.

PROBLEM 1.
Let T : V → V be a linear transformation of rank 1 on a finite dimensional vector space V over any field.
Prove that either T is nilpotent or V has a basis of eigenvectors of T .

PROBLEM 2.
Let V be a vector space over a field K .

(a) Prove that if U0 and U1 are subspaces of V such that U0 *U1 and U1 *U0, then V 6=U0 ∪U1.

(b) Prove that if U0,U1, and U2 are subspaces of V such that Ui * U j when i 6= j and K has at least 3
elements, then V 6=U0 ∪U1 ∪U2.

(c) State and prove a generalization of (b) for n subspaces.

PROBLEM 3.
Let F be a field and n be a positive integer. Let A be an n×n matrix with entries from F such that An is zero
but An−1 is nonzero. Show that any n ×n matrix B over F that commutes with A is contained in the span
of {I , A, A2, . . . , An−1}.

PROBLEM 4.
Let V be a nontrivial finite dimensional vector space over the complex numbers.

(a) Suppose S and T are commuting linear operators on V. Prove that each eigenspace of S is mapped
into itself by T .

(b) Now let A0, . . . , Ak−1 be finitely many linear operators on A that commute pairwise. Prove that they
have a common eigenvector.

(c) Suppose that the dimension of V is n. Prove that there exists a nested sequence of subspaces

V0 ⊆ V1 ⊆ ·· · ⊆ Vn = V

where each V j has dimension j and is mapped into itself by each of the operators

A0, A1, . . . , Ak−1.
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0.3 THE HOMOMORPHISM THEOREM FOR ALGEBRAS OF THE SIMPLEST SIGNATURE

The simplest signature is, of course, empty—it provides no operation symbols. In this setting, algebras
have nothing real to distinguish them from nonempty sets. Every function between two nonempty sets will
be a homomorphism. Every subset will be a subuniverse. Every equivalence relation will be a congruence.
Isomorphisms are just one-to-one correspondences between nonempty sets and two nonempty sets will
be isomorphic just in case they have the same cardinality. So doing algebra in the empty signature is a
branch of combinatorics. Nevertheless, there is an important lesson for us to learn here.

Let A be a nonempty set. A partition of A is a collection P of subsets of A with the following properties:

(a) Each member of P is a nonempty subset of A.

(b) If X ,Y ∈P and X 6= Y , then X and Y are disjoint.

(c) Every element of A belongs to some set in the collection P.

You may already be familiar with the close connections among the notions of a function with domain A,
of an equivalence relation on A, and of a partition of A. We present it in the following theorem:

The Homomorphism Theorem, Empty Signature Version. Let A be a nonempty set, f : A� B be a func-
tion from A onto B, θ be an equivalence relation on A, and P be a partition of A. All of the following hold.

(a) The functional kernel of f is an equivalence relation on A.

(b) The collection A/θ = {a/θ | a ∈ A} is a partition of A.

(c) The map η that assigns to each a ∈ A the set inP to which it belongs is a function from A ontoP; moreover
P is the collection of equivalence classes of the functional kernel of η.

(d) If θ is the functional kernel of f , then there is a one-to-one correspondence g from A/θ to B such that
f = g ◦η, where η : A� A/θ with η(a) = a/θ for all a ∈ A.

A
ker f is

represented
as a partition

B

A/ker f

η

the quotient
map

f

g

>

Figure 0.1: The Homomorphism Theorem
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The empty signature version of the Homomorphism Theorem is almost too easy to prove. Figure 0.1
almost tells the whole story. One merely has to check what the definitions of the various notions require.
The map η is called the quotient map. That it is a function, i.e. that

{(a, X ) | a ∈ A and a ∈ X ∈P}

is a function, follows from the disjointness of distinct members of the partition. That its domain is A
follows from condition (c) in the definition of partition. The one-to-one correspondence g mentioned in
assertion (d) of the Homomorphism Theorem is the following set of ordered pairs:

{(a/θ, f (a)) | a ∈ A}.

The proof that this set is a one-to-one function from A onto B is straightforward, the most amusing part
being the demonstration that it is actually a function.

0.4 DIRECT PRODUCTS

Just as you are familiar with A ∪B and A ∩B , you probably already know that A ×B denotes the set of all
ordered pairs whose first entries are chosen from A while the second entries are chosen from B . Just as we
did for unions and intersections, we will extend this notion.

Let 〈Ai | i ∈ I 〉 be any system of sets. We call a function a : I → ⋃
i∈I Ai a choice function for the system

〈Ai | i ∈ I 〉 provided ai ∈ Ai for all i ∈ I . It is perhaps most suggestive to think of a as an I -tuple (recall-
ing that we are using function, tuple, system, and sequence interchangeably). The direct product of the
system 〈Ai | i ∈ I 〉 is just the set of all these choice functions. Here is the notation we use:∏〈Ai | i ∈ I 〉 :=∏

i∈I
Ai := {a | a is a choice function for the system 〈Ai | i ∈ I 〉}.

The sets Ai are called the direct factors of this product. If any of the sets in the system 〈Ai | i ∈ I 〉 is empty,
then the direct product is also empty. On the other hand, if I is empty then the direct product is {∅}, since
the empty set will turn out to be a choice function for the system. Notice that {∅} is itself nonempty and,
indeed, has exactly one element.

Observe that
∏〈A,B〉 = {〈a,b〉 | a ∈ A and b ∈ B}. This last set is, for all practical purposes, A×B .

Projection functions are associated with direct products. For any j ∈ I , the j th projection function p j is
defined, for all a ∈∏〈Ai | i ∈ I 〉, via

p j (a) := a j .

The system of projection functions has the following useful property: it separates points. This means
that if a, a′ ∈ ∏〈Ai | i ∈ T 〉 and a 6= a′, then p j (a) 6= p j (a′) for some j ∈ I . Suppose that 〈Ai | i ∈ I 〉 is a
system of sets, that B is some set, and that 〈 fi | i ∈ I 〉 is a system of functions such that fi : B → Ai for each
i ∈ I . Define the map h : B →∏〈Ai | i ∈ I 〉 via

h(b) := 〈 fi (b) | i ∈ I 〉.
Then it is easy to see that fi = pi ◦h for all i ∈ I . If the system 〈 fi | i ∈ I 〉 separates points, then the function
h defined just above will be one-to-one, as all hard-working graduate students will surely check.

We form direct products of systems of algebras in the following way. Let 〈Ai | i ∈ I 〉be a system of algebras,
all with the same signature. We take

∏〈Ai | i ∈ I 〉 to be the algebra P with universe P := ∏〈Ai | i ∈ I 〉 and
where the operations on P are defined coordinatewise. This means that for each operation symbol Q and
all a0, a1, . . . , ar−1 ∈ P , where r is the rank of Q, we have

QP(a0, a1, . . . , ar−1) = 〈
QAi (a0,i , a1,i , . . . , ar−1,i ) | i ∈ I

〉
.
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To see more clearly what is intended here, suppose that Q has rank 3, that I = {0,1,2,3}, and that a,b,c ∈ P .
Then

a
b
c

QP(a,b,c)

=
=
=
=

〈a0, a1, a2, a3〉
〈b0, b1, b2, b3〉
〈c0, c1, c2, c3〉〈

QA0 (a0,b0,c0), QA1 (a1,b1,c1), QA2 (a2,b2,c2), QA3 (a3,b3,c3)
〉

In this way, the direct product of a system of algebras, all of the same signature, will be again an algebra
of the common signature and it is evident that each projection map is a homomorphism from the direct
product onto the corresponding direct factor. Even the following fact is easy to prove.

Fact. Let 〈Ai | i ∈ I 〉 be a system of algebras, all of the same signature. Let B be an algebra of the same
signature as A and let 〈 fi | i ∈ I 〉 be a system of homomorphisms so that fi : B → Ai for all i ∈ I . Then there
is a homomorphism h : B →∏

i∈I Ai so that fi = pi ◦h for all i ∈ I . Moreover, if 〈 fi | i ∈ I 〉 separates points,
then h is one-to-one.
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THE ISOMORPHISM THEOREMS

The four theorems presented today arose over a period of perhaps forty years from the mid 1890’s to the
mid 1930’s. They emerged from group theory and the theory of rings and modules chiefly in the work
of Richard Dedekind and Emmy Noether and it was Noether who gave their first clear formulation in the
context of module theory in 1927. You have probably already seen versions of these theorems for groups
or rings in an undergraduate abstract algebra course.

We will frame them in the broader context of algebras in general. That way it will not be necessary to do
more than add a comment or two when applying them in the context of groups, rings, and modules (these
being our principal focus). In addition, you will be able to apply them in the context of lattices, Boolean
algebras, or other algebraic systems.

At the center of this business is the notion of a quotient algebra. Let A be an algebra and let θ be a
congruence of A. Recall that for each a ∈ A we use a/θ to denote the congruence class {a′ | a′ ∈ A and a ≡ a′

mod θ}. Moreover, we use A/θ to denote the partition {a/θ | a ∈ A} of A into congruence classes. We make
the quotient algebra A/θ by letting its universe be A/θ and, for each operation symbol Q of the signature
of A, and all a0, a1, . . . , ar−1 ∈ A, where r is the rank of Q, we define

QA/θ(a0/θ, a1/θ, . . . , ar−1/θ) :=QA(a0, a1, . . . , ar−1)/θ.

Because the elements of A/θ are congruence classes, we see that the r inputs to QA/θ must be congruence
classes. On the left side of the equation above the particular elements ai have no special standing—they
could be replaced by any a′

i provided only that ai ≡ a′
i mod θ. Loosely speaking, what this definition says

is that to evaluate QA/θ on an r -tuple of θ-classes, reach into each class, grab an element to represent the
class, evaluate QA at the r -tuple of selected representatives to obtain say b ∈ A, and then output the class
b/θ. A potential trouble is that each time such a process is executed on the same r -tuple of congruence
classes, different representatives might be selected resulting in, say b′, instead of b. But the substitution
property, the property that distinguishes congruences from other equivalence relations, is just what is
needed to see that there is really no trouble. To avoid a forest of subscripts, here is how the argument
would go were Q to have rank 3. Suppose a, a′,b,b′,c,c ′ ∈ A with

a/θ = a′/θ
b/θ = b′/θ
c/θ = c ′/θ.

11
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So a and a′ can both represent the same congruence class—the same for b and b′ and for c and c ′. Another
way to write this is

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ.

What we need is QA(a,b,c)/θ =QA(a′,b′,c ′)/θ. Another way to write that is

QA(a,b,c) ≡QA(a′,b′,c ′) mod θ.

But this is exactly what the substitution property provides. Hard-working graduate students will do the
work to see that what works for rank 3 works for any rank.

The theorem below, sometimes called the First Isomorphism Theorem, is obtained from its version for
the empty signature replacing arbitrary functions by homomorphisms and arbitrary equivalence relations
by congruence relations.

The Homomorphism Theorem. Let A be an algebra, let f : A�B be a homomorphism from A onto B, and
let θ be a congruence relation of A. All of the following hold.

(a) The functional kernel of f is a congruence relation of A.

(b) A/θ is an algebra of the same signature as A.

(c) The map η that assigns to each a ∈ A the congruence class a/θ is a homomorphism from A onto A/θ and
its functional kernel is θ.

(d) If θ is the functional kernel of f , then there is an isomorphism g from A/θ to B such that f = g ◦η, where
η : A�A/θ with η(a) = a/θ for all a ∈ A.

The proof of this theorem has been, for the most part, completed already. We just saw how to prove part
(b) and part (a) was done when the notions of congruence relation and functional kernel were introduced.
Even parts (c) and (d) were mostly established in the version of the theorem for algebras with empty sig-
nature. It only remains to prove that the quotient map η in part (c) and the map g in part (d) are actually
homomorphisms. With the definition of how the operations in the quotient algebra work, this only re-
quires checking that the basic operations are preserved by η and by g . This work is left to the diligent
graduate students.

From parts (a) and (c) of the Homomorphism Theorem we draw the following corollary.

Corollary 1.0.1. Let A be an algebra. The congruence relations of A are exactly the functional kernels of
homomorphisms from A into algebras of the same signature as A.

It will be necessary, as we develop the theory of rings, modules, and groups, to determine whether certain
equivalence relations at hand are in fact congruence relations. Of course, we can always check the condi-
tions defining the concept of congruence relation. But sometimes it is simpler to show that the relation is
actually the functional kernel of some homomorphism.

Now let us suppose that θ is a congruence of A and that B is a subalgebra of A. By θ � B we mean the
restriction of θ to B . That is

θ �B := θ∩ (B ×B).

Now θ partitions A into congruence classes. Some of these congruence classes may include elements of
B while others may not. We can inflate B using θ to obtain the set θB of all elements of A related by θ to
some element of B . That is

θB := {a | a ≡ b mod θ for some b ∈ B}.
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Figure 1.1 illustrates the inflation of B by θ, where we have drawn lines to indicate the partition of A into
θ-classes.

A B

Figure 1.1: The Inflation θB of B by θ

The Second Isomorphism Theorem. LetA be an algebra, let θ be a congruence of A, and let B be a subal-
gebra of A. Then each of the following hold.

(a) θ �B is a congruence relation of B.

(b) θB is a subuniverse of A.

(c) θB/(θ � θB) ∼= B/(θ �B).

Proof. For part (a) we have to see that θ �B is an equivalence relation on B and that it has the substitution
property. Hard-working graduate students will check that it is indeed an equivalence relation. To see that
the substitution property holds, let Q be an operation symbol. Just for simplicity, let us suppose the rank
of Q is 3. Pick a, a′,b,b′,c,c ′ ∈ B so that

a ≡ a′ mod θ �B

b ≡ b′ mod θ �B

c ≡ c ′ mod θ �B.

We must show that QB(a,b,c) ≡ QB(a′,b′,c ′) mod θ � B . Because all those elements come from B we see
that

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ,

and that both QB(a,b,c) =QA(a,b,c) and QB(a′,b′,c ′) =QA(a′,b′,c ′). It follows from the substitution prop-
erty for θ that QA(a,b,c) ≡QA(a′,b′,c ′) mod θ. But since both QA(a,b,c) =QB(a,b,c) ∈ B and QA(a′,b′,c ′) =
QB(a′,b′,c ′) ∈ B , we draw the desired conclusion that QB(a,b,c) ≡QB(a′,b′,c ′) mod θ �B .

For part (b) we have to show that θB is closed under all the basic operations of A. So let Q be an operation
symbol, which without loss of generality we assume to have rank 3. Let a,b,c ∈ θB . Our goal is to show
that QA(a,b,c) ∈ θB . Using the definition of θB pick a′,b′,c ′ ∈ B so that

a ≡ a′ mod θ

b ≡ b′ mod θ

c ≡ c ′ mod θ.
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Because B is a subuniverse, we see that QA(a′,b′,c ′) ∈ B . Because θ is a congruence, we see that QA(a,b,b) ≡
QA(a′,b′,c ′). Putting these together, we find that QA(a,b,c) ∈ θB , as desired.

For part (c) we will invoke the Homomorphism Theorem. Define the map h from B to θB/(θ � θB) via

h(b) := b/(θ � θB).

We have three contentions, namely that h is a homomorphism, that h is onto B/(θ � θB), and that the func-
tional kernel of h is θ �B . Given these, the Homomorphism Theorem provides that desired isomorphism.

To see that h is a homomorphism we have to show it respects the operations. So again take Q to be an
operation symbol, of rank 3 for simplicity. Let a,b,c ∈ B . Now observe

h(QB(a,b,c)) =QB(a,b,c)/(θ � θB)

=QθB(a,b,c)/(θ � θB)

=QθB/(θ�θB)(a/(θ � θB),b/(θ � θB),c/(θ � θB))

=QθB/(θ�θB)(h(a),h(b),h(c)).

In this way we see that h respects Q. So h is a homomorphism.
To see that h is onto, let b′ ∈ θB . Pick b ∈ B so that b′ ≡ b mod θ. We assert that h(b) = b′/(θ � θB). So

what we have to demonstrate is that
b/(θ � θB) = b′/(θ � θB)

or what is the same
b ≡ b′ mod θ � θB.

Now both b and b′ belong to θB , so all that remains is to see that b ≡ b′ mod θ. But we already know this.
Finally, we have to understand the functional kernel of h. Let a,b ∈ B and observe

h(a) = h(b) ⇔ a/(θ � θB) = b/(θ � θB)

⇔ a ≡ b mod θ � θB

⇔ a ≡ b mod θ �B.

The last equivalence follows since a and b both belong to B . So we see that θ �B is the functional kernel of
h, completing the proof.

Let A be an algebra and let θ and ϕ be congruences of A with θ ⊆ϕ. Let

ϕ/θ := {(a/θ, a′/θ) | a, a′ ∈ A with a ≡ a′ modϕ}.

So ϕ/θ is a two-place relation on A/θ.

The Third Isomorphism Theorem. Let A be an algebra and let θ and ϕ be congruences of A with θ ⊆ ϕ.
Then

(a) ϕ/θ is a congruence of A/θ, and

(b) A/θ
/
ϕ/θ ∼= A/ϕ.

Proof. Define the function h from A/θ to A/ϕ so that for all a ∈ A we have

h(a/θ) := a/ϕ.

Here we have to worry again whether h is really a function—the definition above uses a representative
element a of the congruence class a/θ to say how to get from the input to the output. What if a/θ = a′/θ?
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Then (a, a′) ∈ θ. Since θ ⊆ϕ, we get (a, a′) ∈ϕ. This means, of course, that a/ϕ= a′/ϕ. So we arrive at the
same output, even using different representatives. This means our definition is sound.

Let us check that h is a homomorphism. So let Q be an operation symbol, which we suppose has rank 3
just in order to avoid a lot of indices. Pick a,b,c ∈ A. Now observe

h(QA/θ(a/θ),b/θ,c/θ) = h(QA(a,b,c)/θ)

=QA(a,b,c)/ϕ

=QA/ϕ(a/ϕ,b/ϕ,c/ϕ)

=QA/ϕ(h(a/θ),h(b/θ),h(c/θ))

In this way we see that h respects the operation symbol Q. We conclude that h is a homomorphism.
Notice that h is onto A/ϕ since any member of that set has the form a/ϕ for some a ∈ A. This means that

h(a/θ) = a/ϕ.
Now lets tackle the functional kernel of h. Let a,b ∈ A. Then observe

h(a/θ) = h(b/θ) ⇔ a/ϕ= b/ϕ⇔ a ≡ b modϕ.

So (a/θ,b/θ) belongs to the functional kernel of h if and only if a ≡ b modϕ. That is, the functional kernel
of h is ϕ/θ. From the Homomorphism Theorem we see that ϕ/θ is a congruence of A/θ. Also from the
Homomorphism Theorem we conclude that (A/θ)/(ϕ/θ) ∼= A/ϕ.

The set inclusion relation ⊆ is a partial ordering of the congruence relations of an algebra A. Some of
the secrets of A can be discovered by understanding how the congruence relations are ordered. The next
theorem, sometimes called the Fourth Isomorphism Theorem, is a first and useful step along this road.
To understand it we need the notion of isomorphism of relational structures (as opposed to algebras). Let
A and B be nonempty sets and let v be a two-place relation on A and ¹ be a two-place relation on B . A
function h from A to B is called an isomorphism between 〈A,v〉 and 〈B ,≺〉 provided h is one-to-one, h is
onto B , and for all a, a′ ∈ A we have

a v a′ if and only if h(a) ¹ h(a′).

As a matter of notation, let ConA be the set of congruence relations of A.

The Correspondence Theorem. Let A be an algebra and let θ be a congruence of A. Let P = {ϕ | ϕ ∈
ConA and θ ⊆ ϕ}. Then the map from P to ConA/θ that sends each ϕ ∈ P to ϕ/θ is an isomorphism be-
tween the ordered set 〈P,⊆〉 and the ordered set 〈ConA/θ,⊆〉.
Proof. LetΨ denote the map mentioned in the theorem. So

Ψ(ϕ) =ϕ/θ

for all ϕ ∈ ConA with θ ⊆ϕ.
To see that Ψ is one-to-one, let ϕ,ρ ∈ ConA with θ ⊆ϕ and θ ⊆ ρ. Suppose that Ψ(ϕ) =Ψ(ρ). This means

ϕ/θ = ρ/θ. Now consider for all a, a′ ∈ A

(a, a′) ∈ϕ⇔ (a/θ, a′/θ) ∈ϕ/θ

⇔ (a/θ, a′/θ) ∈ ρ/θ

⇔ (a, a′) ∈ ρ

So ϕ= ρ. Notice that the first equivalence depends on θ ⊆ϕ while the last depends on θ ⊆ ρ. We see that
Ψ is one-to-one.
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To see thatΨ is onto ConA/θ, let µ be a congruence of A/θ. Define

ϕ := {(a, a′) | a, a′ ∈ A and (a/θ, a′/θ) ∈µ}.

This two-place relation is our candidate for a preimage of µ. First we need to see that ϕ is indeed a
congruence of A. The checking of reflexivity, symmetry, and transitivity is routine. To confirm the sub-
stitution property, let Q be an operation symbol (with the harmless assumption that its rank is 3). Pick
a, a′,b,b′,c,c ′ ∈ A so that

a ≡ a′ modϕ

b ≡ b′ modϕ

c ≡ c ′ modϕ.

We must see that QA(a,b,c) ≡QA(a′,b′,c ′) modϕ. From the three displayed conditions we deduce

a/θ ≡ a′/θ mod µ

b/θ ≡ b′/θ mod µ

c/θ ≡ c ′/θ mod µ.

Because µ is a congruence of A/θ, we obtain

QA/θ(a/θ,b/θ,c/θ) ≡QA/θ(a′/θ,b′/θ,c ′/θ) mod µ.

But given how the operations work in quotient algebras, this gives

QA(a,b,c)/θ ≡QA(a′,b′,c ′)/θ mod µ.

Then the definition of ϕ supports the desired conclusion that QA(a,b,c) ≡ QA(a′,b′,c ′) modϕ. So ϕ is
a congruence of A. But we also need to see that θ ⊆ ϕ to get that ϕ ∈ P . So suppose that a, a′ ∈ A with
(a, a′) ∈ θ. Then a/θ = a′/θ. This entails that (a/θ, a′/θ) ∈ µ since µ is reflexive. In this way, we see that
(a, a′) ∈ϕ. So θ ⊆ϕ and ϕ ∈ P . Now consider

Ψ(ϕ) =ϕ/θ

= {(a/θ, a′/θ) | a, a′ ∈ A and (a, a′) ∈ϕ}

= {(a/θ.a′/θ) | a, a′ ∈ A and (a/θ, a′/θ) ∈µ}

=µ.

In this way, we see that Ψ is onto ConA/θ.
Last, we need to show that Ψ respects the ordering by set inclusion. So let ϕ,ρ ∈ ConA with θ ⊆ ϕ and

θ ⊆ ρ. Let us first suppose that ϕ⊆ ρ. To see that Ψ(ϕ) ⊆Ψ(ρ), let a, a′ ∈ A and notice

(a/θ, a′/θ) ∈Ψ(ϕ) =⇒ (a/θ, a′/θ) ∈ϕ/θ

=⇒ (a, a′) ∈ϕ
=⇒ (a, a′) ∈ ρ
=⇒ (a/θ, a′/θ) ∈ ρ/θ

=⇒ (a/θ, a′/θ) ∈Ψ(ρ)

So we find if ϕ⊆ ρ, then Ψ(ϕ) ⊆Ψ(ρ). For the converse, suppose Ψ(ϕ) ⊆Ψ(ρ). Let a, a′ ∈ A and notice

(a, a′) ∈ϕ =⇒ (a/θ, a′/θ) ∈ϕ/θ

=⇒ (a/θ, a′/θ) ∈Ψ(ϕ)

=⇒ (a/θ, a′/θ) ∈Ψ(ρ)

=⇒ (a/θ, a′/θ) ∈ ρ/θ

=⇒ (a, a′) ∈ ρ.
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So we find that if Ψ(ϕ) ⊆Ψ(ρ), then ϕ⊆ ρ. So we have for all ϕ,ρ ∈ P ,

ϕ⊆ ρ if and only ifΨ(ϕ) ⊆Ψ(ρ).

Finally, we can conclude thatΨ is an isomorphism between our two ordered sets of congruences.
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1.1 PROBLEM SET 1

ALGEBRA HOMEWORK, EDITION 1

SECOND WEEK

JUST SOME GENERAL NOTIONS

PROBLEM 5.
Prove that the congruence relations of A are exactly those subuniverses of A×A which happen to be equiv-
alence relations on A.

PROBLEM 6.
Prove that the homomorphisms from A to B are exactly those subuniverses of A×B which are functions
from A to B .

PROBLEM 7.
Prove that the projection functions associated with A×B are homomorphisms.

PROBLEM 8.

(a) Prove that the intersection of any nonempty collection of subuniverses of A is again a subuniverse.

(b) Prove that the intersection of any nonempty collection of congruences of A is again a congruence.

PROBLEM 9.
A collection C of sets is up-directed by ⊆ provided if U ,V ∈C then there is W ∈C such that U ,V ⊆W .

(a) Prove that the union on any nonempty up-directed collection of subuniverses of A is again a subuni-
verse of A.

(b) Prove that the union of any nonempty up-directed collection of congruences of A is again a congru-
ence of A.
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2
COMPREHENDING PLUS AND TIMES

2.1 WHAT A RING IS

The notion of a ring arose in the nineteenth century by generalizing a collection of specific algebraic sys-
tems built around various examples of addition and multiplication. Certainly our understanding of ad-
dition and multiplication of positive integers is very old. Eudoxus of Cnidus, a contemporary of Plato,
put—in modern terms—the notions of addition and multiplication of positive real numbers on a sound
basis. His work can be found in Book V of Euclid’s elements. Negative numbers emerged in India and
China about the time of Archimedes, but met with little welcome in the Hellenistic world. This attachment
of mathematical illegitimacy to negative numbers persisted in Europe into the eighteenth century. How-
ever, by the end of the eighteenth century, not only negative real numbers but complex numbers in general
were well in hand. Euler was a master of it all.

In the nineteenth century we had algebraic systems built around addition and multiplication of all of the
following:

• integers

• rational numbers

• real numbers

• complex numbers

• algebraic numbers

• constructible numbers

• n ×n matrices with entries selected from the systems listed above.

• polynomials with coefficients selected from certain of the systems listed above.

• functions from the reals to the reals (and similarly with the reals replaced by some other systems)

• many other examples of addition and multiplication

19
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As that century progressed, mathematicians realized that to develop the theories of each of these particular
cases, one had to duplicate more or less a lot of effort. The examples had many properties in common. So
it was a matter of convenience to develop the details of many of these common properties just once, before
pursuing the more specialized theory of, say, the complex numbers. This led to the notion of a ring.

The signature we use to present this notion consists of a two-place operation symbol · to name multipli-
cation, a two-place operation symbol + to name addition, a one-place operation symbol − to denote the
formation of negatives, and two constant symbols 0 and 1. A ring is an algebraic system of this signature
in which the following equations hold true.

x + (y + z) = (x + y)+ z x · (y · z) = (x · y) · z

x +0 = x x ·1 = x

x + y = y +x 1 · x = x

−x +x = 0 x · (y + z) = x · y +x · z

(x + y) · z = x · z + y · x

This collection of equations is sometimes called the axioms of ring theory.
You see here the familiar associative, commutative, and distributive laws, as well as equations giving the

behavior of 0 and 1. It is important to realize that while the commutative law for addition is included,
the commutative law for multiplication is not. The absence of the commutative law for multiplication
has compelled me to include two forms of the distributive law as well as two equations to capture the
behavior of 1. The ring of 2×2 matrices with real entries is an example of a ring where the commutative
law for multiplication fails. A ring in which the commutative law for multiplication holds as well is called
a commutative ring. While there is a rich theory of rings in general, in our course almost all rings will be
commutative rings.

Because the axioms of ring theory are all equations it is easy to see that every subalgebra of a ring must
be a ring itself, that every homomorphic image of a ring must also be a ring, and that the direct product
of any system of rings is again a ring. Because the commutative law for multiplication is also an equation,
the same observations apply to commutative rings.

You should also realize that in a ring the elements named by 0 and 1 might be the same. In this event, by
way of a fun exercise, you can deduce from the ring axioms that such a ring can have only one element.
Evidently, all one-element rings are isomorphic and, of themselves, not very interesting. They are called
trivial rings.

According to the definition above, every ring must have an element named by the constant symbol 1
and this element must behave as described by the equations in our list. This has been the most common
convention since the 1970’s. However, some considerable part of the older literature and some of the con-
temporary literature use a different somewhat wider notion that lacks the constant symbol 1. For example,
the even integers under ordinary addition and multiplication would constitute a ring in this manner, but
not in the sense that I have put forward here. In that style of exposition, what we have called “rings” are
referred to as “rings with unit”. Nathan Jacobson, one of the great ring theorists of the twentieth century,
used the notion of ring I have adopted and referred to these other old-fashion algebraic systems as “rngs”.

2.2 CONGRUENCES AND IDEALS ON RINGS

Let R be a ring and let θ be a congruence on R. Recall that

0/θ = {a | a ∈ R and a ≡ 0 mod θ}

is the θ-congruence class containing 0. Observe that the set 0/θ has each of the following properties
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(a) 0 ∈ 0/θ.

(b) If a,b ∈ 0/θ, then a +b ∈ 0/θ.

(c) if a ∈ 0/θ and r ∈ R, then r a, ar ∈ 0/θ.

To obtain (b) reason as follows

a ≡ 0 mod θ

b ≡ 0 mod θ

a +b ≡ 0+0 mod θ

a +b ≡ 0 mod θ

The third step uses the key substitution property of congruence relations, whereas the fourth step use the
equation 0+0 = 0, which follows easily from the ring axioms.

To obtain (c) reason as follows

a ≡ 0 mod θ

r ≡ r mod θ

ar ≡ 0r mod θ

ar ≡ 0 mod θ

The second step uses the fact that congruence relations, being special equivalence relations, are reflexive.
The last step uses the equation 0x = 0, which can be deduced from the ring axioms. A similar line of
reasoning produces the conclusion

r a ≡ 0 mod θ.

Any subset I ⊆ R that has the three attributes listed above for 0/θ is called an ideal of the ring R. This
means that I is an ideal of R if and only if

(a) 0 ∈ I .

(b) If a,b ∈ I , then a +b ∈ I .

(c) if a ∈ I and r ∈ R, then r a, ar ∈ I .

So we have taken the definition of ideal to allow us to observe that in any ring R

if θ is a congruence relation of R, then 0/θ is an ideal of R.

That is, every congruence relation gives rise to an ideal.
The converse is also true. Let R be a ring and let I be an ideal of R. Define

θI := {(a,b) | a,b ∈ R and a −b ∈ I }.

The eager graduate students should check that θI is indeed a congruence relation of R. Actually, the theo-
rem below tells a fuller tale and its proof, which only requires pursuing all the definitions involved, is left
to delight the graduate students.

Theorem on Ideals and Congruences. Let R be any ring, let θ be a congruence relation of R and let I be
any ideal of R. All of the following hold.

(a) 0/θ is an ideal of R.
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(b) θI is a congruence relation of R.

(c) I = 0/(θI ).

(d) θ = θ0/θ.

(e) The collection of all ideals of R is ordered by ⊆ and the map I 7→ θI is an isomorphism of the ordered
set of all ideals of R with the ordered set of all congruence relations of R.

The significance of this theorem is that when dealing with rings we can replace the study of congruence
relations with the study of ideals. After all, each congruence θ is a set of ordered pairs, that is θ ⊆ R ×R.;
whereas each ideal I is merely a set of elements of R, that is I ⊆ R. Of course, there are places, in ring
theory, where congruence relations are more convenient than ideals, so we need to remember both.

Here is some notation for using ideals in place of congruences. Let R be any ring and let θ and I be a
congruence relation and an ideal that correspond to each other, let a,b ∈ R and let J be an ideal of R so
that I ⊆ J .

R/I := R/θ

a + I := a/θ = {a +b | b ∈ I }

J/I := {b + I | b ∈ J } = 0/(θJ /θI )

a ≡ b mod I means a ≡ b mod θ

means a −b ∈ I

The graduate student should work out the details to see that these conventions really do the job. Inciden-
tally, the notation a + I is a special case of U +V := {u + v | u ∈U and v ∈V }, where U ,V ⊆ R.

Suppose that R is a ring and h : R → S is a homomorphism. The kernel of h is the following set

kerh := {a | a ∈ R and h(a) = 0}.

The graduate students should check that if θ denotes that functional kernel of h, then

kerh = 0/θ.

So kerh is an ideal of R and the congruence corresponding to this ideal is the functional kernel of h.

2.3 THE ISOMORPHISM THEOREMS FOR RINGS

With this sort of lexicon in hand, all the isomorphism theorems can be rendered into ring theoretic ver-
sions, with no need for further proofs. Here they are.

The Homomorphism Theorem, Ring Version. Let R be a ring, let f : R� S be a homomorphism from R
onto S, and let I be an ideal of R. All of the following hold.

(a) The kernel of f is an ideal of R.

(b) R/I is a ring.

(c) The map η that assigns to each a ∈ R the congruence class a + I is a homomorphism from R onto A/I
and its kernel is I .

(d) If I is the kernel of f , then there is an isomorphism g from R/I to S such that f = g ◦η.
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The Second Isomorphism Theorem, Ring Version. Let R be a ring, let I be an ideal of R, and let S be a
subring of R. Then each of the following hold.

(a) I ∩S is an ideal of S.

(b) I +S is a subuniverse of R.

(c) (I+S)/I ∼= S/(I ∩S).

The Third Isomorphism Theorem, Ring Version. Let R be a ring and let I and J be ideals of R with I ⊆ J .
Then

(a) J/I is an ideal of R/I , and

(b) R/I
/

J/I ∼= R/J .

The Correspondence Theorem, Ring Version. Let R be a ring and let I be an ideal of R. Let P = {J |
J is an ideal of R and I ⊆ J }. Then the map from P to the ordered set of ideals of R/I that sends each J ∈ P to
J/I is an isomorphism between the ordered set 〈P,⊆〉 and the ordered set of ideals of R/I .

2.4 DEALING WITH IDEALS

Let R be a ring. Then R and {0} will be ideals of R. (They might be the same ideal, but only if R is a one-
element ring). By a proper ideal of R we mean one that is different from R. By a nontrivial ideal we mean
one that is different from {0}. The collection of all ideals of R is ordered by ⊆. Under this ordering, {0} is the
unique least ideal and R is the unique largest ideal.

Let R be a ring and let K be any nonempty collection of ideals of R. It is a routine exercise (why not put
pen to paper?) that

⋂
K is also an ideal of R and this ideal is the greatest (in the sense of ⊆) ideal included

in every ideal belonging to K. So every nonempty collection of ideals has a greatest lower bound in the
ordered set of ideals. Let W ⊆ R and take K = {I | I is an ideal of R and W ⊆ I }. Then

⋂
K is the smallest

ideal of R that includes W . This ideal is denoted by (W ) and is called the ideal generated by W .
Unlike the situation with intersection, when K is a nonempty collection of ideals of the ring R it is usually

not the case that the union
⋃
K will turn out to be an ideal. However, (

⋃
K) will be an ideal—indeed, it is

the least ideal in the ordered set of ideals that includes every ideal in K.
So the collection of all ideals of any ring is an ordered set with a least member, a greatest member, and ev-

ery nonempty collection of ideals has both a greatest lower bound and a least upper bound. Such ordered
sets are called complete lattice-ordered sets.

While in general the union of a collection of ideals is unlikely to be an ideal, there are collections for
which the union is an ideal. A collection K of ideals is said to be updirected provided if I , J ∈K, then there
is K ∈K so that I ⊆ K and J ⊆ K .

Theorem 2.4.1. Let R be a ring and let K be a nonempty updirected collection of ideals of R. Then
⋃
K is

an ideal of R.

Proof. First observe that 0 ∈⋃
K, since K is nonempty and every ideal must contain 0.

Now suppose that a,b ∈⋃
K. Pick I , J ∈K so that a ∈ I and b ∈ J . Because K is updirected, pick K ∈K so

that I ∪ J ⊆ K . So a,b ∈ K . Because K is an ideal, we see a +b ∈ K ⊆⋃
K.

Finally, suppose a ∈ ⋃
K and r ∈ R. Pick I ∈K so that a ∈ I . Then ar,r a ∈ I since I is an ideal. Hence

ar,r a ∈⋃
K

In this way, we see that
⋃
K is an ideal.
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One kind of updirected set is a chain. The collection C is a chain of ideals provided for all I , J ∈ C either
I ⊆ J or J ⊆ I . As a consequence, we see that the union of any nonempty chain of ideals is again an ideal.

A little reflection shows that this result is not particularly ring theoretic. In fact, for algebras generally, the
union of any updirected collection of congruence relations is again a congruence relation.

Now let R be a ring and W ⊆ R. The ideal (W ) that is generated by W was defined in what might be called
a shrink wrapped manner as the intersection of all the ideals containing W . It is also possible to describe
this ideal by building it up from W in stages using the following recursion.

W0 :=W ∪ {0}

Wn+1 :=Wn ∪ {r a | r ∈ R and a ∈Wn}∪ {ar | r ∈ R and a ∈Wn}∪ {a +b | a,b ∈Wn}

for all natural numbers n.

Notice W ⊆ W0 ⊆ W1 ⊆ W2 ⊆ . . . and each set along this chain repairs potential failures of the earlier sets
along the chain to be ideals. It does this by adding new elements. Unfortunately, these new elements, while
they repair earlier failures may introduce failures of their own. For this reason the construction continues
through infinitely many stages. Now let Wω :=⋃

n∈ωWn be the union of this chain of sets. Our expectation
is that all the failures have been fixed and that Wω is an ideal. The eager graduate students are invited to
write out a proof of this. But more is true. Actually, Wω = (W ). Here are some suggestions for how to prove
this. To establish Wω ⊆ (W ) prove by induction on n that Wn ⊆ I for every ideal I that includes W . Observe
that (W ) ⊆Wω once we know that Wω is an ideal that includes W .

This process that shows that shrink wrapping and building up from the inside works not only here in the
context of ideals, but in several other contexts as well.

A more transparent version of the building up from the inside is available in our particular context. By a
combination of W over R we mean an element of the form

r0w0s0 + r1w1s1 +·· ·+ rn−1wn−1sn−1

where n is a natural number, r0, s0,r1, s1, . . . ,rn−1, sn−1 ∈ R, and w0, w1, . . . , wn−1 ∈W . In case n = 0, we take
the element represented to be the zero of the ring. It is straightforward, with the help of the distributive
laws, to see that the set of all combinations of W over R is an ideal that includes the subset W . An in-
duction on the length of combinations shows that all these combinations belong to (W ). So the set of all
combinations of W over R must be the ideal (W ) generated be W . It is important to observe that in the
combination displayed above we have not assumed that the wi ’s are distinct. In commutative rings it is
only necessary to consider combinations of the form

r0w0 + r1w1 +·· ·+ rn−1wn−1.

Moreover, in this case we can insist that the wi ’s be distinct. In particular, if R is commuative , w ∈ R, and I
is an ideal of R, then the ideal ({w}∪ I ) generated by the element w and the ideal I consists of all elements
of the form

r w +u where r ∈ R and u ∈ I .



2.5 Problem Set 2 25

2.5 PROBLEM SET 2

ALGEBRA HOMEWORK, EDITION 2

THIRD WEEK

PRIME IDEALS

PROBLEM 10.

(a) Let I and J be ideals of a commutative ring R with I + J = R. Prove that I J = I ∩ J .

(b) Let I , J , and K be ideals of a principal ideal domain. Prove that I ∩ (J +K ) = I ∩ J + I ∩K .

PROBLEM 11.
Let R be a commutative ring and I be a proper prime ideal of R such that R/I satisfies the descending chain
condition on ideals. Prove that R/I is a field.

PROBLEM 12.
Let R be a commutative ring and I be an ideal which is contained in a prime ideal P . Prove that the collec-
tion of prime ideals contained in P and containing I has a minimal member.

PROBLEM 13.
Let X be a finite set and let R be the ring of functions from X into the field R of real numbers. Prove that an
ideal M of R is maximal if and only if there is an element a ∈ X such that

M = {
f | f ∈ R and f (a) = 0

}
.

PROBLEM 14.
Let R be a commutative ring and suppose the I , J , and K are ideals of R. Prove that if I ⊆ J ∪K , then I ⊆ J
or I ⊆ K .
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3
RINGS LIKE THE INTEGERS

3.1 INTEGRAL DOMAINS

The ring 〈Z,+, ·,−,0,1〉 of integers is one of the most familiar mathematical objects. Its investigation lies at
the heart of number theory that, together with geometry, is among the oldest parts of mathematics. This
ring is commutative and has a host of other very nice properties. Among these is that the product of any
two nonzero integers must itself be nonzero. This property may fail, even in rings closely connected to the
ring of integers. For example, let R be the direct square of the ring of integers. The elements of this ring
will be ordered pairs of integers with the ring operations defined coordinatewise. That is

(a,b)+ (c,d) = (a + c,b +d)

(a,b) · (c,d) = (ac,bd)

−(a,b) = (−a,−b)

The zero of R is the pair (0,0) while the unit (the one) is (1,1). But observe that the product of (1,0) with
(0,1) is (1 ·0,0 ·1) = (0,0).

A ring D is called an integral domain provided

(a) D is a commutative ring,

(b) 0 and 1 name different elements of D , and

(c) If a,b ∈ D and a 6= 0 6= b, then ab 6= 0.

Integral domains used to be called by a more charming name: domains of integrity. Condition (b) above is
equivalent to the stipulation that integral domains must have at least two elements. Condition (c) can be
replaced by either of the following conditions.

(c′) If a,b ∈ D and ab = 0, then either a = 0 or b = 0.

(c′′) If a,b,c ∈ D with a 6= 0 and ab = ac, then b = c

Condition (c′) is just a contrapositive form of Condition (c). Condition (c′′) is the familiar cancellation law.
The graduates student can find amusement by showing the equivalence of this condition.

26
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While, as observed above, the direct product of a system of integral domains need not be an integral
domain (is it ever?), every subring of an integral domain will be again an integral domain. What about
homomorphic images of integral domains? Well, the trivial one-element ring is a homomorphic image of
every ring, including every integral domain, and the trivial ring is not an integral domain. But suppose
D is an integral domain and h is a homomorphism mapping D onto the nontrivial ring S. Must S be an
integral domain? Certainly, conditions (a) and (b) hold for S. Consider a concrete example. Let I be the set
of integers that are multiples of 4. It is easy to check that I is an ideal of the ring of integers. The quotient
ring Z/I has just four elements:

0+ I 1+ I 2+ I and 3+ I .

In the quotient ring we have the product (2+ I ) · (2+ I ) = 2 ·2+ I = 4+ I = 0+ I . This violates condition (c)
in the definition of integral domain. So while some homomorphic images of some integral domain will
be integral domains, it is not true generally. Perhaps some property of the ideal I would ensure that the
quotient ring is an integral domain.

Let R be a commutative ring and let I be an ideal of R. I is said to be a prime ideal provided

• I is a proper ideal of R [that is, I 6= R], and

• if a,b ∈ R with ab ∈ I , then either a ∈ I or b ∈ I .

The graduate students can prove the following theorem by chasing definitions.

Theorem 3.1.1. Let R be a commutative ring and let I be an ideal of R. R/I is an integral domain if and
only if I is a prime ideal of R.

Suppose R is a ring. Consider the list of elements of R below:

1,1+1,1+1+1,1+1+1+1, . . . .

This looks like a list of the positive integers, but we mean something different. The element 1 is the unit
of multiplication in R and + names the addition operation in R. The ring R may not contain any integers
at all. The list above might even be finite, depending on the ring R. If the list is infinite we say that R has
characteristic 0. If the list is finite, then (as pigeons know) two distinct members of this list must actually
be the same element. That is

1+·· ·+1︸ ︷︷ ︸
n times

= 1+·· ·+1︸ ︷︷ ︸
n times

+1+·· ·+1︸ ︷︷ ︸
k times

for some positive natural numbers n and k. This entails that

0 = 1+·· ·+1︸ ︷︷ ︸
k times

for some positive natural number k. In this case, we say that the characteristic of R is the smallest such
positive natural number. On reflection, it might have been better to say that rings of characteristic 0 had
infinite characteristic. However, the use of characteristic 0 for this notion is so well entrenched that we are
stuck with it.

The characteristic of a ring R is a useful invariant of R. It will play a prominent role in the spring semester
during our development of the theory of fields. Observe that every finite ring must have a characteristic
that is not 0. Because 1 must belong to every subring of R, we see that all the subrings of R have the same
characteristic as R. On the other hand, the homomorphic images of R may have characteristic differing
from the characteristic of R. To begin with, trivial rings have characteristic 1 (these are the only rings of



3.2 Principal Ideal Domains 28

characteristic 1) and trivial rings are homomorphic images of every ring. The ring of integers has charac-
teristic 0, but Z/(6) evidently has characteristic 6. On the other hand, it is easy to verify (do it, why not?)
that the characteristic of a homomorphic image of R can be no larger than the characteristic of R (well,
taking 0 to be larger than all the positive natural numbers. . . ). We leave it to the eager graduate students to
figure out the characteristic of R×S when the characteristic of R is r and the characteristic of S is s.

Here is a useful fact.

Fact. Let D be an integral domain. The characteristic of D is either 0 or it is a prime number.

We won’t prove this, but here is a hint as to why an integral domain cannot have characteristic 6.

0 = 1+1+1+1+1+1 = 1 · (1+1+1)+1 · (1+1+1) = (1+1) · (1+1+1).

3.2 PRINCIPAL IDEAL DOMAINS

A route to a deeper understanding of the ring of integers is to investigate the congruence relations of this
ring. This is the route chosen by Gauss in his 1801 masterpiece Disquistiones Arithmeticæ. Of course, we
see that the investigation of congruences of a ring amounts to the investigation of its ideals. The notion
of an ideal of a ring arose in the work of Kummer, Kronecker, and Dedekind in the second half of the
nineteenth century to be refined still later by Hilbert and by Emmy Noether. Still, the discoveries of Gauss
needed changes of only the most modest kind to fit with the later theoretical apparatus.

We begin with an important observation that surely must have been known to Euclid.

A Key Fact About the Integers. Let d be any nonzero integer and let n be any integer. There are unique
integers q and r satisfying the following constraints:

(a) n = qd + r , and

(b) Either r = 0 or 0 < r < |d |.
Graduate students with itchy fingers who turn their hands to this are advised that there are two things to

show: the existence of integers q and r and the uniqueness of these integers. Here is a hint. Consider the
set {|n−xd | | x ∈Z}. This is a set of natural numbers. It is nonempty (why?). Every nonempty set of natural
numbers has a least element.

The uniquely determined integers q and r mentioned in this Key Fact are called the quotient of n upon
division by d and the remainder of n upon division by d , respectively. We will also call r the residue of n
upon division by d .

Let I be any nontrivial ideal of the ring of integers. Since I is not trivial, it must have a member other
than 0 and, because I is an ideal, there must be a positive integer in I . Hence there must be a least positive
integer d in I . Now let n ∈ I be chosen arbitrarily. Using the Key Fact, pick integers q and r so that

(a) n = qd + r , and

(b) Either r = 0 or 0 < r < |d |.
Then r = n −qd . Notice that n,d ∈ I because that’s the way we chose them. So r = n −qd ∈ I because I is
an ideal. But 0 < r < |d | = d is impossible, by the minimality of the choice of d . So we conclude that r = 0
and therefore that n is a multiple of d . Thus

I = {qd | q ∈Z} = (d).

So we have the conclusion that every ideal of the ring of integers is generated by some one of its members
(and, in fact, by the smallest postive integer belonging to the ideal if the ideal in not trivial).
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A principal ideal domain is an integral domain for which every ideal is generated by some one of its
members. In an arbitrary ring, we will say an ideal is principal provided it is generated by some one of its
members. So a principal ideal domain is an integral domain for which every ideal is principal.

The ring of integers is a principal ideal domain. Many interesting properties of the ring of integers also
hold for principal ideal domains in general. This includes the powerful Fundamental Theorem of Arith-
metic:

Every nonzero integer, other than 1 and −1, can be written in a unique way as a product of
primes.

In order to formulate this result for rings more generally, we need to introduce some further notions.
A unit in a commutative ring is an element u such that there is an element v in the ring so that uv =

1 = vu. So a unit is just an element with a multiplicative inverse. The units of the ring of integers are just
1 and −1. (Notice the appearance of these numbers in the statement above.) Two elements a and b of a
commutative ring are said to be associates provided au = bu for some unit u. It is routine (and you know
the routine when the word routine comes up in these notes. . . ) to show that relation “is an associate of” is
an equivalence relation on any commutative ring. We will use a ∼ b to denote that a and b are associates.
Do you think ∼ is a congruence relation on the ring?

An element a of a commutative ring is said to be irreducible provided it is neither 0 nor a unit and if
a = bc for some elements b and c in the ring, then either b is a unit or c is a unit. So irreducible elements
of a ring are the ones that cannot be factored, except in some trivial manner. (Observe that 2 = (−1)·(−1)·1
is a factorization of the integer 2 is such a trivial manner.).

An integral domain D is said to be a unique factorization domain provided

(a) Every nonzero nonunit in D can be expressed as a (finite) product of irreducibles.

(b) If m and n are natural numbers and a0, a1, . . . , am−1 ∈ D and b0,b1, . . . ,bn−1 ∈ D are irreducibles such
that

a0a1 . . . am−1 ∼ b0b1 . . .bn−1,

then m = n and there is a permutation σ of {0,1, . . . ,m −1} so that

ai ∼ bσ(i ) for all i with 0 ≤ i < m.

The point of the permutationσ is that we don’t really want to consider 2·3 and 3·2 as distinct factorizations
of 6. Observe that stipulation (a) asserts the existence of a factorization into irreducibles, while stipulation
(b) asserts the uniqueness of such factorization.

The Fundamental Theorem of Arithmetic asserts that the ring of integers is a unique factorization do-
main. So is every principal ideal domain and that is what we tackle below.

You might wonder that we have used the word “irreducible” instead of “prime” in formulating these no-
tions. (You might also be wondering now if prime ideals have anything to do with primes. . . .) Euclid
realized long ago that an irreducible (positive) integer p had the property

If p | ab, then either p | a or p | b.

Here p | a means that p divides a—-that is, a = pc for some integer c. The divisibility relation, denoted by
|, makes sense in any ring and we use it without further comment.

We will say that an element p of a commutative ring is prime provided p is neither 0 nor a unit and for
all a and b in the ring

If p | ab, then either p | a or p | b.
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The primeness condition is just that every irreducible element is prime. Incidentally, the converse is al-
ways true in any integral domain: a prime element is always irreducible. Indeed, if a is prime and a = bc,
then we see that either a | b or a | c. Consider, for instance, the first alternative. Pick d so that b = ad . Then
a ·1 = bc = adc. Now cancel a (we are in a integral domain) to obtain 1 = dc. This means that c is a unit.
The second alternative is similar.

An attempt to factor a nonzero nonunit a into irreducibles might look like this:

a

a0

a00 a01

a1

a10 a11

This tree represents two steps in an attempt to factor a.

a = a0a1

a0 = a00a01

a1 = a10a11

So we have the factorization a = a00a01a10a11. The diagram displayed is a tree (look at it while standing
on your head) with three levels. Each node branches into two succeeding nodes (except the nodes on
the bottom level). This tree has four branches that start at the root (a) and extend down to the bottom
level. Now our intention is that all the nodes should themselves be nonzero nonunits. So if we run into an
irreducible then we will not attempt to factor it. Here is a tree showing a factorization of the integer 24.

24

4

2 2

6

2 3

Suppose we try again. Here is another way to factor 24.

24

3 8

2 4

2 2

These trees and their labellings reflect the actual processes of the factorizations. We see that they are
not unique. But the irreducibles (counting how often they appear but not the order of their appearance)
is unique. In each of these trees, every node has either 0 or 2 succeeding nodes, since multiplication is a
two-place operation. In any case, each node has only finitely many nodes as immediate successors. We
say the tree is finitely branching. There is a useful combinatorial fact about trees that comes into play.

König’s Infinity Lemma. Any finitely branching tree with infinitely many nodes must have an infinite
branch.

Proof. We can build the desired infinite branch by the following recursion.
Let a0 be the root of the tree. There are only finitely many nodes immediately below a0. Every node, apart

from a0 lies somewhere below a0. Since the union of finitely many finite sets is always finite, there must
be a node immediately below a0 which itself has infinitely many nodes below it. Let a1 be such a node.
Now apply the same reasoning to a1 to obtain a node immediately below a1 that is above infinitely many
nodes. Continuing in this way, we obtain a branch a0, a1, a2, . . . that is infinite.
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The graduate students should be a bit unhappy with the informality of this proof. For one thing, it de-
scribes an infinite process. For another it is not terribly specific about how to pick any of the nodes along
the infinite branch, apart from a0. Producing the infinite branch requires making infinitely many choices.
These issues might be addressed in two stages. The first stage would secure the validity of definition by
recursion. To see what is at issue consider the following familiar definition of the factorial function.

0! = 1

(n +1)! = n!(n +1) for all natural numbers n

The issue is two-fold: first, is there any function, here indicated by !, that fulfills the two conditions laid out
above? Second, is there exactly one such function? After all definitions should be, well, definite. Here is a
slightly more general situation. Suppose that a is a member of some set U and h is a function from U ×N
into U . Is there exactly one function f from the natural numbers to U satisfying the following constraints?

f (0) = a

f (n +1) = h( f (n),n +1) for all natural numbers n.

The answer to this question is YES. It is among the simplest cases of a theorem known as the Recursion
Theorem. You might try to prove this—remember there is an existence part and a uniqueness part. Induc-
tion may help in your proof.

After securing some version of the Recursion Theorem in the first stage, the second stage of cleaning
up König’s Infinity Lemma is to remove the ambiguity about how to pick the “next element of the infinite
branch”. This amounts to producing a suitable function to play the role of h in your definition by recursion.
Here is what you need h to accomplish. Call a node in the tree good provide there are infinitely many
nodes beneath it. Given a good node c we see that the set of good nodes immediately beneath it is always
a nonempty set. We want h(c,n +1) to pick some element of this nonempty set. (In our case, h turns out
not to depend on its second input.) Functions like h always exist. They are called choice functions.

A commutative ring has the divisor chain condition provided whenever a0, a1, a2, . . . are elements of the
ring so that ak+1 | ak for all natural numbers k, then there is a natural number n so that an ∼ an+k for all
natural numbers k. This means that, ignoring the distinction between associates, every descending divisor
chain is finite.

Theorem Characterizing Unique Factorization Domains. Let D be an integral domain. D is a unique
factorization domain if and only if D has both the primeness condition and the divisor chain condition.

Proof. First, suppose that D has the divisor chain condition and the primeness condition. Let a ∈ D be any
nonzero nonunit. Consider any factorization tree with root a. This tree is finitely branching (in fact, the
branching is bounded by 2) and it cannot have any infinite branch, according the the divisor chain condi-
tion. By König the factorization tree is finite. So we see that a can be written as a product of irreducibles.

Now let a0 . . . am−1 ∼ b0b1 · · ·bn−1 be products of irreducibles. We assume, without loss of generality, that
n ≤ m. We will deduce the required uniqueness by induction on m. Leaving in the hands of the capable
graduate students the base step (m = 0) of the inductive argument, we turn to the inductive step. Let
m = k + 1. Now since ak is irreducible, the primeness condition ensures that it is also prime. Evidently,
ak | b0 . . .bn−1. A little (inductive) thought shows us that since ak is prime there must be j < n so that
ak | b j . Since b j is irreducible, we find that ak ∼ b j . Using the cancellation law (we are in an integral
domain!) we see that

a0a1 . . . ak−1 ∼ b0 . . .b j−1b j+1 · · ·bn−1

or something easier if j = n−1. The left side has k = m−1 factors in the product whereas the right side has
n −1 factors. Applying the induction hypothesis, we find that m −1 = n −1 (and hence that m = n) and we
can pick a one-to-one map σ′ from {0,1, . . . ,m −2} onto {0,1, . . . , j −1}∪ { j +1, . . . ,n −2} so that

ai ∼ bσ′(i ) for all i < m −1.
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Now extendσ′ to the set {0,1,2, . . . ,m−1} by puttingσ(m−1) = j . Thenσ is a permutation of {0,1,2, . . . ,m−
1} that fulfills the uniqueness requirement. So D is a unique factorization domain.

Second, suppose for the converse, that D is a unique factorization domain. Let us check the divisor chain
condition. Let · · · | a2 | a1 | a0 = a be a divisor chain that is proper in the sense that no entry in the chain
is an associate of any other entry. We must show that this chain is finite. For i less than the length of
our chain, pick bi+1 so that ai = bi+1ai+1. (This will be a proper factorization with neither ai+1 nor bi+1

being units.) Let a = c0 . . .cn−1 be a factorization of a into irreducibles. Suppose, for contradiction, that our
divisor chain has more than n entries. Notice

c0c1 . . .cn−1 = a = b0b1 . . .bn−1bn an .

Each of b0, . . . ,bn as well as an can be written as a product of irreducibles. Clearly the right side of the equa-
tion above has more factors that the left side. This violates the unique factorization property, providing the
contradiction we seek. So we find that every unique factorization domain has the divisor chain condition.

To see that primeness condition, suppose a,b,c ∈ D where a is irreducible and a | bc. Pick d ∈ D so that
bc = ad . Factor b = b0 . . .bm−1,c = c0 . . .cn−1 and d = d0 . . .d`−1 into irreducibles. This gives

b0 . . .bm−1c0 . . .cn−1 = ad0 . . .d`−1

By the uniqueness of factorizations, there must be j so that either a ∼ b j (and j < m) or a ∼ c j (and j < n).
In the first alternative, we get a | b while in the second we get a | c.

Example. The ring Z[
p−5] is an integral domain that is not a unique factorization domain.

Proof. The ring Z[
p−5] is, by definition, the smallest subring of the field C of complex numbers that in-

cludes Z∪ {
p−5}. Since it is a subring of a field it must be an integral domain. You probably see that

Z[
p−5] = {a +b

p−5 | a,b ∈Z}.

To see that Z[
p−5] is not a unique factorization domain consider the following factorizations of 9.

9 = 3 ·3 = (2+p−5)(2−p−5).

What we need is to show that each of 3,2+p−5, and 2−p−5 are irreducible and the none of these is an
associate of any other of them. We do this with the help of a function N :Z[

p−5] →N defined by

N (a +b
p−5) = a2 +5b2 for all integers a and b.

This function has the following nice properties.

• N (0) = 0.

• N (1) = 1.

• N (r t ) = N (r )N (t ) for all r, t ∈Z[
p−5].

Functions with these nice properties are sometimes called norms.
First, let’s determine the units of Z[

p−5]. Suppose that u is unit and pick v so that uv = 1. Then

1 = N (1) = N (uv) = N (u)N (v).

Since N outputs natural numbers, we see that N (u) = 1. Pick integers a and b so that u = a +b
p−5. Then

1 = N (u) = N (a +b
p−5) = a2 +5b2.
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Notice that 5b2 cannot be 1. It follows that b = 0 and a = 1 or a =−1. This means that our unit u is either 1
or −1. So we find that the units of Z[

p−5] are just 1 and −1. It follows at once that none of 3,2+p−5, and
2−p−5 is an associate of any other of them.

It remains to see that our three members listed of Z[
p−5] are irreducible. Below is an argument for

2+p−5. I leave the other two listed elements in the capable hands of the graduate students. Pick r, t ∈
Z[

p−5] so that 2+p−5 = r t . We need to see that one of r and t is a unit. So consider

9 = 4+5 = N (2+p−5) = N (r t ) = N (r )N (t ).

The only possibilities for N (r ) are 1,3, and 9. If N (r ) = 1, then, as we saw above, r must be a unit. Likewise,
if N (r ) = 9, then N (t ) = 1 and t is a unit. So it only remains to consider the case that N (r ) = 3. Pick integers
a and b so that r = a+b

p−5. Then 3 = N (r ) = N (a+b
p−5) = a2+5b2. The only possibility for b is 0, since

otherwise a2 +5b2 must be at least 5. But then 3 = a2. Since there is no integer a whose square is 3, we
reject the alternative that N (r ) = 3.

In this way, we see that 9 has two quite distinct factorizations into irreducibles in Z[
p−5]. So Z[

p−5] is
not a unique factorization domain.

The Fundamental Factorization Theorem for Principal Ideal Domains. Every principal ideal domain is
a unique factorization domain.

Proof. We just need to demonstrate that every principal ideal domain has both the primeness condition
and the divisor chain condition.

Let D be a principal ideal domain and suppose that a ∈ D is irreducible and that a | bc where b,c ∈ D .
We must argue that either a | b or a | c. So let us reject the first alternative: we assume a - b. Let M = (a).
My contention is that M is maximal among proper ideals. Certainly, M 6= D since a is not a unit. So M is a
proper ideal. Suppose that I is an ideal that includes M . Since I is a principal ideal pick d to be a generator
of of I . Now a ∈ M ⊆ I = (d). So a is a multiple of d . That is, a = d w for some w . Since a is irreducible,
either d is a unit, in which case I = D , or w is a unit, in which case M = I . In this way, we see that M is
maximal. Since we have a - b we see that b ∉ M . So the ideal (a,b) generated by a and b must be all of D .
This means 1 ∈ (a,b). So pick x, y ∈ D so that

1 = xa + yb.

This yields c = xac+ybc. But bc ∈ M = (a) since a | bc and xac ∈ (a) as well. So c ∈ (a), since (a) is an ideal.
This means that a | c and so the primeness condition holds.

Consider the divisor chain condition. Suppose that · · · | a2 | a1 | a0 = a is a proper divisor chain in D. Then

(a0) á (a1) á (a2) á . . .

is a properly increasing chain of ideals in D. Let I be the union of this chain. We know that the union of
any chain of ideals is again an ideal. So I is an ideal. Let d be a generator I . Pick a natural number k so
that d ∈ (ak ). Then I = (d) ⊆ (ak ) ⊆ I . Thus, I = (ak ) and the chain of ideals displayed above must be finite.
This means our original divisor chain must also be finite, proving the divisor chain condition.

So we have an immediate corollary.

The Fundamental Theorem of Arithmetic. The ring of integers is a unique factorization domain.

Actually, the line of reasoning we have just described is a kind of reorganization of the reasoning in
Gauss’s Disquisitiones.

We can extract from our proof of the Fundamental Factorization Theorem for Principal Ideal Domains
the following result:
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In a principal ideal domain every prime ideal is maximal among all the proper ideals.

To see it, let P be a prime ideal of the principal ideal domain D and pick a so that P = (a). Observe that
b ∈ P if and only if a | b for all b ∈ D . This allows us to conclude that a is prime. By a contention mentioned
in the proof of the Fundamental Factorization Theorem, we see that P is a maximal ideal.

The converse, that every maximal proper ideal is prime, holds in every commutative ring R. For suppose
M is a maximal proper ideal and ab ∈ M . In case b ∉ M we have (b, M) = R. So we can pick u ∈ R and
w ∈ M so that 1 = ub +w . It follows that a = uab + aw . Since both ab ∈ M and w ∈ M we conclude that
a ∈ M , as desired.

Of course, this more general business is only interesting if there are significant examples of principal
ideal domains other than the ring of integers. There are and we will meet some others soon.

3.3 DIVISIBILITY

We have already used divisibility above. Given a commutative ring R we say that an element a divides an
element b provided there is an element c so that ac = b. We denote this relation by a | b. Observe that |
is a two-place relation on R. Moreover, all the graduate students will see easily that this relation is both
reflexive and transitive. It just misses being an order relation because it fails the antisymmetry property—
that is, a | b and b | a may hold even though a 6= b. For example, 1 | −1 and −1 | 1 in the ring of integers,
but −1 6= 1. Suppose R is an integral domain and a | b and b | a. Pick elements u and v so that au = b and
bv = a. Then we have a(uv) = a. This means that either a = 0 or uv = 1. In the first alternative we find
that b = 0 as well, so that a = 0 = b, while in the second alternative we see that a ∼ b. So in either case a
and b are associates. The relation of association is an equivalence relation on R and up to this equivalence
relation, the divisibility relation is an ordering.

Let us suppose that R is an integral domain and consider the divisibility ordering | on (the ∼ classes of)
R. The element 0 is the largest element in this ordering since a | 0 for all a (because a ·0 = 0). Likewise the
element 1 is the least element of this ordering (well, actually we are ordering the ∼ classes and we really
mean the set of units is the least thing. . . ). The figure below sketches part of the divisibility ordering on the
natural numbers (these are the representatives of the ∼-classes of the integers by taking the nonnegative
member of each class).

. . .

1

2 3

4

5

6

7

8

9 10

11

12

13

1425

18 27

0

A Finite Fragment of the Divisibility Relation on the Natural Numbers
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The set of natural numbers ordered by divisibility has some properties that may be discerned from this
diagram (or perhaps more easily if more of the diagram were to be filled in. . . ). As noted, it has a least
element and a greatest element. Also the elements are evidently organized into levels, depending on the
number of factors occurring in their decomposition into primes. So 8,12,18, and 27 belong on the same
level since they each have 3 factors in their decompositions:

8 = 2 ·2 ·2

12 = 2 ·2 ·3

18 = 2 ·3 ·3

27 = 3 ·3 ·3

In this way, 1 is the only element at level 0, which suggests we might think it has 0 factors in its decom-
position into primes. The primes themselves occupy level 1, and so on. In addition to the top element 0,
there will be countably many levels—one level for each natural number—and each level, apart from level
0, is itself countably infinite (an extension of a famous result of Euclid: the graduate students are invited to
prove this extension).

Another thing to notice is that any two elements, for example 6 and 9, have a greatest lower bound (in
this case 3) and a least upper bound (in this case 18). Ordered sets in which every pair of distinct elements
has both a least upper bound and a greatest lower bound are called lattice-ordered sets. It is important to
realize that the words “greatest” and “least” refer to divisibility and not to that other familiar order ≤. In
rings, we issue special names. Given elements a and b of a commutative ring we say that an element d is a
greatest common divisor of a and b provided

• d | a and d | b, and

• if e | a and e | b, then e | d .

You should notice that greatest common divisors are not unique—both 3 and −3 are greatest common
divisors of 6 and 9. However, in any integral domain, any two greatest common divisors of a and b must
be associates. Likewise, we say an element ` is a least common multiple of a and b provided

• a | ` and b | `, and

• if a | m and b | m,then ` | m.

Like greatest common divisors, least common multiples need not be unique. In integral domains, they are
unique up to association. We say that the elements a and b are relatively prime provided 1 is a greatest
common divisor of a and b.

While in the ring of integers, it is easy to see that greatest common divisors and least common multiple
always exist, this is less obvious for other rings. After some reflection, you can convince yourselves that
the existence of greatest common divisors and least common multiples can be established with the help of
the Fundamental Theorem of Arithmetic. Only a bit more reflection leads us to be conclusion that greatest
common divisors and least common multiples always exist in unique factorization domains.

It takes a bit more work (but what else should the graduate students be doing?) to establish the following
fact.

Fact. Let D be an integral domain. If any two elements of D have a greatest common divisor, then D has
the primeness condition.

This means that in the Theorem Characterizing Unique Factorization Domains we can replace the prime-
ness condition with the condition that any pair of elements have a greatest common divisor.
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3.4 THE CHINESE REMAINDER THEOREM

The Chinese Remainder Theorem, the focus of this section, appeared in its earliest known form in China
in the 3rd century C.E. and, after various refinements, it has taken its place among the most widely known
theorems of number theory. It actually holds in all commutative rings and even in some much broader
contexts. In its most familiar form, it deals with the simultaneous solution of certain congruences with
respect to pairwise relatively prime moduli. To frame this for commutative rings in general we will replace
the integer moduli by ideals. Suppose that a and b are relatively prime integers. Observe that the ideal
(a)+ (b) must have a generator d since the ring of integers is a principal ideal domain. Thus (a)+ (b) = (d).
Because (a) ⊆ (d) we see that d | a. Likewise, d | b. So d is a common divisor of a and b. It must be a
greatest common divisor of a and b since (d) is the least ideal that contains both (a) and (b). But recall
that a and b are relatively prime. Hence (d) = (1). So we can draw two conclusions:

1 = au +bv for some integers u and v

and that (a)+ (b) =Z. Actually, either of these conclusions imply that a and b are relatively prime.

The Chinese Remainder Theorem. Let R be a commutative ring and let I0, I1, . . . , In−1 be finitely many
ideals of R such that

I j + Ik = R for all j ,k < n with j 6= k.

Let a0, a1, . . . , an−1 ∈ R. There is some b ∈ R such that

b ≡ a0 mod I0

b ≡ a1 mod I1

...

b ≡ an−1 mod In−1.

Proof. The first interesting case happens when n = 2. Let us examine it. Since I0+I1 = R we can pick r0 ∈ I0

and r1 ∈ I1 so that 1 = r0 + r1. Put b = r0a1 + r1a0. Then observe

b = r0a1 + r1a0 ≡ 0 ·a1 +1 ·a0 mod I0

≡ a0 mod I0

b = r0a1 + r1a0 ≡ 1 ·a1 +0 ·a0 mod I1

≡ a1 mod I1

So the stipulations of the theorem are strong enough to assert that each pair of the listed congruences
can be satisfied by some appropriately chosen element b.

Now for each j with 0 < j < n, we have that I0 + I j = R. So pick s j ∈ I0 and t j ∈ I j so that 1 = s j + t j . Then
we obtain

1 = (s1 + t1)(s2 + t2) . . . (sn−1 + tn−1).

Using the laws of commutative rings and the properties of ideals we can expand this to obtain

1 = s + t1t2 . . . tn−1

where s ∈ I0. Notice that t1t2 . . . tn−1 ∈
⋂

0< j<n
I j . This means that

I0 +
⋂

0< j<n
I j = R.
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As we observed above, there is an element d0 ∈ R so that

d0 ≡ 1 mod I0

d0 ≡ 0 mod
⋂

0< j<n
I j .

Since
⋂

0< j<n I j ⊆ Ik for all k with 0 < k < n, we find that

d0 ≡ 1 mod I0

d0 ≡ 0 mod I j for all j with 0 6= j < n.

We can apply this reasoning that worked for the index 0 to any of the indices. In this way, for each k < n we
can have dk ∈ R such that

dk ≡ 1 mod Ik

dk ≡ 0 mod I j for all j with k 6= j < n.

Now put b =∑
k<n dk ak . Then for all j < n we obtain

b = d0a0 +·· ·+d j−1a j−1 +d j a j +d j+1a j+1 +·· ·+dn−1an−1

b ≡ 0 ·a0 +·· ·+0 ·a j−1 +1 ·a j +0 ·a j+1 +·· ·+0 ·an−1 mod I j

b ≡ a j mod I j

as desired.

We can cast the Chinese Remainder Theorem as a structure theorem for commutative rings. Recall that in
§ 1.3 we discussed direct products of algebraic systems in general. For commutative rings we can enhance
the fact at the end of that section.

The Chinese Remainder Theorem: Structural Version. Let R be a commutative ring and I0, I1, . . . , In−1 be
a finite list of ideals of R. Then

R
/⋂

j<n I j is embeddable into R/I0 ×·· ·×R/In−1.

Moreover, if I j + Ik = R for all j and k with j ,k < n and j 6= k, then the embedding is an isomorphism.

Proof. We need a map h from R into the direct product whose kernel is
⋂

j<n I j . Then we can invoke the
Homomorphism Theorem to obtain the desired embedding. The map is the one that comes most easily to
hand:

h(a) := (a + I0, a + I1, . . . , a + In−1) for all a ∈ R.

This map is assembled from the quotient maps. It is routine to demonstrate that it is a homomorphism
and that its kernel is

⋂
j<n I j . An appeal to the Homomorphism Theorem gives us the desired embedding.

So the first part of this theorem just rests on general considerations. The power resides in the “moreover”
part of the statement. For that, what is needed is to see that h maps R onto the direct product.

Consider any element of the direct product. It has the form

(a0 + I0, a1 + I1, . . . , an−1 + In−1).

We must see that there is a b ∈ R so that

h(b) = (a0 + I0, a1 + I1, . . . , an−1 + In−1).
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Given the definition of h, we see that this is the same as finding a b ∈ R so that

b + I j = a j + I j for all j < n.

In other words, that
b ≡ a j mod I j for all j < n.

Of course, this is precisely what the Chinese Remainder Theorem does for us.
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3.5 PROBLEM SET 3

ALGEBRA HOMEWORK, EDITION 3

FOURTH WEEK

MORE IDEALS

PROBLEM 15.
Let R be a commutative ring and let n be a positive integer. Let J , I0, I1, . . . , In−1 be ideals of R so that Ik is a
prime ideal for every k < n and so that J ⊆ I0 ∪·· ·∪ In−1. Prove that J ⊆ Ik for some k < n.

PROBLEM 16.
Let R be a nontrivial commutative ring and let J be the intersection of all the maximal proper ideals of R.
Prove that 1+a is a unit of R for all a ∈ J .

PROBLEM 17.
Let R be a commutative ring. Define

N := {a | a ∈ R and an = 0 for some positive integer n}.

(a) Prove that N is an ideal of R.

(b) Prove that N ⊆ P for every prime ideal P of R.

PROBLEM 18.
Let R be a commutative ring. An ideal Q of R is called primary provided, if ab ∈Q, then a ∈Q or bn ∈Q for
some natural number n. Prove that if Q is a primary ideal and Q = I0 ∩·· ·∩ In−1 where each I j is a prime
ideal, the Q = I j for some j < n.

PROBLEM 19.
Let R be a unique factorization domain.

(a) Let u be any element of R. Prove that there are only finitely many principal ideals that contain u.

(b) Prove that R satisfies the ascending chain condition,
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4
ZORN’S LEMMA

Zorn’s Lemma is a transfinite existence principle which has found a number of useful and informative
applications in algebra and analysis. While the Lemma bears the name of Max Zorn, equal credit should
be extended to Felix Hausdorff and Kazimierz Kuratowski who found closely related results decades before
Zorn published applications of the Lemma in 1935. Indeed, Zorn supplied no proof, rather he said that he
would give one in a later paper, which he never published.

A chain or linearly ordered set is just a partially ordered set in which any two elements are comparable.
We also refer to any subset of a partially ordered set as a chain when it is linearly ordered by the ordering
inherited from the larger ordered set. This means that, where a and b are elements of the chain and ≤
denotes the order relation, we have either a ≤ b or b ≤ a. Let C be a subset of a partially ordered set P and
b ∈ P . We say that b is an upper bound of C provided a ≤ b for all a ∈C . We say b is a strict upper bound
provided a < b for all a ∈C . An element d is maximal in C if d ∈C and whenever d ≤ a ∈C it follows that
d = a.

Zorn’s Lemma. Let P be a partially ordered set and suppose that every chain in P has an upper bound in P.
Then P has a maximal member.

Proof. Let g be a function which chooses an element from each nonempty subset of P . That is the domain
of g is the collection of nonempty subsets of P and g (D) ∈ D for each nonempty subset D ⊆ P . The function
g , which is called a choice function, exists according to the Axiom of Choice.

Denote the ordering on P by ≤. For each set C ⊆ P let Ĉ denote the set of all strict upper bounds of C .
Notice that the empty set ∅ is a chain in P . According to our hypothesis it must have an upper bound in
P . Since ∅ is empty this upper bound must be a proper upper bound. This means ∅̂ is nonempty. (Hence,
P is nonempty.)

We will say that K ⊆ P is a g -chain provided

• K is not empty.

• K is a chain.

• if C ⊆ K and C has a strict upper bound in K , then g (Ĉ ) is a minimal member of Ĉ ∩K .

Here is a useful fact about how elements in g -chains compare.

Fact. Let K and J be g -chains so that a ∈ K − J and b ∈ J . Then b < a.

40
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Proof. Let C = {d | d ∈ K ∩ J and d < a}. So C has a strict upper bound in K . Since K is a g -chain, we have
g (Ĉ ) is a minimal member of Ĉ ∩K . Also, g (Ĉ ) ≤ a. Now Ĉ ∩ J must be empty, since otherwise g (Ĉ ) ∈ K ∩ J ,
entailing that g (Ĉ ) 6= a since a ∉ J , putting g (Ĉ ) ∈C , which is impossible. So if b ∈ J then there is d ∈C with
b ≤ d < a. Hence, b < a.

Claim. The union of any nonempty collection of g -chains is a g -chain.

Proof. Let L be a union of some nonempty family F of g -chains. We first have to check that L is linearly
ordered. So suppose a,b ∈ L. Pick K , J ∈ F so that a ∈ K and b ∈ J . We need to show that a and b are
comparable. We might as well consider that a ∉ J , since if a ∈ J we see, J being a chain, that a and b are
comparable. But the Fact above then tells us that b < a, so a and b are comparable. This means that L is a
chain.

Of course, L is not empty since it is union of a nonempty collection of nonempty sets. So it remains to
verify the last condition in the definition of g -chain. To this end, let C ⊂ L such that C has a strict upper
bound b ∈ L. Pick J ∈ F so that b ∈ J . To see that C ⊆ J , pick a ∈ C and, for contradiction, suppose a ∉ J .
Pick K ∈F so that a ∈ K . Now the Fact yields b < a. But here we also have a < b. So we find C ⊆ J . Since J is
a g -chain, we have g (Ĉ ) is a minimal member of Ĉ ∩ J . But we need to see that g (Ĉ ) is a minimal member
of Ĉ ∩L. Suppose not. Pick a′ ∈ Ĉ ∩L so that a′ < g (Ĉ ). To simplify notation, let g (Ĉ ) = b′. So a′ < b′. Now
pick K ′ ∈F so that a′ ∈ K ′. Now the Fact above again yields b′ < a′, which is contrary to a′ < b′. This verifies
for L the last condition in the definition of g -chain. So L is a g -chain, as claimed.

Now let M be the union of the collection of all g -chains. Were M̂ nonempty we could form M ∪ {g (M̂)},
which would be a chain properly extending M . A routine check of the definition shows that M ∪ {g (M̂)}
would again be a g -chain. This produces g (M̂) ∈ M ∪ {g (M̂)} ⊆ M . But we know g (M̂) ∉ M . So M̂ must be
empty. So M has no strict upper bounds. But by the hypothesis, every chain has an upper bound. So M
must have a largest element m. That is a ≤ m for all a ∈ M . As there is no strict upper bound of M , there
can be no element which is strictly above m. That is m is the maximal element we seek.

Zorn’s Lemma is proven.

Here is Felix Hausdorff’s version, published in 1914.

Hausdorff’s Maximality Principle. In a partially ordered set every chain is included in a maximal chain.

And here is the version of Kazimierz Kuratowski, published in 1922.

Kuratowski’s Maximality Principle. Every collection of sets, ordered by the inclusion relation ⊆ that has the
property that every well-ordered chain of sets in the collection has an upper bound in the collection, must
have a maximal member.

Each of these three maximality principles can be proved with the help of any of the others. It will be
inviting to the graduate students to work out the proofs.

There are many maximality principles and other kinds of assertions that certain kinds of infinite sets
must exist. There is one more worth mentioning here, since it is sometimes easier to apply than Zorn’s
Lemma.

To state it, we need another notion. A collection F of sets is said to have finite character provided X ∈F
if and only if every finite subset of X belongs to F.

The Teichmüller-Tukey Maximality Principle. Every nonempty collection of sets that has finite character
must have a maximal element.

Oswald Teichmüller published his paper in 1939 and, independently, John Tukey published his in 1940.
An immediate example of a collection of finite character is the collection of all linearly independent subsets
of a vector space. This leads almost at once to a proof that every vector space has a basis.

With Zorn’s Lemma in hand, the graduate students should be able to deduce the Teichmüller-Tukey
Lemma.
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5
RINGS LIKE THE RATIONALS

5.1 FIELDS

In the commutative ring of rational numbers every nonzero element has a multiplicative inverse—every
nonzero element is a unit. Other rings you are acquainted with have this property as well. A field is a
nontrivial commutative ring in which every nonzero element has a multiplicative inverse. Fields evidently
satisfy the cancellation law. So every field is an integral domain. Moreover, since every nonzero element
is a unit we see that every nontrivial ideal of a field must actually be the whole field. In other words, every
field has exactly two ideals: the trivial ideal and the whole field. Both of these ideals are principal ideals, so
every field is a principal ideal domain. So every field is also a unique factorization domain, but in itself, this
is not too interesting since fields have no nonzero nonunits to factor and there are no irreducible elements.

Theorem 5.1.1. Let R be a commutative ring and let I be an ideal of R. Then

(a) R is a field if and only if R has exactly two ideals.

(b) R/I is a field if and only if I is maximal among all the proper ideals of R.

Proof. For part (a) we have already observed the implication from left to right. For the converse, suppose
R has exactly two ideals and let a ∈ R be nonzero. We have to show that a is invertible. The ideal (a) must
be the whole of R, so in particular 1 ∈ (a). This means we can (and do) pick b ∈ R so that 1 = ab. So b is the
desired inverse of a.

Part (b) is an immediate consequence of part (a) and the Correspondence Theorem.

To simplify the language we will say that I is a maximal ideal of the ring R provided

(a) I is a proper ideal of R, and

(b) Either I = J or J = R whenever J is an ideal of R with I ⊆ J .

So the theorem above asserts, in part, that, for a commutative ring R, we have that R/I is a field if and only
if I is a maximal ideal of R.

The Maximal Ideal Theorem.

(a) Every proper ideal of a ring is included in a maximal ideal of the ring.

42
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(b) Every nontrivial commutative ring has a homomorphic image that is a field.

Proof. For part (a) let I be a proper ideal of the ring R. Let

F= {J | I ⊆ J and J is a proper ideal of R}.

Any maximal element of F will be a maximal ideal that includes I . We invoke Zorn’s Lemma to see that F
has a maximal member. Indeed, suppose C is a chain included in F. If C is empty, then I will be an upper
bound of C. So we suppose that C is not empty. Observe that

⋃
C is an ideal of R since it is a union of a

chain of ideals. Plainly, I ⊆⋃
C. Finally, were

⋃
C not proper we would have 1 ∈⋃

C. But that would mean
that 1 ∈ J for some J ∈C. However, the members of C belong to F so they are proper ideals. So we find that⋃
C is a proper ideal of R that includes I . This means that

⋃
C belongs to F. That is, every nonempty chain

in F has an upper bound in F. According to Zorn, F must have maximal members. This establishes part
(a).

Part (b) is an immediate consequence of part (a) and the first theorem in this section.

The Maximal Ideal Theorem was proven by Wolfgang Krull in 1929.

5.2 FIELDS OF FRACTIONS

In addition to the field of rational numbers, you are also acquainted with the field of real numbers, as well
as the field of complex numbers. We also have in hand finite fields like Z/(p), where p is a prime number.
This is because we know that (p) is a prime ideal of Z and we know that in a principal ideal domain prime
ideals are maximal. Some of these fields don’t seem much like the field of rational numbers. We know there
is a close connection between the integers and the rationals. We can build the field of rationals from the
ring of integers. An interesting thing is that the same procedure can be applied to any integral domain to
produce a closely associated field. Here is how.

Fix an integral domain D throughout this section. The idea is to enhance D by adjoining all the multiples
of the multiplicative inverses of the nonzero elements of D . There is a little wrinkle in this process. When
we do this for the integers we have to throw in 1

4 to ensure that 4 will have a multiplicative inverse and then
we have to throw in 2

4 = 2 · 1
4 . Of course, we have to identify 2

4 and 1
2 . There is a two-step process to smooth

out this wrinkle.
Let E = {(a,b) | a,b ∈ D with b 6= 0}. On E define the binary relation ³ by

(a,b) ³ (c,d) if and only if ad = bc

for all (a,b), (c,d) ∈ E . The eager graduate students will write out a proof that ³ is an equivalence relation
on E . As a second step, we name the equivalence classes in a convenient manner. For a,b ∈ D with b 6= 0
we put

a

b
:= {(c,d) | (c,d) ∈ E and (a,b) ³ (c,d)}.

So we have
a

b
= c

d
if and only if ad = bc,

for all a,b,c,d ∈ D with b 6= 0 6= d .
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Let F ′ = { a
b | a,b ∈ D with b 6= 0}. Our plan is to make F ′ into a field by defining the ring operations in

some appropriate manner. Here is how. For all a
b , c

d ∈ F let

a

b
+ c

d
:= ad + cb

bd
a

b
· c

d
:= ac

bd

−a

b
:= −a

b

0∗ := 0

1

1∗ := 1

1

The last two equations define the one and the zero of the ring of fractions. Of course, these definitions are
very familiar from the days in school when we learned how to deal with fractions. It is worth noting that
the soundness to these definitions depends on the fact that D is an integral domain—to ensure that bd 6= 0
when b 6= 0 6= d . Here is the question:

Is the algebra 〈F ′,+, ·,−,0∗,1∗〉 really a field?

Unfortunately, we seem to be forced to check all the equations defining commutative rings as well as
checking that every nonzero element has a multiplicative inverse. This checking is tedious but must be
done (by the graduate students!). The most strenuous case is checking the associative law for addition.
Here is a verification of a distributive law to show how it is done.

a

b

( c

d
+ e

f

)= a

b

c f +ed

d f

= a(c f +ed)

b(d f )

= a(c f )+a(ed)

b(d f )

= ((ac) f + (ae)d) ·1

((bd) f ) ·1

= (ac) f + (ae)d

(bd) f

1

1

= (ac) f + (ae)d

(bd) f

b

b

= (ac)(b f )+ (ae)(bd)

(bd)(b f )

= ac

bd
+ ae

b f

= a

b

c

d
+ a

b

e

f

In the reasoning above, we used 1
1 = b

b where we know b 6= 0. This is a little lemma that is helpful in the
other parts of the proof.

Let D ′ = { a
1 | a ∈ D}. It is easy to check that D ′ is a subuniverse of the field 〈F ′,+, ·,−,0∗,1∗〉 and that the

map sending a 7→ a
1 for a ∈ D is an embedding of D into the field. But we would rather regard D as a subring

of its field of fractions, just as we regard Z as a subring ofQ. We accomplish this by letting

F := D ∪ (F ′ \ {
a

1
mod a ∈ D}).
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We have to define the operations on F . Here is how to define addition for u, v ∈ F .

u + v :=


u + v if u, v ∈ D

u + v if u, v ∈ F ′
ub+a

b if u ∈ D and v = a
b ∈ F ′

a+vb
b if v ∈ D and u = a

b ∈ F ′

The first two lines of this may look a bit strange. The + in the first case refers to the addition in D, whereas
on the second line the + refers to the addition defined above over F ′. The other operations can be defined
in a similar fashion. In effect, what we have done is a bit of transplant surgery. We have sliced out D ′ and
put D in its place making sure to stitch things up so the operations work right. The result is a field F that
has D as a subring. This field F is called the field of fractions of the integral domain D.

We have provided one construction that starts with an integral domain D and ends up with an extension
F that can be rightfully called a “field of fractions”. However, it should be clear that this construction is
not really unique—it is possible to make small changes that will produce other fields that could also be
called fields of fractions but that are technically different from the one we have just constructed. There is,
however, a strong uniqueness result for fields of fractions.

Theorem on the Existence and Uniqueness of Fields of Fractions. Let D be any integral domain. There is
a field F such that D is a subring of F, and moreover, if S is any ring and K is any field so that S is a subring
of K and if h : D → S is any isomorphism from D onto S, then h has a unique extension to an embedding of
F into K.

Proof. We already established the existence of a field F of fractions. Suppose the field K and the embedding
h are given to us. We define the extension ĥ from F into K as follows. For any u ∈ F let

ĥ(u) =
{

h(u) if u ∈ D

h(a)(h(b))−1 if u = a
b ∉ D

In the second alternative, h(b) will be a nonzero element of K and it will have a multiplicative inverse
in K , which we have denoted by (h(b))−1. It is a routine work for the delight of the graduate students to
demonstrate that ĥ is actually an embedding. Staring hard at the definition of ĥ should suggest a proof
that this is the only way to get such an extension.

So the field of fractions of an integral domain D is, in the sense described above, the smallest field ex-
tending D.
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5.3 PROBLEM SET 4

ALGEBRA HOMEWORK, EDITION 4

FIFTH WEEK

FIELDS

PROBLEM 20.
Use Zorn’s Lemma (or one of the other maximality principles) to give a clean proof of the König Infinity
Lemma.

PROBLEM 21.
Let F be a field and let p(x) ∈ F[x] be a polynomial of degree n. Prove that p(x) has at most n distinct roots
in F.

PROBLEM 22.
Let R be a commutative ring and let a ∈ R with an 6= 0 for every natural number n. Prove that R has an ideal
P such that each of the following properties holds:

(a) an ∉ P for every natural number n, and

(b) for all ideals I of R, if P ⊆ I and P 6= I , then an ∈ I for some natural number n.

PROBLEM 23.
Let F be a field and let F∗ be its (multiplicative) group of nonzero elements. Let G be any finite subgroup
of F∗. Prove that G must be cyclic.

PROBLEM 24.
Suppose that D is a commutative ring such that D[x] is a principal ideal domain. Prove that D is a field.
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6
RINGS OF POLYNOMIALS

6.1 POLYNOMIALS OVER A RING

5x3 + 3x2 − 7x + 1 is a polynomial with integer coefficients. Our experience in school and even through
calculus leads us to think of polynomials as functions, but here in algebra we take a different view. We con-
sider that polynomials are formal expressions that describe functions. We regard polynomials as certain
kinds of strings of symbols. We could also regard the polynomial at the start of this paragraph as a poly-
nomial over the ring Z/(8). That ring has just 8 elements and there are only 88 one-place operations on
the underlying set {0,1,2,3,4,5,6,7}. However, there is a countable infinity of polynomials, some of each
degree, with coefficients in that ring. This means that some (actually many) polynomials will name the
same function.

The interesting thing about treating polynomials as strings of symbols is that we can define an addition
and a multiplication, as well as the formation of negatives and in this way produce a ring. We know well
how to add and multiply polynomials in a formal manner—having had lots of drill in Algebra I. To help in
formalizing addition and multiplication, it is convenient to write polynomials backwards from how most
of us were taught. In fact, it is reasonable to imagine each polynomial as an infinitely long expression
where after some point all the coefficients are 0 (and so have been neglected. . . ).

Here is how addition works, of course.

a0 + a1x + a2x2 +·· ·+ an xn

b0 + b1x + b2x2 +·· ·+ bn xn

(a0 +b0) + (a1 +b1)x + (a2 +b2)x2 +·· ·+ (an +bn)xn

Notice that while this looks like we have assumed that the polynomials are both of degree n, we have not
made such an assumption. Some (or all) of the coefficients above can be 0. So this description of addition
works for all polynomials. It is important to realize that the +’s occurring in the parentheses on the last line
actually refer to the addition in the ring of coefficients. So the idea is that, unlike the other +’s, which are
formal symbols, those in the parentheses should actually be executed to produce elements of the ring of
coefficients to get the coefficients of the sum of the polynomials.

47
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Multiplication is more complicated.

a0 + a1x + a2x2 +·· ·+ an xn

b0 + b1x + b2x2 +·· ·+ bn xn

(a0b0) + (a0b1 +a1b0)x + (a0b2 +a1b1 +a2b0)x2 +·· ·+ (
∑

i+ j=n ai b j )xn

In general, the kth coefficient is ∑
i+ j=k

ai b j .

Here is a smaller example

(a0 +a1x)(b0 +b1x +b2x2) = a0(b0 +b1x +b2x2)+a1x(b0 +b1x +b2x2)

= a0b0 +a0b1x +a0b2x2 +a1b0x +a1b1x2 +a1b2x3

= a0b0 + (a0b1 +a1b0)x + (a0b2 +a1b1)x2 +a1b2x3

This looks like a deduction—like a proof the the formula at the start is equal to the last formula. It looks
like a string of uses of the distributive, associative, and commutative laws. But it is not really a deduction.
We would first have to see that those laws actually hold. Rather, the display above is the basis for the
definition of multiplication given above. But this does show that while we didn’t allow the commutative
law to sneak into the calculation of the coefficients, we have somehow assumed here that the variable x
commutes with everything.

Given a ring R, we make the ring R[x] of polynomials with coefficients from R by imposing the addition
and multiplication described above on the set of polynomials. The zero of the ring of polynomials is the
polynomials where all the coefficients are 0. The one of this ring is the polynomial with constant coefficient
1 and all other coefficients 0. Forming negatives of polynomials we leave to the imagination of the graduate
students.

Well, is R[x] really a ring? We need to check the equations that we used to define the notion of a ring. The
equations only involving +,− and 0 are easy. The associative law for multiplication and the distributive
laws are messy and best not displayed in public (but the disciplined graduate students will not flinch from
checking this stuff). Notice that R is a subring of R[x].

The zero polynomial is the one whose coefficients are all 0. Every nonzero polynomial

a0 +a1 +·· ·+an xn

has a rightmost coefficient that is not 0. This coefficient is the leading coefficient of the polynomial and
the exponent of the associated x is called the degree of the polynomial. It is convenient to assign no degree
to the zero polynomial.

If the sum of two polynomials is not the zero polynomial then the degree of the sum can be no larger
than the maximum of the degree of the summands. Likewise, if the product of two polynomials is not the
zero polynomial, then the degree of the product is no larger than the sum of the degrees of two factors. If
R is an integral domain, then the degree of the product of nonzero polynomials in R[z] is the sum of the
degrees of the factors.

Once we are convinced that R[x] is a ring we can repeat the construction to form the ring R[x][y]. Here
is a member of Z[x][y].

(1+2x +3x3)+ (2−x)y + (5+x3)y2

Observe that the coefficients of this polynomial (namely, the parts in parentheses) are members of R[x].
We identify this polynomial with

1+2x +2y −x y +5y2 +3x3 +x3 y2
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Now notice that the polynomial below

(1+2y +5y2)+ (2− y)x + (3+ y2)x3

is a member of Z[y][x] that we also identify with

1+2x +2y −x y +5y2 +3x3 +x3 y2

By similar reasoning we identify Z[x][y] with Z[y][x]. We use the notationZ[x, y] to denote this ring. More
generally, we arrive at the polynomial ring R[x0, x1, . . . , xn] in any finite number of variables. It is even
possible to consider rings of polynomials over infinite sets of variables, although we will not pursue this.

Here are some easily deduced facts.

Fact. Let R be a ring. R[x] is a commutative ring if and only if R is a commutative ring.

Fact. Let R be a ring. R[x] is an integral domain if and only if R is an integral domain.

A very useful result about rings of polynomials is next.

The Homomorphism Extension Property for R[x]. Let R,S, and T be rings so that S is a subring of T and
let h be a homomorphism from R onto S. For any t ∈ T there is exactly one homomorphism ĥ extending h
that maps R[x] into T such that ĥ(x) = t .

This theorem is illustrated in Figure 6.1.

R S

x

t

R[x] T

h

ĥ

Figure 6.1: The Homomorphism Extension Property

Proof. Consider an arbitrary polynomial

p(x) = a0 +a1x +·· ·+an xn .

Were there to be any extension ĥ of h as desired, then we would have to have

ĥ(p(x)) = ĥ(a0)+ ĥ(a1ĥ(x)+·· ·+ ĥ(an)(ĥ(x))n

= h(a0)+h(a1)t +·· ·+h(an)t n .
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In this way we see that there can be at most one possibility for ĥ. Moreover, we can define the desired
extension by

ĥ(p(x)) := h(a0)+h(a1)t +·· ·+h(an)t n .

The only issue is whether this function is actually a homomorphism. This we leave in the capable hands
of the graduate students.

An interesting special case of this theorem is when R = S and h is just the identity map. In that case the
extension ĥ gives us

ĥ(p(x)) = ĥ(a0 +a1x +·· ·+an xn) = a0 +a1t +·· ·+an t n = p(t ).

Notice that the p(x) on this line is a polynomial whereas the p(t ) is an element of T . If we construe the
polynomial p(x) as a name for a function from T to T , then what ĥ does is evaluate the named function
at the input t . For this reason, ĥ, which depends on t , is called an evaluation map. In this context, we say
that t is a root of p(x) provided ĥ(p(x)) = 0; that is provided p(t ) = 0 in T.

We saw a key fact about the integers that had to do with quotients and remainders. This very useful fact
led us to the conclusion that the ring of integers is a principal ideal domain. Something like this fact holds
for polynomial rings.

Theorem on Quotients and Remainders for Polynomials. Let R be a commutative ring, let d(x) ∈ R[x] be
a nonzero polynomial, and let b be the leading coefficient of d(x). Let f (x) ∈ R[x] be any polynomial. There
is a natural number k and there are polynomials q(x) and r (x) such that

(a) bk f (x) = q(x)d(x)+ r (x) and

(b) either r (x) is the zero polynomial or degr (x) < degd(x).

Moreover, given such a k the polynomials q(x) and r (x) are unique, provided R is an integral domain.

Proof. Observe that if the degree of d(x) is larger than the degree of f (x), then we can take r (x) = f (x) and
q(x) = 0 and we can put k = 0. So the existence part of this theorem only needs a proof when deg f (x) ≥
degd(x). We prove the existence part of the theorem by induction on deg f (x).

Base Step: deg f (x) = degd(x)
Let a be the leading coefficient of f (x). Put k = 1, q(x) = a, and r (x) = b f (x)−ad(x). This works.

Inductive Step
We suppose that deg f (x) = n +1 > degd(x). Let m be the degree of d(x). Once more let a be the leading
coefficient of f (x). Observe

f̂ (x) := b f (x)−axn+1−m xd(x)

is a polynomial of degree no more than n. We can apply the induction hypothesis to obtain a natural
number ` and polynomials q̂(x) and r (x) so that

(a) b` f̂ (x) = q̂(x)d(x)+ r̂ (x) and

(b) r (x) is the zero polynomial or degr (x) < degd(x).

But this entails

b`+1 f (x) = q̂(x)d(x)+axn+1−md(x)+ r (x)

= (q̂(x)+axn+1−m)d(x)+ r (x).

Taking q(x) := q̂(x) = axn+1−m establishes the inductive step.
So the existence part of the theorem is finished. For the uniqueness part, we suppose that R is an integral

domain and we take k to be a fixed natural number and f (x), q0(x), q1(x),r0(x), and r1(x) to be polynomials
such that
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(a) bk f (x) = q0(x)d(x)+ r0(x),

(b) r0(x) is the zero polynomial or degr0(x) < degd(x),

(c) bk f (x) = q1(x)+ r1(x), and

(d) r1(x) is the zero polynomial or degr1(x) < degd(x).

It follows that
(q0(x)−q1(x))d(x) = r1(x)− r0(x).

Now the polynomial on the right is either the zero polynomial or it has degree less than the degree of d(x).
The polynomial on the left is either the zero polynomial or it has degree at least the degree of d(x). It
follows that both sides of this equation are the zero polynomial. In particular, r0(x) = r1(x). (At this point
we have yet to invoke the fact that R is an integral domain.) So we have

(q0(x)−q1(x))d(x) = 0.

We know that d(x) is not the zero polynomial. Since R[x] is an integral domain, we find that q0(x) = q1(x),
as desired.

Here are three important immediate corollaries of this theorem.

Corollary 6.1.1. Let R be a commutative ring and let d(x) ∈ R[x] be a nonzero polynomial whose leading
coefficient is a unit. Let f (x) ∈ R[x] be any polynomial. There are polynomials q(x) and r (x) such that

(a) f (x) = q(x)d(x)+ r (x) and

(b) either r (x) is the zero polynomial or degr (x) < degd(x).

Moreover, the polynomials q(x) and r (x) are unique, provided R is an integral domain.

Corollary 6.1.2. F[x] is a principal ideal domain provided F is a field. Hence F[x] is a unique factorization
domain, provided F is a field.

Corollary 6.1.3. Let R be a commutative ring, let f (x) ∈ R[x] be a polynomial with coefficients in R and let
r ∈ R. Then r is a root of f (x) if and only if (x − r ) | f (x).

The second of the corollaries displayed above can be deduced in the same manner that we used to es-
tablish that Z is a principal ideal domain.

There is one more general observation to make here.

The Binomial Theorem holds in every commutative ring.

This means that in any commutative ring we have

(x + y)n = ∑
k≤n

(
n

k

)
xk yn−k for all elements x and y of the ring.

This must be understood carefully. The binomial coefficient
(n

k

)
that appear here are positive natural num-

bers, not elements of the ring at hand. We must understand them as indicating repeated additions within
the ring. That is we take

(n
k

)
to be

1+·· ·+1︸ ︷︷ ︸
(n

k) times

.

With this in mind, it is routine to see that only the laws of commutative rings are needed to establish the
Binomial Theorem. Now notice that n | (n

k

)
for all k such that 0 < k < n, while

(n
0

)= 1 = (n
n

)
. This observation

yields
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Fact. Let R be a commutative ring of characteristic n. Then for all x, y ∈ R

(x + y)n = xn + yn .

Moreover, the map sending a 7→ an for all a ∈ R is a homomorphism.

This map, used in later parts of algebra, is called the Frobenius map.
Finally, we know that Z is an integral domain and so Z[x] is also an integral domain. However, even

though Z is a principal ideal domain, it turns out that Z[x] is not a principal ideal domain. Establishing
this fact is a task left to the graduate students in one of the Problem Sets. Even thoughZ[x] is not a principal
ideal domain, it turns out that it is still a unique factorization domain and that while some of the ideals of
Z[x] cannot be generated by some single element, it is nevertheless true that all the ideals of Z[x] can be
generated by some finite set of elements. These are consequences of more general theorems (of Gauss and
Hilbert) that are the primary objectives of this sequence of lectures.

6.2 POLYNOMIALS OVER A UNIQUE FACTORIZATION DOMAIN

We know that both Z and F[x], where F is a field, are principal ideal domains, but that neither Z[x] nor
F[x, y] are principal ideal domains. It is a theorem of Gauss thatZ[x] is nevertheless a unique factorization
domain. With little change to the proof of Gauss, we have the following theorem.

Unique Factorization Theorem for Polynomials over a Unique Factorization Domain. Let D be a unique
factorization domain. Then D[x] is also a unique factorization domain.

The proof of this theorem depends on three lemmas. Let F be the field of fractions of the unique factor-
ization domain D. The diagram below may help to understand how the proof will work.

D

F

D[x]

F[x]

x

Figure 6.2: Linking D and F[x]

The information we start with is that D is a unique factorization domain, that F is the field of fractions of
D (and therefore closely linked to D), and that F[x] is also a unique factorization domain. Observe that

D ⊆ D[x] ⊆ F[x].

When Gauss tackled this problem, he had Z in place of D andQ in place of F.
We will say that a polynomial in D[x] is primitive provided there is no irreducible of D that divides all of

the coefficients of the polynomial.

Lemma A.
Let D be a unique factorization domain and let F be its field of fractions. Let p(x) be a nonzero polynomial
with coefficients in F. There is an element c ∈ F and a primitive polynomial q(x) ∈ D[x] such that p(x) =
cq(x). Moreover, up to multiplication by units of D, the element c and the coefficients of q(x) are unique.
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Proof. Pick a0,b0, a1,b1, . . . , an ,bn ∈ D so that

p(x) = a0

b0
+ a1

b1
x +·· ·+ an

bn
xn .

Let b = b0b1 · · ·bn . Then
bp(x) = c0 + c1x +·· ·+cn xn

for certain elements c0,c1, . . . ,cn ∈ D . Let d be a greatest common divisor of c0,c1, . . . ,cn . Factoring d out of
c0 + c1x +·· ·+cn xn leaves a primitive polynomial q(x) such that

bp(x) = d p(x).

Let c = d
b . Then p(x) = cp(x), establishing the existence part of Lemma A. This argument was just clearing

the denominators and factoring the remaining coefficients as much as possible.
Now consider the uniqueness assertion. Suppose c,c∗ ∈ F and q(x), q∗(x) ∈ D[x] with both q(x) and

q∗(x) primitive such that
cq(x) = p(x) = c∗q∗(x).

Pick r, s,r∗, s∗ ∈ D so that c = r
s and c∗ = r ∗

s∗ and so that r and s are relatively prime as are r∗ and s∗. So we
have

s∗r q(x) = sr∗q∗(x).

Now let t be any prime in D so that t | s∗. We know that t cannot divide r∗ and it cannot divide each of
the coefficients of q∗(x) since that polynomial is primitive. Therefore it must divide s. So, factoring s∗

into primes, we see that s∗ | s. In a like manner, we can conclude that s | s∗. This means that s and s∗ are
associates. Pick a unit u of D so that s = s∗u. So we find after cancellation

r q(x) = ur∗q∗(x).

Applying the same reasoning to r∗ and r , we can find a unit v of D so that r∗ = vr . This gives

q(x) = uvq∗(x) and c = r

s
= r u

su
= r u

s∗
= r vu

s∗v
= r∗u

s∗v
= r∗

s∗
u

v
= c∗

u

v
.

But both uv and u
v are units of D. This finishes the proof of uniqueness up to multiplication by units of

D.

An immediate consequence of Lemma A is that if p(x) and q(x) are primitive polynomials in D[x] that
are associates in F[x], then they are already associates in D[x].

Gauss’s Lemma. Let D be a unique factorization domain. The product of two primitive polynomials in D[x]
is again primitive.

Proof. Let f (x) and g (x) be primitive and put h(x) = f (x)g (x). Suppose, for the sake of contradiction, that
t is an irreducible of D that divides all the coefficients of h(x). So t is prime and the ideal (t ) is a prime
ideal. This means that D/(t ) is an integral domain. Let η denote the quotient map from D to D/(t ). Using
the Homomorphism Extension Theorem for Polynomials, we know there is a unique homomorphism η̂ :
D[x] → D/(t )[x] so that η̂(x) = x. What η̂ does is simply apply η to each of the coefficients of the polynomial
given as input.

Now observe in D/(t )[x] we have

0 = η̂(h(x)) since each coefficient of h(x) is divisible by t .

= η̂( f (x)g (x))

= η̂( f (x))η̂(g (x))
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But t cannot divide all the coefficients of f (x) nor all the coefficients of g (x), since these polynomials are
primitive. So η̂( f (x)) 6= 0 6= η̂(g (x)) in D/(t )[x]. Since D/(t )[x] is an integral domain, we have uncovered a
contradiction. So h(x) must be primitive.

The proof just given is certainly in the fashion of the 20th century. Here is a proof that appeals directly to
basic principles. It is much more like the reasoning of Gauss.

A more basic proof of Gauss’s Lemma. Let

f (x) = a0 +a1x +·· ·+an xn

g (x) = b0 +b1x +·· ·+bm xm

be primitive polynomials. Put h(x) = f (x)g (x) = c0 + c1x +·· ·+cn+m xn+m . We know that

ck = ∑
i+ j=k

ai b j .

Let t be a prime of D. Pick ` as small as possible so that t - a` and pick r as small as possible so that t - br .
We can do this since f (x) and g (x) are primitive. Then

c`+r = (a0b`+r +a1b`+r−1 +·· ·+a`−1br+1)+a`br + (a`+1br−1 +·· ·+a`+r b0) .

(Be generous in understanding this equation. Depending on the values of ` and r some terms in the first
and last pieces of the sum may be missing.) Then t divides the first and last pieces of this sum, but not the
middle term a`br . This means that t cannot divide c`+r . Hence, no prime can divide all the coefficients of
h(x). So h(x) must be primitive.

Lemma B.
Let D be a unique factorization domain and let F be its field of fractions. If f (x) ∈ D[x] is irreducible and of
positive degree, then f (x) is also irreducible in F[x]

Proof. Observe that f (x) must be primitive since it is of positive degree and irreducible in D[x]. Now
suppose that f (x) = g (x)h(x) for some polynomials g (x),h(x) ∈ F [x]. According to Lemma A, we can pick
c ∈ F and primitive polynomials g∗(x) and h∗(x) so that f (x) = cg∗(x)h∗(x). Pick a,b ∈ D so that a and b
are relatively prime and c = a

b . Then
b f (x) = a

(
g∗(x)h∗(x)

)
.

Gauss’s Lemma tells us that g∗(x)h∗(x) is primitive. So the uniqueness assertion of Lemma A gives us two
unit u and v of D such that

ub = a and f (x) = v g∗(x)h∗(x).

Since f (x) is irreducible in D[x] it must be that one of g∗(x) and h∗(x) is a unit and thus has degree 0. But
then one of g (x) and h(x) must also have degree 0 and be, therefore, a unit of F. This means that f (x) is
irreducible in F[x].

Here is a proof of the Unique Factorization Theorem for Polynomials over a Unique Factorization Do-
main.

Proof. Let f (x) ∈ D[x] be a nonzero polynomial. We begin by letting c be a greatest common divisor of the
coefficients of f (x) we obtain a primitive polynomial g (x) so that

f (x) = cg (x).

Either c is a unit of D or else we can factor it into irreducibles over D. Observe that apart from units g (x) has
no factors of degree 0 in D[x] since g (x) is primitive. Thus any proper factorization of g (x) over D[x] must
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produce factors of properly smaller degree. In this way we see that f (x) can be factored into irreducibles
over D[x].

To see that the factorization of f (x) is unique suppose

f (x) = c0c1 · · ·cm g0(x)g1(x) · · ·gn(x)

f (x) = d0d1 · · ·dk h0(x)h1(x) · · ·h`(x)

are factorization of f (x) into irreducibles over D[x] so that c0,c1, . . . ,cm ,d0,d1, . . .dk are irreducibles of de-
gree 0 while the remaining irreducible factors have positive degree. Irreducibles in D[x] of positive degree
are primitive. Using Gauss’s Lemma and Lemma A, we see that

(a) c0c1 · · ·cm and d0d1 · · ·dk are associates over D. Since D is a unique factorization domain, we find
that m = k and, perhaps after some reindexing, ci and di are associates for all i ≤ m.

(b) g0(x)g1(x) · · ·gn(x) and h0(x)h1(x) · · ·h`(x) are associates over D[x] and hence over F[x]. By Lemma
B, these polynomials are irreducible over F[x]. Because F[x] is a unique factorization domain, we
find that n = ` and, after a suitable reindexing, that g j (x) and h j (x) are associates over F[x], for all
j ≤ n. But the g j (x)’s and the h j (x)’s are primitive, so by Gauss’s Lemma and Lemma A they must
also be associates over D[x].

This establishes the uniqueness of the factorization.

An easy induction shows that

if D is a unique factorization domain, then so is D[x0, x1, . . . , xn−1].

Eisenstein’s Criteria. Let D be a unique factorization domain and let F be its field of fractions. Let f (x) =
a0 +a1x +·· ·+an xn ∈ D[x] where an 6= 0 and n is positive. If there is an irreducible p ∈ D such that

1. p | ai for all i < n,

2. p - an , and

3. p2 - a0,

then f (x) is irreducible in F[x]. If, in addition, f (x) is primitive, then f (x) is irreducible in D[x].

Proof. First suppose that f (x) is primitive and that it satisfies the given criteria. Suppose f (x) = g (x)h(x)
is a factorization of f (x) over D[x]. Let g (x) = b0 +b1x + . . . and h(x) = c0 + c1x + . . . . Then a0 = b0c0. Now
p | a0 = b0c0 but p2 - b0c0. So p divides exactly one of b0 and c0. It is harmless to suppose that p | b0 but
p - c0. Now p cannot divide all the coefficients of g (x) since then it would divide all the coefficients of f (x),
even an . Pick k as small as possible so that p - bk . Observe that

ak = b0ck +b1ck−1 +·· ·+bk−1c1 +bk c0.

Now p | b0ck +b1ck−1 +·· ·+bk−1c1 but p - bk and p - c0. Since p is prime we get p - bk c0. But this implies
that p - ak . We conclude that k = n. But this means that deg f (x) = deg g (x) and that degh(x) = 0. So
h(x) ∈ D . Since f (x) = g (x)h(x) and f (x) is primitive, we find that h(x) must actually be a unit of D. So
f (x) is irreducible in D[x]. By Lemma B it is also irreducible in F[x].

Now consider the case when f (x) is not primitve. Let c be the greatest common divisor of the coefficients
of f (x). So f (x) = c f ∗(x) where f ∗(x) primitive. Now observe that p - c since c | an . By the primeness of
p, it follows that f ∗(x) satisfies Eisenstein’s Criteria for the prime p. Hence f ∗(x) is irreducible in D[x] and
hence in F[x] by Lemma B. But c is a unit of F[x] so f (x) is an associate over F[x] of an irreducible. This
makes f (x) irreducible over F[x], as desired.
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Here is an example of what is at stake. The polynomial 6+ 3x has integer coefficients and it satisfies
Eisenstein’s Criteria with p = 2. So it is irreducible over Q[x] by Eisenstein (but really, every polynomial of
degree 1 is irreducible over Q[x]). However, 6+3x = 3(2+ x) is a proper factorization over Z[x] since 3 is
not a unit for Z[x]. Of course, 6+3x is also not primitive.

Eisenstein’s Criteria is one of a large assortment of techniques for showing that polynomials are irreducible—
especially polynomials in rings like Z[x],Z[x, y], . . . .

There are a number of devices that can extend the range of polynomials to which Eisentstein’s Criteria
apply. For example, for any prime p the polynomial

f (x) = xp−1 +xp−2 +xp−3 +·· ·+x +1

turns out to be irreducible over Z. Of course, Eisenstein’s Criteria does not apply to this polynomial. How-
ever, we can use the homomorphism extension property of polynomial rings to obtain a homomorphism
from Z[x] to Z[x] that fixes each integers and sends x 7→ x+1. The graduate students will see that this map
is actually an automorphism that sends f (x) to f (x +1). So f (x) will be irreducible if and only if f (x +1)
is irreducible. The idea is to apply Eisenstein’s Criteria to f (x +1). This means we need to figure out the
coefficients of f (x +1). Here are a couple of hints, for the hard working graduate students.

(x −1) f (x) = xp −1

x f (x +1) = (x +1)p −1

=
( ∑

k≤p

(
p

k

)
xk

)
−1

f (x +1) = ∑
0<k≤p

(
p

k

)
xk−1.

6.3 HILBERT’S BASIS THEOREM

Now we know that if D is a principal ideal domain, then D[x] is a unique factorization domain, even though
it might not be a principal ideal domain. Here we will see that, in some measure, D[x] retains some features
of a principal ideal domain.

We will call a ring R Noetherian provided every ideal of R is finitely generated. So every principal ideal
domain is Noetherian.

Theorem Characterizing Noetherian Rings. Let R be a ring. The following are logically equivalent.

(a) R is a Noetherian ring.

(b) Every ascending chain of ideals of R is finite.

(c) Every nonempty collection of ideals of R has a maximal member with respect to the ordering by inclu-
sion.

Proof.

(a)⇒(b)
Suppose I0 ⊆ I1 ⊆ I2 ⊆ . . . is an ascending chain of ideals of R. Then

⋃
i∈N Ii is also an ideal of R. Because

R is Noetherian there is a finite set X so that (X ) =⋃
i∈N Ii . Because X is finite and the ideals form a chain,

there must be a natural number k so that X ⊆ Ik . But then

Ik ⊆ ⋃
i∈N

Ii = (X ) ⊆ Ik .
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It follows that Ik = Ik+1 = Ik+2 = . . . . So the ascending chain of ideals is finite.

(b)⇒(c)
Let F be a nonempty family of ideals of R. Since every ascending chain of ideals of R is finite, it follows that
every chain of ideals in F has an upper bound in F. By Zorn’s Lemma, F must have maximal members.

(c)⇒(a)
Let I be an ideal of R. Let F = {J | J ⊆ I and J is a finitely generated ideal}. Let M be a maximal member of
F. Then M ⊆ I . Were M 6= I we could pick a ∈ I \ M . But then M á (M ∪ {a}) ⊆ I . Since (M ∪ {a}) is finitely
generated, this violates the maximality of M . So I = M , which is finitely generated.

Hilbert’s Basis Theorem. If R is a commutative Noetherian ring, then so is R[x].

Proof. Let I be any ideal of R[x] and let m be any natural number. Define

I (m) := {a | a is the leading coefficient of a polynomial of degree m that belongs to I }∪ {0}

The graduate students should routinely check that I (m) is always an ideal of R. It should also be clear that
I (m) ⊆ I (m +1).

Fact. Suppose I and J are ideals of R[x] with I ⊆ J . If I (m) = J (m) for all natural numbers m, then I = J .

To establish this fact one should consider f (x) ∈ J with the object of proving that f (x) ∈ I . This can be
done by induction on the degree of f (x). This induction is left for the pleasure of the graduate students.

Now consider an ascending chain I0 ⊆ I1 ⊆ I2 ⊆ . . . of ideals of R[x]. There is an associated grid of ideals
on R.

...
...

...
∪ ∪ ∪

I0(2) ⊆ I1(2) ⊆ I2(2) ⊆ ·· ·
∪ ∪ ∪

I0(1) ⊆ I1(1) ⊆ I2(1) ⊆ ·· ·
∪ ∪ ∪

I0(0) ⊆ I1(0) ⊆ I2(0) ⊆ ·· ·
The family F = {Ii ( j ) | i j ∈ N} displayed on this grid is a nonempty family of ideals of R. It must have a
maximal member, say In(m). Each of the finitely many rows associated an argument j with j ≤ m is an
ascending chain and can only extend to the right finitely far. Let ` be a natural number large enough so
that none of these finitely many rows extends beyond ` steps. Notice that n ≤ `. Then I`(i ) = I`+k (i ) for all
i ≤ m and for all natural numbers k, while I`(i ) = In(m) = I`+k (i ) whenever i > m. Now the Fact asserted
above tells us that I` = I`+k for all natural numbers k. So the ascending chain I0 ⊆ I1 ⊆ I2 ⊆ ·· · is finite, as
desired.

It follows that if R is any commutative Noetherian ring, then R[x0, x1, . . . , xn−1] is also a commutative
Neotherian ring. This theorem has a fundamental role to play in commutative algebra and algebraic ge-
ometry. The proof I gave above has the charm of an illuminating diagram, but it doesn’t allow us to lay our
hands directly on a finite generating set for an ideal I of R[x]. Coupled with the proof of the Fact embedded
in our proof, some headway could be made in this direction.
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6.4 PROBLEM SET 5

ALGEBRA HOMEWORK, EDITION 5

SIXTH WEEK

RINGS OF POLYNOMIALS

PROBLEM 25.
Is the polynomial y3 −x2 y2 +x3 y +x +x4 irreducible in Z[x, y]?

PROBLEM 26.
Let R be a principal ideal domain, and let I and J be ideals of R. I J denotes the ideal of R generated by the
set of all elements of the form ab where a ∈ I and b ∈ J . Prove that if I + J = R, then I ∩ J = I J .

PROBLEM 27.
Let D be a unique factorization domain and let I be a nonzero prime ideal of D[x] which is minimal among
all the nonzero prime ideals of D[x]. Prove that I is a principal ideal.

PROBLEM 28.
Let D be a subring of the field F. An element r ∈ F is said to be integral over D provided there is a monic
polynomial f (x) ∈ D[x] such that r is a root of f (x). For example, the real number

p
2 is integral over the

ring of integers since it is a root of x2 −2.
Now suppose D is a unique factorization domain and F is its field of fractions. Prove that the set of

elements of F that are integral over D coincides with D itself.

PROBLEM 29.
Let R be a commutative ring and let S be a subring of R so that S is Noetherian. Let a ∈ R and let S′ be the
subring of R generated by S ∪ {a}. Prove that S′ is Noetherian.
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7
MODULES, A GENERALIZATION OF VECTOR SPACES

7.1 MODULES OVER A RING

A vector space over a field F is a set of vectors, including a zero vector, that has a two-place operation for
vector addition, a one-place operation for forming the negative of a vector, a one-place operation for each
element of F that can be used to scale vectors. Most of us were brought up to consider a kind of two-
place operation for multiplying a vector by a scalar. For example, in the standard 2-dimensional vector
space over the reals, when the vector (2,6) is multiplied by the scalar 0.5 the resulting vector is (1,3), a
vector pointing in the same direction as (2,6) but it is scaled down—it is only half as long. The one-place
operation that sends each real pair (a,b) to (0.5a,0.5b) precisely captures the effect of multiplication by
the scalar 0.5. Of course, the advantage to us of construing scalar multiplication as a system of one-place
operations is that then vector spaces fit into our overall view of algebraic systems in general.

Let F be a field. We say that 〈V ,+,−,0,r ·〉r∈F is a vector space over F provided all of the equations below
hold.

x + (y + z) = (x + y)+ z (r + s) · x = r x + sx

x + y = y +x r (x + y) = r x + r y

−x +x = 0 (r s)x = r (sx)

x +0 = x 1x = x

for all x, y, z ∈V and r, s ∈ F .
We have followed the customary practice of using the same symbol + to denote both the addition in the

field of scalars and the addition in the vector space. Really, they are different in all but a few cases. The
same might be said for using juxtaposition to denote the multiplication in the ring and the (one-place
functional) action of a scalar on a vector. In the equations above r s is the product in the ring whereas r (sx)
means the action, consecutively, of two scalings.

We obtain the notion of a module over a ring by replacing the field F with an arbitrary ring R. So let R be

59
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a ring. We say that 〈V ,+,−,0,r ·〉r∈R is a module over R provided all of the equations below hold.

x + (y + z) = (x + y)+ z (r + s) · x = r x + sx

x + y = y +x r (x + y) = r x + r y

−x +x = 0 (r s)x = r (sx)

x +0 = x 1x = x

for all x, y, z ∈ V and r, s ∈ R. Some people would say left unitary R-module for this notion. The “left”
comes from writing the scalars on the left—there is a companion notion of right modules. The “unitary”
comes from the stipulation 1x = x. Many of the most striking properties of vector spaces rely on the fact
that every nonzero element of a field is a unit. Still, modules in general retain some of the nice features of
vector spaces.

There is another source of modules. Let I be an ideal of R. Then 〈I ,+,−,0,r ·〉r∈R is clearly an R-module.
This would even be true if I were a “left” ideal of R. Indeed, the left ideals of R are essentially the same as
the submodules of R. Below we will only be concerned with R-modules when R is a commutative ring. In
this case, the ideals of R and the submodules of R coincide.

In fact, we will be almost exclusively concerned with modules whose underlying ring is a principal ideal
domain. The familiar ring Z of integers and rings of the form F[x], where F is a field, are examples of
principal ideal domains. Reflect a moment on the Z-modules. Did you notice that the investigation of the
Z-modules differs in no important way from the investigation of Abelian groups?

Let V be a finite dimensional vector space over a field F. The linear operators (alias endomorphisms) of
V can be acted on in an obvious way by the polynomials in F[x]. Under this action, the linear operators
of V form a module over F[x]. Investigation of the structure of such modules leads to some of the deeper
results in linear algebra.

7.2 FREE MODULES

A module F over a nontrivial ring R is said to be free on a set B ⊆ F provided for every R-module M and
every function ϕ : B → M there is a unique homomorphism ψ : F → M that extends ϕ. We will say that
F is a free R-module provided it is free on some set. In the context of vector spaces, we know that every
vector space has a basis B and that any map from B into another vector space over the same field extends
uniquely to a linear transformation. This means that every vector space is free on any of its bases. This
fails for modules in general. The free modules are much more like vector spaces.

The Uniqueness Theorem for Free Modules. Let F be a module over a nontrivial ring R that is free on B
and let F∗ be a module over R that is free on B∗. If |B | = |B∗|, then F and F∗ are isomorphic.

Proof. Let ϕ be a one-to-one map from B onto B∗. Let ψ extend ϕ to a homomorphism from F into F∗.
Likewise let ψ∗ extend ϕ−1 to a homomorphism from F∗ into F. Then ψ ◦ψ∗ is an endomorphism of F
extending the identity map on B . The identity on F is also such an endomorphism. By the uniqueness of
such extensions, we find ψ◦ψ∗ is that identity map on F . Likewise, ψ∗ ◦ψ is the identity map on F∗. So ψ
is an isomorphism from F onto F∗ and ψ∗ is its inverse.

Observe that R is an R-module that is free on {1} and that the trivial R-module is free on ∅. We will see
that free R-modules have a simple form. For this we employ the notion of direct sum of modules. Let Mi

be an R-module for each i ∈ I , where I is any set. We define the direct sum⊕
i∈I

Mi := {〈vi |i ∈ I 〉|vi ∈ Mi for all i ∈ I and all but finitely many of vi ’s are 0}

It is routine to check that this set is a subuniverse of
∏

i∈I Mi . So
⊕

i∈I Mi is an R-module.
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The Structure Theorem for Free Modules. Suppose F is a module over a nontrivial ring R that is free on B.
For each b ∈ B let Rb = R. Then F is isomorphic to

⊕
b∈B Rb .

Proof. All we need to do is prove that
⊕

b∈B Rb is free on a set of cardinality |B |. The set we are after is the
set of all B-tuples that have 1 in exactly one position and 0 in all other positions. This is the “standard”
basis familiar from linear algebra. The graduate students should enjoy filling in the rest of this proof.

As in vector spaces, in modules generally we will say that a set X is linearly independent provided that for
any finitely many distinct v0, v1, . . . , vn−1 ∈ X if a0v0+a1v1+·· ·+an−1vn−1 = 0, then a0 = a1 = ·· · = an−1 = 0.
In any module M, a linearly independent subset that generates M is said to be a basis for M.

Theorem Characterizing Free Modules. Let R be a nontrivial ring and F be an R-module. F is a free R-
module if and only if F has a basis.

Proof. Suppose that F is a module over R that is free on B . Let M be the submodule of F generated by
B . I leave it to the graduate students to check that M is also free on B . So there is an isomorphism from
M onto F that extends the identity map on B . But any such extension must fix each element of M since
M is generated by B . This means that M = F , and so we see that B generates F. Next, observe that the
subset of

⊕
b∈B Rb consisting of those B-tuples with exactly one entry 1 and the rest 0 is evidently linearly

independent. But
⊕

b∈B Rb and F are isomorphic via an isomorphism that sends our linear independent
subset of the direct sum to B . As the image of a linearly independent set under an isomorphism is again
linearly independent, we find the B is linearly independent. Therefore, B is a basis for F.

Now suppose that B is a basis for F. Just as in linear algebra, we can show that every element of F can
be expressed uniquely as a linear combination of elements of B . Suppose that M is an R-module and let
ϕ : B → M . Define ψ : F → M via

ψ(w) := a0ϕ(v0)+·· ·+anϕ(vn)

for all w ∈ F , where a0v0 + ·· ·+ an vn is the unique linear combination of distinct elements v0, . . . , vn ∈ B
that represents w . It is routine to prove that ψ is a homomorphism. So F is free on B .

One of the most useful features of vector spaces is that any two bases of the same space have the same
cardinality. This gives us a notion of dimension in vector spaces. This property is lost in some free modules.
On the other hand, it is often true.

The Dimension Theorem for Free Modules. Let R be a ring that has a division ring as a homomorphic
image. Any two bases of a free R-module have the same cardinality.

Proof. Let I be an ideal of R so that R/I is a division ring. Let F be a free R-module with basis B . Let E
be the collection of all elements that can be written as linear combinations of elements of F using only
coefficients from I . You should check that E is closed under the module operations, so E is a submodule
of F.

Observe that F/E can be construed as an R/I -module in a natural way. (Hint: define (a + I )(v +E) to be
av +E . Be sure to check that this definition is sound.) Now let B∗ = {v +E | v ∈ B}.

We want to demonstrate that B∗ is linearly independent for the R/I -module F/E . Suppose v0 +E , v1 +
E , . . . , vn +E are distinct members of B∗ = B/E . Take a0, . . . , an ∈ R. Observe the following sequence of
steps.

0+E = ∑
i≤n

(ai + I )(vi +E)

= ∑
i≤n

(ai vi +E)

=
(∑

i≤n
ai vi

)
+E
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This means that if 0 + E = ∑
i≤n(ai + I )(vi + E), then

∑
i≤n ai vi ∈ E . By the definition of E , there are

w0, . . . , wm ∈ F and c0, . . . ,cm ∈ I so that ∑
i≤n

ai vi =
∑

j≤m
c j w j .

Now because B generates F we see that each of the w j ’s can be written as a linear combination of ele-
ments of B . This entails that

∑
j≤m c j w j can be rewritten as a linear combination of elements of B with the

coefficients all belonging to I . Let
∑

k≤`dk uk be such a linear combination. But now

0 = ∑
i≤n

ai vi −
∑

k≤`
dk uk .

The expression on the right can be rewritten as a linear combination of distinct elements of B . The coeffi-
cients of the linear combination can be of three forms:

ai −dk or ai or −dk

depending on whether vi = uk . All of these coefficients must be 0. Notice that in the first alternative that
we get ai ∈ I and in the second ai = 0 ∈ I . So we find that ai ∈ I for all i . This means that ai + I = 0+ I for
all i and concludes the proof that B∗ is linearly independent.

That B∗ generates F/E follows easily from the fact that B generates F. So B∗ is a basis of F/E .

Contention. |B | = |B∗|.
In fact, the quotient map that send v 7→ v +E for v ∈ B is one-to-one. To see this, suppose v, v ′ ∈ B and

v+b = v ′+E . Then v−v ′ ∈ E . By the same device we used above, we can write v−v ′ as a linear combination
of distinct elements of B with coefficients drawn from I . Let

∑
k≤`dk uk be such a linear combination. This

gives
0 = v ′− v + ∑

k≤`
dk uk .

Notice that v ′ and v might well appear among the uk ’s, but none of the dk ’s is a unit of R since I must be a
proper ideal. Nevertheless, rewriting the right side as a linear combination of distinct elements of B must
result in all the coefficients being 0. This can only happen if v ′ = v , establishing our contention.

At this point we know that every basis of F has the same cardinality as some basis of F/E . So the last thing
we need is that any two bases of a free module over a division ring have the same cardinality. Proving this
only requires a careful examination of any standard proof that any two bases of a vector space have the
same cardinality. One must see that the commutative property of multiplication in the field plays no role
in such a proof. It also pays to notice the role division has to play in such a proof. So commit due diligence
on some linear algebra book to complete this proof.

The unique dimension guaranteed by the theorem above is called the rank of the free modules.
By the Maximal Ideal Theorem, we know that any nontrivial commutative ring R has a maximal ideal I

and so R/I is actually a field. So we have the following corollary.

Corollary 7.2.1. Let R be a nontrivial commutative ring. Any two bases of the same free R-module must
have the same cardinality.

Suppose R is a nontrivial commutative ring and F is a free R-module. By the rank of F we mean the
cardinality of any base of F.
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7.3 PROBLEM SET 6

ALGEBRA HOMEWORK, EDITION 6

SEVENTH WEEK

IDEALS YET AGAIN

PROBLEM 30.

(a) Prove that (2, x) is not a principal ideal of Z[x].

(b) Prove that (3) is a prime ideal of Z[x] that is not a maximal ideal of Z[x].

PROBLEM 31.
Show that any integral domain satisfying the descending chain condition on ideals is a field.

PROBLEM 32.
Prove the following form of the Chinese Remainder Theorem: Let R be a commutative ring with unit 1 and
suppose that I and J are ideals of R such that I + J = R. Then

R
/

(I ∩ J ) ∼= R/I × R/J .

PROBLEM 33.
Prove that there is a polynomial f (x) ∈R[x] such that

(a) f (x)−x belongs to the ideal (x2 +2x +1);

(b) f (x)−x2 belongs to the ideal (x −1), and

(c) f (x)−x3 belongs to the ideal (x2 −4).
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8
SUBMODULES OF FREE MODULES OVER A PID

The objective here is to prove that, over a principal ideal domain, every submodule of a free module is also
a free module and that the rank of a free module is always at least as large of the ranks of its submodules.

So let R be a (nontrivial) principal ideal domain. We know that R is a free R-module of rank 1. What about
the submodules of R? Suppose E is such a submodule. It is clear that E is an ideal and, in fact, that the
ideals of R coincide with the submodules of R. In case E is trivial (that is the sole element of E is 0) we see
that E is the free R-module of rank 0. So consider the case that E is nontrivial. Since R is a principal ideal
domain we pick w 6= 0 so that E is generated by w . That is E = {r w | r ∈ R}. Since we know that R has {1} as
a basis, we see that the map that sends 1 to w extends to a unique module homomorphism from R onto E.
Indeed, notice h(r ·1) = r ·h(1) = r w for all r ∈ R. But the homomorphism h is also one-to-one since

h(r ) = h(s)

r h(1) = sh(1)

r w = sw

r = s

where the last step follows because integral domains satisfy the cancellation law and w 6= 0. In this way we
see that E is isomorphic to the free R-module of rank 1. We also see that {w} is a basis for E.

So we find that at least all the submodules of the free R-module of rank 1 are themselves free and have
either rank 0 or rank 1. We can also see where the fact that R is a principal ideal domain came into play.

The Freedom Theorem for Modules over a PID.
Let R be a principal ideal domain, let F be a free R-module and let E be a submodule of F. Then E is a free

R-module and the rank of E is no greater than the rank of F.

Proof. Since trivial modules (those whose only element is 0) are free modules of rank 0, we suppose below
that E is a nontrivial module. This entails that F is also nontrivial.

Let B be a basis for F and C ⊆ B . Because F is not the trivial module, we see that B is not empty. Let FC

be the submodule of F generated by C . Let EC = E∩FC . Evidently, C is a basis for FC . To see that EC is free
we will have to find a basis for it.

Suppose, for a moment, that C has been chosen so that EC is known to be free and that w ∈ B with w ∉C .
Put D := C ∪ {w}. Consider the map defined on D into R that sends all the elements of C to 0 and that
sends w to 1. This map extends uniquely to a homomorphism ϕ from FD onto R and it is easy to check
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(as hardworking graduate student will) that the kernel of ϕ is just FC . By the Homomorphism Theorem,
we draw the conclusion that FD /FC is isomorphic to R and that it is free of rank 1. What about ED /EC ?
Observe that EC = E ∩FC = E ∩FD ∩FC = ED ∩FC . So we can apply the Second Isomorphism Theorem:

ED /EC = ED /(ED ∩FC )cong (ED +FC )/FC .

But (ED +FC )/FC is a submodule of FD /FC . This last is a free R-module of rank 1. We saw above that every
submodule of a free R-module of rank 1 must be itself a free R-module and have rank either 0 or 1. In this
way, we find that either ED = EC (in the rank 0 case) or else ED /EC is a free R-module of rank 1. Let us take
up this latter case. Let X be a basis for EC , which we assumed, for the moment, was free. Pick u ∈ ED so
that {u/EC } is a basis for ED /EC .

We contend that X ∪ {u} is a basis for ED . To establish linear independence, suppose that x0, . . . , xn−1 are
distinct elements of X , that r0, . . . ,rn ∈ R and that

0 = r0x0 +·· ·+ rn−1xn−1 + rnu.

First notice that
rn(u/EC ) = rnu/EC = (r0x0 +·· ·+ rn−1xn−1 + rnu)/EC = 0/EC .

Since {u/EC } is a basis for ED /EC , we must have rn = 0. This leads to

0 = r0x0 +·· ·+ rn−1xn−1.

But now since X is a basis for EC we see that 0 = r0 = ·· · = rn−1. So we find that X ∪ {u} is linearly indepen-
dent.

To see that X ∪ {u} generates ED , pick z ∈ ED . Since {u/EC } is a basis for ED /EC , pick r ∈ R so that

z/EC = r u/EC .

This means that z − r u ∈ EC . But X is a basis of EC . So pick x0, . . . , xn−1 ∈ X and r0, . . . ,rn−1 ∈ R so that

z − r u = r0x0 +·· ·+ rn−1xn−1.

Surely this is enough to see that z is in the submodule generated by X ∪ {u}. So this set generates ED and
we conclude that it must be a basis of ED .

In this way we see that for C ⊆ D ⊆ B where D arises from adding an element to C , if EC is free, then so is
ED and that either ED = EC or a basis for ED can be produced by adding just one element to a basis for EC .

With this in mind, we can envision a procedure for showing that E is free and its rank cannot be larger
than that of F. Notice that E = E ∩F = E ∩FB . So E = EB . The idea is simple. We will start with ∅⊆ B . We
observe that F∅ = E∅ is the module whose sole element is 0. It is free of rank 0. Next we select an element
w ∈ B and form ∅∪ {w} = {w}. We find that E{w} is free of rank 0 or rank 1. We select another element and
another and another. . . until finally all the elements of B have been selected. At this point we would have
EB is free and its rank can be no more than the total number of elements we selected, namely |B | which is
the rank of F.

To carry out this program, in case B were finite or even countable, we could mount a proof by induction.
You can probably see how it might be done. But we want to prove this for arbitary sets B . We could still
pursue this inductive strategy openly by well-ordering B and using transfinite induction. By using the
well-ordering we would always know what was meant by “pick the next element of B .”

Instead, we will invoke Zorn’s Lemma to short-circuit this rather long induction.
Let F = { f | f is a function with dom f ⊆ B and range f a basis for Edom f }. Recalling that functions are

certain kinds of sets of order pairs, we see that F is paritally ordered by set inclusion. Maybe it helps to
realize that asserting that f ⊆ g is the same as asserting that g extends f . We note that F is not empty since
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the empty function (the function with empty domain) is a member of F. To invoke Zorn’s Lemma, let C be
any chain included in F. Let h =⋃

C. Evidently f ⊆ h for all f ∈C. So h is an upper bound of C. We contend
that h ∈F. We ask the hard-working graduate students to check that the union of any chain of functions is
itself a function. Once you do that bit of work, it should be evident that domh =⋃

{dom f | f ∈C} and that
rangeh = ⋃

{range f | f ∈ C}. So it remains to show that rangeh is a basis for Edomh . To see that rangeh is
a generating set, let z be an arbitrary element of Edomh = E ∩Fdomh . Hence z must be generated by some
finitely many elements belong in domh. So there are finitely many functions f0, . . . , fn−1 ∈ C so that z is
generated by finitely many elements of dom f0 ∪ ·· · ∪dom fn−1. But dom f0, . . . ,dom fn−1, rearranged in
some order, forms a chain under inclusion. So z ∈ Fdom f` for some ` < n. Hence z ∈ Edom f` . But range f`
is a basis for Edom f` . Because range f` ⊆ rangeh we find that rangeh has enough elements to generate z.
Since z was an arbitrary element of Edomh we conclude that rangeh generates Edomh . It remains to show
that rangeh is linearly independent. But rangeh is the union of the chain {range f | f ∈ C}. I ask the hard-
working graduate students to prove that the union of any chain of linearly independent sets must also be
linearly independent. Once you have done this you will be certain that h belongs to F. By Zorn, let g be a
maximal element of F.

We would be done if dom g = B , since then E = E∩F = E∩FB = EB = Edom g . In which case, range g would
be a basis for E and rankE = |range g | ≤ |dom g | = |B | = rankF.

Consider the possibility that dom g is a proper subset of B . Put C = dom g and put X = range g . Let w ∈ B
with w ∉ dom g . Put D =C∪{w}. As we have seen above, either ED = EC or X ∪{u} is a basis for ED , for some
appropriately chosen u. We can now extend g to a function g ′ by letting g ′(w) be any element of range g
in the case when ED = EC and by letting g ′(w) = u in the alternative case. In this way, g ′ ∈F, contradicting
the maximality of g . So we reject this possibility.

This completes the proof.

Corollary 8.0.1. Let R be a principal ideal domain. Every submodule of a finitely generated R-module must
itself be finitely generated.

Proof. Suppose M is an R-module generated by n elements. Let N be a submodule of M.
Now let F be the free R-module with a basis of n elements. There is a function that matches this basis

with the generating set of M. So, appealing to freeness, there is a homomorphism h from F onto M. Let
E = {v | v ∈ F and h(v) ∈ N }. It is straightforward to check (will you do it?) that E is closed under the module
operations. So we get a submodule E of F. Moreover, the restriction of h to E is a homomorphism from E
onto N. But by our theorem E is generated by a set with no more than n elements. Since the image, under
a homomorphism, of any generating set for E must be a generating set of N (can you prove this?), we find
that N is finitely generated.
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8.1 PROBLEM SET 7

ALGEBRA HOMEWORK, EDITION 7

EIGHTH WEEK

MORE ON POLYNOMIALS AND THEN SOME

PROBLEM 34.
Let D be an integral domain and let c0, . . . ,cn−1 be n distinct elements of D . Further let d0, . . . ,dn−1 be
arbitrary elements of D . Prove there is at most one polynomial f (x) ∈ D[x] of degree n−1 such that f (ci ) =
di for all i < n.

PROBLEM 35.
Let F be a field and let c0, . . . ,cn−1 be n distinct elements of F . Further let d0, . . . ,dn−1 be arbitrary elements
of F . Prove there is at least one polynomial f (x) ∈ F [x] of degree n such that f (ci ) = di for all i < n.

PROBLEM 36.
Let R be the following subring of the field of rational functions in 3 variables with complex coefficients:

R =
{

f

g
: f , g ∈C[x, y, z] and g (1,2,3) 6= 0

}
Find 3 prime ideals P1,P2, and P3 in R with

0 á P1 á P2 á P3 á R.

PROBLEM 37.
Let R be a commutative ring. An R-module P is said to be projective provided for all R-modules M and N
and all homomorphisms f from M onto N, if g is a homomorphism from P into N, then there is a homo-
morphism h from P into M so that f ◦h = g .

Prove that every free R-module is projective.
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9
DIRECT DECOMPOSITION OF FINITELY GENERATED

MODULES OVER A PID

9.1 THE FIRST STEP

The objective here is to show how to obtain a direct decomposition of a finitely generated module over a
principal ideal domain. We would like that the direct factors admit no further nontrivial direct decompo-
sition.

The operations of modules work in a direct product of modules in a coordinatewise manner. So knowing
how to perform the operations in each direct factor leads immediately to a knowledge of how the opera-
tions work in the direct product. One point of inconvenience with direct products is that very few modules
actually arise as direct products—simply because the elements of your favorite module are not tuples of
any kind. So our direct decompositions make use of isomorphisms.

For the task at hand, our direct decompositions turn out to have only finitely many direct factors. In this
situation, it is easy to replace the direct product with the notion of a direct sum. Suppose that we have the
following direct decomposition of the R-module M:

M ∼= N×L.

Then composing the isomorphism with the projection functions on the direct product, we find two homo-
morphisms f : M�N and g : M� L and these homomorphisms have the following properties:

(a) For every v ∈ N and w ∈ L there is some u ∈ M so that f (u) = v and g (u) = w .

(b) For every u ∈ M , if f (u) = 0 and g (u) = 0, then u = 0.

Another way to frame these two properties is in terms of the kernels of these homomorphisms. Let N′ be
the submodule that is the kernel of g and let L′ be the submodule that is the kernel of f .

(a’) For every u ∈ M there are v ∈ N ′ and w ∈ L′ so that u = v +w .

(b’) The intersection of N ′ and L′ is trivial.

Here is how to prove (a’) from (a) and (b). Use (a) to get w ∈ M such that f (w) = 0 and g (w) = g (u). Then
g (u−w) = g (u)−g (w) = 0. Observe that u = (u−w)+w and u−w ∈ ker g = N ′ and w ∈ ker f = L′ as desired.
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I leave it to the hard-working graduate students to show that these two views (one from homomorphisms
and one from kernels) are logically equivalent. The Homomorphism Theorem, after just a bit of work,
yields that N ∼= N′ and L ∼= L′. This leads to the following definition. Let N′ and L′ be submodules of M
that satisfy (a’) and (b’). We say that M is a direct sum of N′ and L′ and we write M = N′⊕L′. Evidently,
N′⊕L′ ∼= N′×L′.

We can extend this notion to three submodules N0,N1, and N2. Here is what works.

(a’) For every u ∈ M there are v0 ∈ N0, v1 ∈ N1, and v2 ∈ N2 so that u = v0 + v1 + v2.

(b’) The intersections N0 ∩ (N1 +N2), N1 ∩ (N0 +N2), and N2 ∩ (N0 +N1) are all trivial.

The hard-working graduate students should verify that this works and also that the obvious extension to
any finite number of direct summands also succeeds.

Now let us turn to our task of decomposing modules. Here is a first step.

Fact. Let R be a nontrivial integral domain. As an R-module R is directly indecomposable.

Proof. We know that R can be itself construed as an R-module and as such it is a free R-module of rank 1.
To see that this module is directly indecomposable, suppose that M and N are R-modules and that ϕ is an
isomorphism from R onto M×N. Let M ′ = {r | ϕ(r ) = (u,0) for some u ∈ M }. Likewise, let N ′ = {r | ϕ(r ) =
(0, v) for some v ∈ N }. Plainly, M ′ and N ′ are ideals in R and M ′∩ N ′ = {0} since ϕ is one-to-one. Since
R is nontrivial, we see that M and N cannot both be trivial. Suppose, without loss of generality, that M is
nontrivial. So M ′ is nontrivial. Pick r ∈ M ′ with r 6= 0. We want to see that N must be a trivial module, or,
what is the same, that N ′ is a trivial ideal. Let s be an arbitrary element of N ′. Then r s ∈ M ′∩N ′ = {0}. That
is, r s = 0. Since r 6= 0 and R is an integral domain, we conclude that s = 0. Since s was an arbitrary element
of N ′, we have that N ′, and hence N, is trivial. This means that R is a directly indecomposable R-module,
since R is itself nontrivial but in any direct decomposition we find that one of the direct factors must be
trivial.

This means that, over any nontrivial integral domain, any free module of finite rank directly decomposes
into a direct product of finitely many copies of the ring; moreover, this direct decomposition is into directly
indecomposable modules.

Here is another step we can take in directly decomposing a module.

Fact. Let R be a commutative ring. Suppose that M is an R-module, that F is a free R-module, and that f
is a homomorphism from M onto F with kernel N. Then there is a free R-module E so that M ∼= N×E.

Proof. Let B be a basis for F. For each u ∈ B pick vu ∈ M so that f (vu) = u. The set C = {vu | u ∈ B} is a
linearly independent subset of M . Here is how to see it:

Let w0, . . . , wn−1 be finitely many distinct elements of C and let r0, . . . ,rn−1 ∈ R with

r0w0 +·· ·+ rn−1wn−1 = 0.

Applying f to both sides we obtain

r0 f (w0)+·· ·+ rn−1 f (wn−1) = 0.

But f (w0), . . . , f (wn−1) are distinct elements of B , which is linearly independent. So r0 = ·· · =
rn−1 = 0, as desired.

Now let E be the submodule of M generated by C . So E is free since C is a basis. I contend that M ∼= N×E.
Here is how to define the isomorphism ϕ:
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Let w be an arbitrary element of M . Let f (w) = r0u0 + ·· · + rn−1un−1 where u0, . . . ,un−1 are
distinct elements of B and all the ri ’s are nonzero. Let v0, . . . , vn−1 be elements of C so that
f (vi ) = ui for all i < n. Put x = r0v0 +·· ·+ rn−1vn−1. Then x ∈ E and f (x) = f (w). This means
w −x ∈ N since N is the kernel of f . So define ϕ(w) = (w −x, x).

It is a straightforward piece of work (done by all hard working graduate students) to see that ϕ is an iso-
morphism.

To invoke this last fact for a particular module M we essentially have to find a free submodule of M. Such
a submodule would have a basis C . For w ∈C we would have to have the implication

r w = 0 =⇒ r = 0, for all r ∈ R,

since this is just part of the definition of linear independence. Indeed, when R is an integral domain, all
the elements of E , not just those in C would have to have this property. This suggests that N should consist
of those elements that fail this property. That is elements x ∈ M such that r x = 0 for some r 6= 0. Such
elements are called torsion elements. The 0 of a module is always a torsion element, provided the ring is
nontrivial. The module M is said to be torsion free provided 0 is its only torsion element. The step along
the way is the following fact.

Fact. Let R be a nontrivial integral domain and let M be an R-module. Then the set T of torsion elements
is a submodule of M and M/T is torsion free.

Proof. We have already noted that 0 ∈ T . To see that T is closed under addition, let u, v ∈ T . Pick nonzero
elements r, s ∈ R so that r u = 0 = sv . Then r s 6= 0 since R is an integral domain. Now observe

(r s)(u + v) = (r s)u + (r s)v = (sr )u + (r s)v = s(r u)+ r (sv) = 0+0 = 0

holds in R, since R is commutative. So u + v ∈ T . Finally, suppose that t ∈ R. Then r (tu) = (r t )u = (tr )u =
t (r u) = 0, so tu ∈ T . In this way, we see that T is closed under the module operations and we can form the
submodule T.

To see that M/T is torsion free, pick a nonzero element u/T of M/T and a scalar r ∈ R so that r (u/T ) =
0/T . Since u/T is nonzero we know that u ∉ T . On the other hand r (u/T ) = (r u)/T = 0/T means that
r u ∈ T . So pick a nonzero s ∈ R so that s(r u) = 0. This means that (sr )u = 0. But, since u ∉ T we know that
u is not a torsion element. So sr = 0. Since s 6= 0 and R is an integral domain, we see that r = 0. This means
that u/T is not a torsion element. So M/T is a torsion free module.

So when is a torsion free module actually free?

Fact. Let R be a nontrivial principal ideal domain. Every finitely generated torsion free R-module is free of
finite rank.

Proof. Let M be a torsion free R-module generated by the finite set X . Let Y be a maximal linearly indepen-
dent subset of X . Let F be the submodule of M generated by Y . Of course, F is free of finite rank. For each
x ∈ X pick sx ∈ R so that sx x ∈ F . This is possible since if x ∈ Y we can let sx = 1, while if x ∉ Y , then Y ∪ {x}
is linearly dependent. This means that for some distinct y0, . . . , yn−1 ∈ Y there are sx ,r0, . . . ,rn−1 ∈ R \ {0} so
that

sx x + r0 y0 +·· ·+ rn−1 yn−1 = 0.

In this way, sx x ∈ F . Now let s be the product of all the sx ’s as x runs through X . Then sx ∈ F for all x ∈ X .
Since X generates M, we see that sv ∈ F for all v ∈ M . Now let ϕ be the map from M into F defined via

ϕ(v) := sv for all v ∈ M .
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It is routine to check that ϕ is a homomorphism. The kernel of ϕ must be trivial since M is torsion free.
So ϕ is one-to-one. This means that M is isomorphic with a submodule of the free module F. Since R is a
principal ideal domain, by the Freedom Theorem we conclude that M is free. Moreover, since F has finite
rank, so must M.

The First Decomposition Theorem for Modules over an Integral Domain.
Let R be a nontrivial principal ideal domain, let M be a finitely generated R-module, and let T be the torsion
submodule of M. There is a free module F of finite rank such that

M ∼= T×F.

Moreover, the rank of F is determined by M.

Proof. According to the Facts established above, we can take F to be M/T . So only the “moreover” part of
the theorem remains to be established. To this end, suppose that F′ is some free module so that

M ∼= T×F′.

The conclusion we want is F ∼= F′.
What are the torsion elements of T×F′? Suppose (u, v) is torsion. Pick r 6= 0 so that r (u, v) = (0,0). So

r v = 0. But v ∈ F ′, which being free is also torsion free. So v = 0. This means that the torsion elements of
T×F′ are exactly the elements of T ′ := {(u,0) | u ∈ T }. In this way we see

F = M/T ∼= (T×F′)/T ′ ∼= F′.

The rightmost isomorphism above comes from the Homomorphism Theorem since T ′ is the kernel of the
project of the direct product onto its rightmost direct factor.

Both the torsion module T and the free module F may admit further direct decomposition. As regards the
free module, we know it can be decomposed as the direct product of n copies of the R-module R, which
we have seen is directly indecomposable.
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9.2 PROBLEM SET 8

ALGEBRA HOMEWORK, EDITION 8

NINTH WEEK

POLYNOMIALS AGAIN

PROBLEM 38.
Prove that the polynomial x3 y +x2 y −x y2 +x3 + y is irreducible in Z[x, y].

PROBLEM 39.
Let F and M be modules over the same ring and let F be a free module. Let h : M� F be a homomorphism
from M onto F. Prove each of the following.

(a) There is an embedding g : F�M of F into M such that h ◦ g = idF . (Here idF denotes the identity map
of the set F .)

(b) M = kerh ⊕F′, where F′ is the image of F with respect to g .

PROBLEM 40.
Prove that there is a polynomial f (x) ∈R[x] such that

(a) f (x)−1 belongs to the ideal (x2 −2x +1);

(b) f (x)−2 belongs to the ideal (x +1), and

(c) f (x)−3 belongs to the ideal (x2 −9).
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9.3 THE SECOND STEP

Let M be any R-module and X be any subset of M . Define

ann X := {r | r ∈ R and r x = 0 for all x ∈ X }.

This set is called the annihilator of X . It is routine to check that ann X is always an ideal of R, provided R
is commutative. Running this game in the other direction, let S ⊆ R and define

M [S] := {u | u ∈ M and r u = 0 for all r ∈ S}.

Again, it is routine to check that M [S] is closed under the module operations, provided that R is commu-
tative. So we obtain a submodule M[S] of the module M. For a single element r ∈ R we write M[r ] for
M[{r }].

Let T be a torsion module of a principal ideal domain R. Suppose that the finite set X generates T. As
we did in one of the proofs in the preceding lecture, for each x ∈ X we can pick a nonzero sx ∈ R so that
sx x = 0. Let s be the product of these finitely many sx ’s as x runs through X . Since R is an integral domain
we see that s 6= 0 and since R is commutative and X generates T we see that su = 0 for all u ∈ T . This means
that annT is a nontrivial ideal. Because R is a principal ideal domain we can pick r ∈ R so that (r ) = annT .
This nonzero element r , which is unique up to associates, is called the exponent of T.

More generally, if u is a torsion element of an R-module, where R is a principal ideal domain then there
will be a nonzero element r so that (r ) = ann{u}. We call r the order of u and sometimes refer to ann{u}
as the order ideal of u. If v is also a torsion element and s is the order of v , where r and s are relatively
prime, then r s will be the order of u + v . (This could be proven by a hard working graduate student.)

We are ready to begin decomposing our torsion module.

Fact. Let T be a torsion R-module with exponent r , where R is a principal ideal domain. Suppose that
r = sq where s and q are relatively prime. Then T ∼= T[s]×T[q].

Proof. Using the relative primeness of s and q select elements a,b ∈ R so that 1 = as +bq . So for any u ∈ T
we have

u = 1 ·u = (as +bq)u = q(bu)+ s(au).

Observe that q(bu) ∈ T [s] and s(au) ∈ T [q]. So every element of T can be expressed as a sum of an element
of T [s] and an element of T [q]. The expression is unique since if u = v +w where v ∈ T [s] and w ∈ T [q],
then v − qbu = sau −w ∈ T [s]∩T [q]. But the order of any element of this intersection must divide both
s and q , which are relatively prime. So the intersection is just {0} and it follows that v = qbu and w =
sau. The map that sends u to (v, w) where v ∈ T [s], w ∈ T [q], and u = v + w is easily seen to be an
isomorphism.

Suppose that r is the exponent of our torsion R-module T, where R is a principal ideal domain. Let
p0, . . . , pn−1 ∈ R be distinct primes and let e0, . . . ,en−1 be positive integers so that

r = pe0
0 . . . pen−1

n−1 .

Then applying the Fact above over and over again we find

T ∼= T[pe0
0 ]×·· ·×T[pen−1

n−1 ].

Modules of the form T[pe ] where p ∈ R is prime and e is a positive integer are said to be primary or some-
times more specifically p-primary. These are just the torsion modules of exponent a power of p. So now
we know that every finitely generated torsion module over a principal ideal domain can be decomposed
as a product of primary modules. We state this as a theorem.
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The Primary Decomposition Theorem.
Every finitely generated module over a principal ideal domain is isomorphic to a direct products of finitely

many primary modules.

Still, these primary modules may admit further direct decomposition.
Which p-primary modules are directly indecomposable?

Fact. Let R be a principal ideal domain and p ∈ R be prime. Every cyclic p-primary R-module is directly
indecomposable.

Proof. Let T be an R-module of exponent pe that is generated by w . Suppose that T ∼= M×N. We need
to argue that one of M and N is trivial. We know that pe w = 0 but pe−1w 6= 0. Pick u ∈ M and v ∈ N so
that (u, v) generates M×N. Then we have pe u = 0 and pe v = 0 and either pe−1u 6= 0 or pe−1v 6= 0. Without
loss of generality, suppose pe−1u 6= 0. This makes M nontrivial, so our ambition is to show that N is trivial.
Now since the element (u, v) generates all elements of M×N, we see that every element of M ×N can be
obtained by multiplying (u, v) by an appropriate scalar. So pick r ∈ R so that r (u, v) = (0, v). It follows
that r u = 0 and r v = v . Since the order of u is pe , we have that pe | r . So r = spe for some s. But then
v = r v = spe v = 0. But this entails that N is trivial.

Of course, we can get a cyclic submodule easily enough just by selecting a single element and using it to
generate a submodule. Something more clever is possible.

Fact. Let R be a principal ideal domain and let T be a torsion R-module of exponent r . Then T has an
element of order r .

Proof. Pick distinct primes p0, . . . , pn−1 ∈ R and positive integers e0, . . . ,en−1 so that

r = pe0
0 . . . pen−1

n−1 .

For each j < n, let r j = r
p j

= pe0
0 . . . p

e j−1

j−1 p
e j−1
j p

e j+1

j+1 . . . pen−1
n−1 . Notice that r - r j for all j < n. This allows us, for

each j < n, to pick u j ∈ T so that r j u j 6= 0. Now, for each j < n, put

v j = r

p
e j

j

u j .

Then, for each j < n, we have p
e j

j v j = 0 but p
e j−1
j v j 6= 0. So v j is an element of order p

e j

j . It now follows
that v0 +·· ·+ vn−1 is an element of order r , as desired.

There is one additional fact that proves useful.

Fact. Let T be a torsion R-module of exponent r , where R is a principal ideal domain. Let M and N be
submodules of T, where M is generated by an element of order r . Let f be a homomorphism from N
into M. Finally, let v ∈ T with v ∉ N . Then f can be extended to a homomorphism from the submodule
generated by N ∪ {v} into M.

Proof. Let u be the element of order r that generates M. Let N′ be the submodule generated by N ∪ {v}.
Evidently, r v = 0 ∈ N , so v/N has some nonzero order s in N′/N and s | r . So sv ∈ N . Pick p ∈ R so that

r = ps.

Now f (sv) ∈ M and p f (sv) = f (psv) = f (r v) = f (0) = 0. So the order of f (sv) divides p.
Since f (sv) ∈ M and M is generated by u pick q ∈ R so that f (sv) = qu. Then we see 0 = p f (sv) = pqu.

This means
r | pq.
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Hence, ps | pq . Since R is an integral domain, we have

s | q.

So pick t ∈ R such that
q = st .

This entails f (sv) = qu = stu. Let w = tu ∈ M . So f (sv) = sw .
Now every element of N ′ can be written in the form y + av for some choices of y ∈ N and a ∈ R. There

may be several ways to make these choices.
Here is how we define our extension f ′ of f :

f ′(y +av) = f (y)+aw.

It is not clear that this definition is sound. Let us verify that. Suppose that y +av = y ′+a′v where y, y ′ ∈ N
and a, a′ ∈ R. We need to see that

f (y)+aw = f (y ′)+a′w or written another way f (y)− f (y ′) = (a′−a)w.

But notice that y − y ′ = (a′−a)v . So (a′−a)v ∈ N . This means s | (a′−a). Pick m ∈ R so that a′−a = ms.
But this leads to

f (y)− f (y ′) = f (y − y ′) = f ((a′−a)v) = f (msv) = m f (sv) = msw = (a′−a)w,

just as we desire. So our definition is sound. Since f ′(y) = f ′(y +0v) = f (y)+0w = f (y), for all y ∈ N , we
see that f ′ extends f . We must also check that f ′ is a homomorphism, a task we leave to hard working
graduate students.

So our scheme is to grab an element whose order is the exponent of T, let M be the submodule generated
by that element, and hope to find another submodule N so that T ∼= M×N. If we are lucky maybe the
exponent of N will be smaller. Here is what we need.

Fact. Let R be a principal ideal domain and let T be a torsion R-module of exponent r . Then T has a cyclic
submodule M of exponent r and a submodule N of exponent s so that s | r and T ∼= M×N.

Proof. Let u ∈ T have order r and let M be the submodule of T generated by u. Let f be the identity map
on M. Let

F= {g | g : N → M is a homomorphism extending f for some submodule N with M ⊆ N ⊆ T }.

We will apply Zorn’s Lemma to F, which is partially ordered by set-incluion. Notice that f ∈F, so F is not
empty. Let C be a nonempty chain in F. Certainly

⋃
C is an upper bound on C. We must show it is in F. We

have noted before that the union of a chain of functions is again a function. The hard-working graduate
students will see that the union of a chain of homomorphisms is itself a homomorphism. It is routine to
see that the union of a chain of submodules (the domains of those homomorphisms) is again a submodule.
So we see indeed that

⋃
C belongs to F. Let g be a maximal element of F. Since the fact just above would

otherwise allow the extension of g to larger member of F, a thing impossible by the maximality of g , we
see that g is a homomorphism from T into M which extends the identity map on M. Let N be the kernel of
g . Let s be the exponent of N. Evidently, s | r .

For any w ∈ T we have g (w) ∈ M . But then g (g (w)) = f (g (w)) since g extends f . But f is the identity
map. So we see that g (g (w)) = g (w) for all w ∈ T . But notice

g (w − g (w)) = g (w)− g (g (w)) = g (w)− g (w) = 0.
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This means that w − g (w) ∈ N for all w ∈ T , since N is the kernel of g . So we find that

w = g (w)+ (w − g (w)) ∈ M +N , for all w ∈ T.

Another way to write this is
T = M +N .

Now suppose w ∈ M ∩N . Then, on the one hand, g (w) = f (w) = w since w ∈ M and g extends f (which is
the identity function), while on the other hand g (w) = 0 since w ∈ N = ker g . Taken together we find that
w = 0. This means

M ∩N = {0}.

So we see that T = M⊕N. This yields our desired conclusion.

The Invariant Factor Theorem.
Let T be a nontrivial finitely generated torsion R-module, where R is a principal ideal domain. Then for

some natural number n there are r0,r1, . . . ,rn ∈ R with

rn | rn−1 | · · · | r1 | r0

and cyclic submodules M0 of exponent r0,. . . , Mn of exponent rn so that

T ∼= M0 ×·· ·×Mn .

Proof. Let the order of T be r0. (Recall that we have already proven that a nontrivial finitely generated
torsion module has an exponent.) Let u0 ∈ T have order r0 and let M0 be the submodule generated by u0.
By the preceding Fact, there is a submodule N0 of order r1 with r1 | r0 such that T ∼= M0 ×N0. If N0 is trivial,
we can stop since T ∼= M0 in that case. Otherwise, pick u1 ∈ N0 with order r1. Take M1 to be the submodule
of N0 generated by u1 and invoke the immediately preceding fact to get a proper submodule N1 of N0 of
exponent r2 so that r2 | r1 and N0

∼= M1 ×N1. At this stage we have

T ∼= M0 ×M1 ×N1 and r2 | r1 | r0 and N1 á N0,

where the exponent of M0 is r0, the exponent of M1 is r1, and the exponent of N1 is r2. Again our process
terminates in the event N1 is trivial, but otherwise the process can be continued. In this process two chains
of submodules of T are constructed. One is the descending chain consisting of the submodules N j . The
other is the ascending chain

M0 á M0 ⊕M1 á . . . .

Now we know, as a corollary of the Freedom Theorem that every submodule of T is finitely generated. We
saw for rings that if every ideal was finitely generated then there could be no infinite ascending chains of
ideals. The same reasoning applies here (as the hard working graduate student will establish) to see that
there can be no infinite ascending chain of submodules of T. This must mean the process described above
terminates at some finite stage. This completes our proof.

The r0,r1, . . . ,rn mentioned in the theorem are called invariant factors.
Now we are ready for the chief existence theorem for direct decomposition of finitely generated modules.

The Elementary Divisor Theorem.
Let T be a nontrivial finitely generated torsion R-module, where R is a principal ideal domain. Then for

some natural number n, there are cyclic primary submodules M0, . . . ,Mn of T so that

T ∼= M0 ×·· ·×Mn .

The exponents of the various cyclic primary submodules are referred to as the elementary divisors of T.
The proof of the Elementary Divisor Theorem is obtained by applying the Invariant Factor Theorem to

each of the direct factors arising from an application of the Primary Decomposition Theorem.
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9.4 PROBLEM SET 9

ALGEBRA HOMEWORK, EDITION 9

TENTH WEEK

A GRAB BAG

PROBLEM 41.
Let A be the 4×4 real matrix

A =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0


(a) Determine the rational canonical form of A.

(b) Determine the Jordan canonical form of A.

PROBLEM 42.
Suppose that N is a 4×4 nilpotent matrix over a field F with minimal polynomial x2. What are the possible
rational canonical forms for N ?

PROBLEM 43.
Let F be the subring of the field of complex numbers consisting of those numbers of the form a+ i b where
a and b are rationals. Let G be the subring of the field of complex numbers consisting of those numbers of
the form m +ni where m and n are integers.

(a) Describe all the units of G.

(b) Prove that F is (isomorphic to) the field of fractions of G.

(c) Prove that G is a principal ideal domain.

[Hint: In this problem it is helpful to consider the function that sends each complex number z to zz̄ = |z|2.]
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THE STRUCTURE OF FINITELY GENERATED MODULES

OVER A PID

Here is one of the key results in our course.

The Structure Theorem for Finitely Generated Modules over a Principal Ideal Domain. Let M be a finitely
generated R-module, where R is a principal ideal domain. There is a natural number n such that:

(a) there are n finitely generated directly indecomposable submodules M0, . . . ,Mn−1 of M such that

M ∼= M0 ×·· ·×Mn−1, and

(b) for any natural number m, if N0, . . . ,Nm−1 are directly indecomposable R-modules such that

M ∼= N0 ×·· ·×Nm−1,

then n = m and there is a permutation σ of {0, . . . ,n −1} so that Mi
∼= Nσ(i ) for all i < n.

Moreover, the finitely generated directly indecomposable R-modules are, up to isomorphism, the R-module
R (that is the free R-module of rank 1), and the R-modules of the form R/(r ) where r is a positive power of
some prime element of the ring R (these are the cyclic primary R-modules). Finally, the free R-module of
rank 1 is not primary and if r, s ∈ R are prime powers and R/(r ) ∼= R/(s), then r and s are associates in the
ring R.

Before turning to the proof a few remarks are in order.
First, we have allowed n = 0. This results in the direct product of an empty system of R-modules. A care-

ful, but easy, examination of the definition of direct products reveals that such a direct product produces
the trivial R-module—that is the module whose only element is 0. Evidently, the trivial R-module is the
direct product of exactly one system of directly indecomposable R-modules, namely of the empty system.

This theorem has three parts:

• the assertion of the existence of a decomposition into indecomposables,

• the assertion that such a decomposition is unique, and

• a description of the indecomposables.

78
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These are the hallmarks of a good structure theorem. There are other theorems of this kind in mathemat-
ics. Perhaps the most familiar is the Fundamental Theorem of Arithmetic. To make the connection plain,
consider the least complicated algebraic systems, namely just nonempty sets equipped with no opera-
tions. Then the finitely generated algebraic systems are just the finite nonempty sets and isomorphisms
are just one-to-one correspondences. So two of these algebraic systems will be isomorphic if and only if
they have the same number of elements. The Fundamental Theorem of Arithmetic says that every finite
set is isomorphic to a direct product of directly indecomposable finite sets in a way that is unique up to
isomorphism and rearranging the factorization, and that a set is directly indecomposable if and only if it
has a prime number of elements.

This theorem also resonates with the notion of a unique factorization domain. We could reformulate
our structure theorem to make this more apparent. Each finitely generated R-module is isomorphic to a
lot of other R-modules (in fact, to a proper class of R-modules). Pick a representative from each of these
isomorphism classes, taking care to include among these representatives the R-modules R and R/(r ) where
r ∈ R is a positive power of some prime element of R. Let M be the set of all these representatives and let
1 be the representative of the trivial R-module. Then 〈M,×,1〉 is an algebraic system (actually a monoid)
with the unique factorization property.

Finally, the structure theorem above has a number of far-reaching consequences. Taking R to be Z we
obtain a structure theorem for finitely generated Abelian group. Taking R to be F[x], where F is a field leads
to the canonical form theorems of linear algebra.

Proof. Let us first dispose of the descriptions of the directly indecomposable R-modules that could arise
in any factorization of M. These must be finitely generated because they will be isomorphic to submod-
ules of M and, according to the Corollary of the Freedom Theorem every submodule of M must be finitely
generated. We have already seen that the free R-module of rank 1 (namely the module R) is directly in-
decomposable and every other free R-module of finite rank n > 1 is a direct product of n-copies of R. We
have also seen that the cyclic primary R-modules are the only finitely generated directly indecomposable
torsion modules. Can there be any other finitely generated directly indecomposable R-module? By the
First Decomposition Theorem every finitely generated R-module is isomorphic to a direct product of the
form T×F, where T is the torsion submodule and F is a submodule that is free. For a directly indecom-
posable module we must have either F trivial (and then our module would be torsion) or else T trivial (and
then our module would be free). So the only finitely generated directly indecomposable R-modules are
the ones already in hand, the R-module R and the cyclic primary R-modules.

We can say more about the cyclic primary R-modules. Let r ∈ R be a positive power of a prime element
of R. Then the ideal (r ) is a submodule of the R-module R. The element 1/(r ) of the quotient module R/(r )
generates the quotient module and has order r . So the quotient module is cyclic and of exponent r . In this
way we know cyclic R-modules of exponent r exist. Suppose that N is an R-module of exponent r which is
generated by the single element u. Since {1} is a basis for R, we know there is a homomorphism h from R
onto N that takes 1 to u. Now for all s ∈ R we have h(s) = h(s ·1) = sh(1) = su. From this we see that

s ∈ kerh ⇔ h(s) = 0 ⇔ su = 0 ⇔ r | s ⇔ s ∈ (r ).

That is, kerh = (r ). So by the Homomorphism Theorem N ∼= R/(r ). So, up to isomorphism, the only cyclic
R-module of exponent r (where r is a positive power of some prime) is R/(r ).

Now observe that the free R-module R of rank 1 is not a torsion module since s ·1 = 0 =⇒ s = 0. So the R-
module R cannot be isomorphic with any of the modules R/(r ) where r is a positive power of some prime.
(One needs to observe here, as the hard-working graduate students will verify, that r cannot be a unit.)
Now suppose that r and s are both positive powers of primes (we don’t assume the primes are the same)
and that R/(r ) ∼= R/(s). Then r is the order of a generator of this cyclic module and so is s. This means that
r | s and s | r . Consequently, (r ) = (s) and r and s are associates.
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Now consider part (a) of the theorem. This is an immediate consequence of the First Decomposition
Theorem and the Elementary Divisor Theorem.

Finally, consider part (b). Some of the Ni ’s can be cyclic primary modules and others can be free of rank
1, according to our description of the directly indecomposable finitely generated modules. Without loss
of generality, we assume that the primary modules come first. So pick k ≤ m so that N0, . . . ,Nk−1 are cyclic
primary modules and Nk , . . . ,Nm−1 are free of rank 1. Let T be the direct product of the first group and F be
the direct product of the second. So we find M ∼= T×F. It is routine (according to hard-working graduate
students) that T is a torsion module and also that F is free of rank m − k. Let (v,u) ∈ T ×F be a torsion
element of order r . Then (0,0) = r (v,u) = (r v,r u). In particular, r u = 0. The element u can be written
as a linear combination of the basis elements of F. By distributing r through the linear combination and
invoking both linear independence and the fact the r is a nonzero element of an integral domain, we see
that u = 0. What we conclude is that the torsion elements of T × F are exactly those of the form (v,0)
where v ∈ T is nonzero. Thus under the isomorphism M ∼= T×F, the module T corresponds to the torsion
submodule of M. Then according to the First Decomposition Theorem the rank of F is determined by M.

It remains to show that if T ∼= M0×·· ·×M`−1
∼= N0×·· ·×Nk−1, where all the Mi ’s and N j ’s are cyclic primary

R-modules, then `= k and, after a suitable reindexing, Mi
∼= Ni for all i < `.

Let p ∈ R be prime. For any R-module Q let

Q(p) = {v | v ∈Q and pe v = 0 for some positive integer e}.

It is routine to check that this set is closed under the module operations, so we have the submodule Q(p).
It is also not hard to see (as hard-working graduate students will check) that

T(p) ∼= M0(p)×·· ·×M`−1(p) ∼= N0(p)×·· ·×Nk−1(p).

In this decomposition, if Mi (or N j ) were primary with respect to a prime not associate to p, then the
module Mi (p) (respectively N j (p)) would be trivial. On the other hand, if they were primary with respect
to an associate of p, then Mi (p) = Mi and N j (p) = N j . Since this holds for arbitrary primes p, we do not
lose any generality by assuming the the primes underlying all the Mi ’s and N j ’s are the same prime p.

Now suppose Q is a cyclic primary R-module, where pe is the exponent and u is a generator. Then Q[p]
is generated by pe−1u. So Q[p] is cyclic of exponent p. In this case, we know that Q[p] ∼= R/(p). Now (p) is a
prime ideal of the ring R. In a principal ideal domain, the maximal ideals and the prime ideals coincide. So
the ring R/(p) is a field. This allows us to construe the R-module Q[p] as a one-dimensional vector space
over the field R/(p). In doing this, we are changing the scalar multiplication, but leaving the addition and
the zero the same. Now we have

T[p] ∼= M0[p]×·· ·×M`−1[p] ∼= N0[p]×·· ·×Nk−1[p]

construed as vector spaces over the field R/(p), with each of the direct factors being a copy of the one-
dimensional vector space. This means

`= dimT[p] = k.

So we have discovered that `= k, one of our desired conclusions.
So we are reduced to considering the following situation:

T ∼= M0 ×·· ·×M`−1

∼= N0 ×·· ·×N`−1

where Mi is a cyclic module of exponent pei and Ni is a cyclic module of exponent p fi for all i < ` and

e0 ≥ e1 ≥ ·· · ≥ e`−1

f0 ≥ f1 ≥ ·· · ≥ f`−1.
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It remains only to show that ei = fi for all i < `. Suppose, for the sake of contradiction, that this were not
so. Let i be as small as possible so that ei 6= fi . It is harmless to also suppose that ei > fi . Let r = p fi . Now
multiplication by r is a homomorphism and it is easy to also see that

r T ∼= r M0 ×·· ·× r Mi−1 × r Mi ×·· ·× r M`−1

∼= r N0 ×·· ·× r Ni−1 × r Ni ×·· ·× r N`−1.

Being homomorphic images of cyclic modules, each of the direct factors above is also cyclic. Because r is
a positive power of the prime p, we see that the factor modules above are either primary (with prime p) or
trivial. But exponents of all the N j ’s where i ≤ j are factors of r , we see that these modules are all trivial.
On the other hand, the exponent of Mi is pei whereas r = p fi with ei > fi . So r Mi is not trivial. This would
mean

r T ∼= r M0 ×·· ·× r Mi−1 × r Mi ×·· ·× r M`−1

∼= r N0 ×·· ·× r Ni−1,

where the top direct factorization has at least i + 1 nontrivial cyclic primary factors but the bottom has
only i . But we have just proven that the number of such factors must be the same no matter how the direct
factorization is accomplished. This contradiction means our supposition must be rejected. So ei = fi for
all i < `. This establishes the uniqueness of our direct factorization into directly indecomposable modules.
The proof of the last remaining part of our theorem, namely part (b), is complete.

The Structure Theorem above is an extension of the Elementary Divisor Theorem formulated in the pre-
vious lecture. We can also extend the Invariant Factor Theorem.

The Extended Invariant Factor Theorem.
Let T be a nontrivial finitely generated torsion R-module, where R is a principal ideal domain. Then for

some natural number n there are r0,r1, . . . ,rn ∈ R with

rn | rn−1 | · · · | r1 | r0

and cyclic submodules M0 of exponent r0,. . . , Mn of exponent rn so that

T ∼= M0 ×·· ·×Mn .

Moreover, the natural number n is uniquely determined by T, the sequence rn | rn−1 | · · · | r1 | r0 is uniquely
determined up to associates, and cyclic submodules M0, . . . ,Mn are determined up to isomorphism.

Only the various aspects of uniqueness require proof at this point. However, these proofs follow the lines
of the uniqueness portion of the proof of the Structure Theorem. We leave the details in the hands of the
hard working graduate students. It is useful to note that the cyclic modules which are the factors in this
direct decomposition may not themselves be directly indecomposable.

Using the Structure Theorem, for each principal ideal domain R we can define a function d such that
d(pe ,M) is the number of direct factors isomorphic to the module R/(pe ) in any direct factorization of M
into directly indecomposable modules, where p ∈ R is prime, e is a positive natural number, and M is a
finitely generated R-module. In addition, we take d(0,M) to be the number of direct factors isomorphic to
the R-module R (that is, the directly indecomposable free module).

Then we have the useful

Corollary. Let R be a principal ideal domain and M and N be finitely generated R-modules. Then M ∼= N if
and only if d(q,M) = d(q,N) for all q such that either q = 0 or q is a positive power of a prime in R.
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What this corollary asserts is that the system

〈d(q,M) | q = 0 or q is the positive power of a prime of R〉

of natural numers is a complete system of invariants of M—that is this system of natural numbers deter-
mines M up to isomorphism.

As noted earlier, modules over the ring Z of integers are essentially the same as Abelian groups since, for
instance, 3u = (1+1+1)u = u +u +u and −7v = −(v + v + v + v + v + v + v). In this way, we see that for a
Z-module M = 〈M ,+,−,0, a·〉a∈Z the scalar multiplication is expressible by means of the additive structure
+,−, and 0. In particular, any map betweenZ-modules that respects+,−, and 0 must also respect the scalar
multiplication, any subset of aZ-module that is closed under +,1, and contains 0 will also be closed under
all the scalar multiplications, and a similar remark holds for direct products—in any of these constructions
one may ignore the scalar multiplications along the way, but impose them on the result (the homomorphic
image, the subalgebra, or the direct product) by means of repeated addition.

With this in mind, noting that Z is a principal ideal domain, we obtain

The Fundamental Theorem for Finitely Generated Abelian Groups.
Let A be a finitely generated Abelian group. There is a natural number n such that:

(a) there are n finitely generated directly indecomposable subgroups A0, . . . ,An−1 of A such that

A ∼= A0 ×·· ·×An−1, and

(b) for any natural number m, if B0, . . . ,Bm−1 are directly indecomposable Abelian groups such that

A ∼= B0 ×·· ·×Bm−1,

then n = m and there is permutation σ of {0, . . . ,n −1} so that Ai
∼= Bσ(i ) for all i < n.

Moreover, the finitely generated directly indecomposable Abelian groups are, up to isomorphism, the group
〈Z,+,−,0〉 of integers with respect to addition (that is the free Abelian group of rank 1), and the cyclic groups
of prime power order (these are the groups Zq where q is a positive power of a prime number, the set of
elements is {0,1, . . . , q −1}, and addition works modulo q). Finally, the free Abelian group of rank 1 is not of
prime power order and if r, s ∈ R are prime powers and Zr

∼=Zs , then r = s.

This could be regarded as the elementary divisor version of the structure theorem for finitely generated
Abelian groups. One could as easily formulate a structure theorem from the invariant factor point of view.
To see how these two points of view compare consider a description, up to isomorphism, of all the Abelian
groups of order 100. The prime factorization gives 100 = 2252. Using the elementary divisor perspective we
see that the list, representative up to isomorphism and also pairwise nonisomorphic, of Abelian groups of
order 100 is

Z4 ×Z25 Z2 ×Z2 ×Z25 Z4 ×Z5 ×Z5 Z2 ×Z2 ×Z5 ×Z5

while from the invariant factor perspective the list is

Z100 Z2 ×Z50 Z5 ×Z20 Z10 ×Z10.

At work here are the following direct decompositions:

Z100
∼=Z4 ×Z25 Z50

∼=Z2 ×Z25 Z20
∼=Z4 ×Z5 Z10

∼=Z2 ×Z5.
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DECOMPOSING MODULES

PROBLEM 44.
Let R be a nontrivial integral domain and M be an R-module. Prove the set T of torsion elements is a
submodule of M and M/T is torsion free.

PROBLEM 45.
Let R be a principal ideal domain and let T be a torsion R-module of exponent r . Prove that T has an
element of order r .

PROBLEM 46.
Prove that the sequence of invariant factors (i.e. the sequence r0,r1, . . . ,rn) mentioned in the Invariant
Factor Theorem is uniquely determined by the module.

PROBLEM 47.
Let M be a finitely generated R-module, where R is a principal ideal domain. Prove each of the following.

(a) The direct decomposition using the Invariant Factor Theorem is the one using the smallest number of
factors that are all cyclic.

(b) The direct decomposition using the Elementary Divisor Theorem is the one using the largest number
of factors that are all cyclic.
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DECOMPOSITION OF VECTOR SPACES WITH A

DESIGNATED LINEAR OPERATOR

Let V be a finite dimensional vector space over a field F and let T be a linear operator on V—that is, T
is an endomorphism of the vector space V. Our objective here is to decompose V as a direct product
of subspaces that are invariant with respect to T . The most straightforward way to proceed with such a
project is to adjoin T to the vector space as a new one place operation. This new algebraic system would
have a binary operation + (the old vector addition), a designated element 0 (the zero vector), a one-place
operation − of forming negations, a one-place operation aI for each a ∈ F (the scalar muliplications),
and the new one-place operation T . The program would then become the direct decomposition of this
new algebraic system into directly indecomposable factors. It is possible to carry out this program, to
prove the corresponding structure theorem (which would prove the existence and uniqueness of such
decompositions and describe the directly indecomposable algebras, much as in the last section).

However, there is an alternate route to the same result that allows us to take advantage of the work we
have done with modules. The idea is to regard V as a module over the principal ideal domain F[x] instead
of over the field F. This means we have to define what f (x) · v means for every vector v ∈ V and every
polynomial f (x) ∈ F[x]. Here is the definition:

f (x) · v := f (T )(v).

Here f (T ) = a0I+a1T +a2T 2+·· ·+anT n where f (x) = a0+a1x+·· ·+an xn and T 2 = T ◦T,T 3 = T ◦T ◦T , and
so on. It is easy to see that each f (T ) is a linear operator (that is, an endomorphism of the vector space V).
The polynomials of degree 0 provide the ordinary scalar multiplications of the vector space. So construing
V as a module over F[x] in effect adjoins many more one-place operations than our first approach, but
they are all built up from the a · I and T by addition and composition. This is why the two approaches are
equivalent.

Recall from linear algebra that the linear operators on a finite-dimensional vector space V constitute a
finite dimensional vector space themselves. So for any linear operator T the set {I ,T,T 2,T 3, . . . } is linearly
dependent. This means that for some natural number m there are a0, a1, . . . , am ∈ F with am 6= 0 so that
a0I+a1T +·· ·+amT m = 0. In other words, there is a nonzero polynomial f (x) ∈ F[x] so that f (T ) is the zero
linear operator (the map taking all vectors to the zero vector). Evidently, { f (x) | f (T ) is the zero operator}
is an ideal of F[x]. Since F[x] is a principal ideal domain first ideal is generated by a single polynomial.
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In fact we can take this polynomial to be the monic polynomial mT (x) of least degree in this ideal. This
polynomial is called the minimal polynomial of T .

Now fix a linear operator T on the finite dimensional vector space V. We use VT to denote the module
over F[x] described above. We know that this module can be decomposed into a direct product of cyclic
submodules. What do these cyclic submodules look like? Well, suppose that v ∈ V is a generator. Then
the submodule consists of all the vectors of the form f (T )(v) as f (x) runs through the ring of polynomials.
Hence the linear span of the set {v,T v,T 2v, . . . } is the whole submodule. Since this submodule is, among
other things, a subspace of V (with additional operations), we know that some finite subset must span the
submodule. Let m be as small as possible so that {v,T v, . . . ,T m v} spans the submodule. Then there are
a0, . . . , am ∈ F so that

T m+1v = a0v +·· ·+amT m v.

This leads to
T m+2v = a0T v +·· ·+amT m+1v = a0T v +·· ·+am(a0v +·· ·+amT m v).

In this way we see that m is also the smallest natural number so that T m+1v is a linear combination of
{v,T v, . . . ,T m v}. I contend that this set is linearly independent. Suppose

b0v +b1T v +·· ·+bmT m v = 0.

Now bm must be 0, otherwise T m v =− b0
bm

v −·· ·− bm−1
bm

T m−1v . Once the term bmT m v has been eliminated
(because it is 0), we can apply the same reasoning to see that bm−1 = 0, and then that bm−2 = 0, and so on. In
this way we establish the linear independence of {v,T v, . . . ,T m v}. Thus we see that our cyclic submodule,
construed as an ordinary vector space over the field F has a very nice basis. We call this kind of basis a
T -cyclic basis.

Here is what happens if we represent T with respect to this basis. Put

v0 = v, v1 = T v, . . . , vm = T m v.

Then

T v0 = v1 = 0v0 +1v1 +0v2 +·· ·+0vm

T v1 = v2 = 0v0 +0v1 +1v2 +·· ·+0vm

...

T vm−1 = vm = 0v0 +0v1 +0v2 +·· ·+1vm

T vm = a0v0 +a1v1 +·· ·+am vm

This produces the matrix 

0 0 0 . . . 0 a0

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2
...

...
...

. . .
...

...
0 0 0 . . . 0 am−1

0 0 0 . . . 1 am
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This is a very pleasant matrix with lots of entries 0 and the nonzero entries located in rather restrained
positions. Let us rewrite that last equation:

T vm = a0v0 +a1v1 +·· ·+am vm

T m+1v = a0v +a1T v +·· ·+amT m v

0 =−T m+1v +amT m v +·· ·+a1T v +a0v

0 = T m+1v −amT m v −·· ·−a1T v −a0v

0 = (T m+1 −amT m −·· ·−a1T −a0)v

0 = mT (T )v

where mT (x) = xm+1 −am xm −·· ·−a0 ∈ F[x]. Notice that this is a monic polynomial of least degree which
belongs to the annihilator of VT . So it is an exponent of the module VT .

We could start with any monic polynomial f (x) = b0 +b1x +·· ·+bm xm + xm+1 of positive degree. If this
polynomial happened to be the minimal polynomial of some linear operator T so that VT was a cyclic
module, then the associated matrix, as above, would be

C f =



0 0 0 . . . 0 −b0

1 0 0 . . . 0 −b1

0 1 0 . . . 0 −b2
...

...
...

. . .
...

...
0 0 0 . . . 0 −bm−1

0 0 0 . . . 1 −bm


.

This matrix is called the companion matrix of the polynomial f (x). Observe that this is a (m+1)× (m+1)
matrix, where m +1 is the degree of f (x). It is easy to write down the companion matrix given the monic
polynomial and, vice versa, given the companion matrix to write down the monic polynomial. A routine
calculation also reveals that for any monic polynomial f (x) we have

f (x) = det(xI −C f ).

This means that f (x) is the characteristic polynomial of its companion matrix.
We summarize these findings in the following Fact.

Fact. Let V be a finite dimensional vector space over a field F and T be a linear operator on V such that VT

is a cyclic module over F[x] with generator v and with minimal polynomial mT (x) of degree n +1. Then
{v,T v,T 2v, . . . ,T n v} is a basis for VT and, with respect to this basis, the matrix of T is the companion matrix
of mT (x) and the characteristic polynomial of T is the same as the minimal polynomial of T .

Now let’s apply the Invariant Factor Theorem:

The Rational Canonical Form Theorem.
Let V be a finite dimensional vector space over the field F. Let T be a linear operator of V . Then for some

natural number n there are monic polynomials f0(x), f1(x), . . . , fn(x) ∈ F[x] with f0(x) = mT (x), the minimal
polynomial of T , such that

fn(x) | fn−1(x) | · · · | f1(x) | f0(x)

and cyclic submodules of VT (sometimes called T -cyclic subspaces of V) V0 of exponent f0(x),. . . , Vn of expo-
nent fn(x) so that

VT
∼= V0 ×·· ·×Vn .
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Moreover, the natural number n is uniquely determined by T , the sequence fn(x) | fn−1(x) | · · · | f1(x) | f0(x)
of monic polynomials is uniquely determined, and cyclic submodules V0, . . . ,Vn are determined up to iso-
morphism. Furthermore, each of the submodules Vk for k ≤ n has a T -cyclic basis Bk , and Bn ∪·· ·∪B0 is a
basis for V. The linear operator T is represented with respect to this basis by

C fn 0 0 . . . 0
0 C fn−1 0 . . . 0
0 0 C fn−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . C f0


where the companion matrices of the fk (x)’s are placed in order as square blocks along the diagonal, with
all remaining entries of the matrix 0.

The matrix representing T in this theorem is said to be in rational canonical form. The uniqueness
assertions of the Extended Invariant Factor Theorem ensure that a linear operator has exactly one rational
canonical form. The following important theorem is now a corollary.

The Cayley-Hamilton Theorem.
Let T be a linear operator on a finite dimensional vector space over a field. The minimal polynomial of T

divides the characteristic polynomial of T . Hence, f (T ) is the constantly zero linear operator, when f (x) is
the characteristic polynomial of T .

Actually, it is easy to see that the characteristic polynomial is just the product of the invariant factors.
Recall from linear algebra that if A and B are m ×m matrices with entries in the field F, then we say that

A and B are similar provided there is a linear operator T on the m-dimensional vector space over F such
that T can be represented by both A and B (using appropriated bases). So we find

Rational Canonical Form Theorem: Matrix Version.
Let F be a field and m be a positive natural number. Every m ×m matrix with entries from F is similar to

exactly one matrix in rational canonical form.

Now let’s turn to the elementary divisor perspective. Consider the case when VT is a cyclic primary F[x]
module. In this case, there is a vector v ∈ V , an irreducible monic polynomial f (x) ∈ F[x], and a positive
natural number e so that ( f (x))e is the order of v . As long as the field F is arbitrary, the polynomial f (x)
could be quite complicated—for instance it might have arbitrarily large degree. In such a situation, it
would be difficult to improve on the process we used above to obtain the rational canonical form. However,
two fields immediately come to mind where the situation is much more restrained. The field C of complex
numbers has the property that all irreducible polynomials in C[x] have degree 1, while over the field R of
real numbers there can also be irreducible polynomials of degree 2 but of no higher degrees. Both of these
facts will be proved in the next semester. So let us consider that f (x) = x −a for some a ∈ F . Then put

v0 = v

v1 = (T −aI )v0 = T v0 −av0

v2 = (T −aI )v1 = T v1 −av1

...

ve−1 = (T −aI )ve−2 = T ve−2 −ave−2

0 = (T −aI )ve−1 = T ve−1 −ave−1
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Rearranging this just a bit we get

T v0 = av0 + v1

T v1 = av1 + v2

...

T ve−2 = ave−2 + ve−1

T ve−1 = ave−1

Now by an argument similar (hard working graduate students will provide the variations needed) to the
ones used above, we can see that the e distinct vectors v0, v1, . . . , ve−1 form a basis for the vector space V.
With respect to this basis, the linear operator T has the following matrix

a 0 0 0 . . . 0 0
1 a 0 0 . . . 0 0
0 1 a 0 . . . 0 0
0 0 1 a . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . a 0
0 0 0 0 . . . 1 a


.

A matrix of this form is called a Jordan block and the basis underlying is called a Jordan basis. Observe
that it is easy given the polynomial (x −a)e to write down its Jordan block and, vice versa, given the Jordan
block, the polynomial can be recovered at once. Moreover, (x−a)e is the characteristic polynomial det(xI−
J ) of the Jordan block J .

This time, appealing to the Structure Theorem we get

The Jordan Canonical Form Theorem.
Let V be a finite dimensional vector space over the field F. Let T be a linear operator of V such that the

irreducible factors of the minimal polynomial of T are all of degree 1. Then for some natural number n
there are polynomials (x − a0)e0 , (x − a1)e1 , . . . , (x − an−1)en−1 ∈ F[x], namely the elementary divisors of VT ,
and cyclic primary submodules of VT : V0 of exponent (x −a0)e0 ,. . . , Vn of exponent (x −an−1)en−1 so that

VT
∼= V0 ×·· ·×Vn−1.

Moreover, the natural number n is uniquely determined by T , the polynomials (x − ak )ek for k < n are
uniquely determined, and cyclic submodules V0, . . . ,Vn are determined up to isomorphism. Furthermore,
each of the submodules Vk for k ≤ n has a Jordan basis Bk , and Bn ∪ ·· · ∪B0 is a basis for V. The linear
operator T is represented with respect to this basis by

J0 0 0 . . . 0
0 J1 0 . . . 0
0 0 J2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Jn−1


where the Jordan blocks of the (x−ak )ek ’s are placed in some order as square blocks along the diagonal, with
all remaining entries of the matrix 0.

The matrix mentioned at the conclusion of this theorem is said to be in Jordan canonical form. It should
be noted here, that there may be several matrices in Jordan form associated with the linear operator T
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according to this theorem. This happens because the order in which the Jordan blocks appear along the
diagonal is arbitrary. The permutation mentioned in the statement of the Structure Theorem reflects the
same point. It is clear that if A and B are two matrices in Jordan form that can be obtained from each other
by rearranging the Jordan blocks along the diagonal, the A and B are similar. So the Structure Theorem
gives us

Jordan Canonical Form Theorem: Matrix Version.
Let F be a field and m be a positive natural number. Let A be an m ×m matrix with entries from F with the

additional property that the irreducible factors of the minimal polynomial of the matrix are all of degree 1.
Then A is similar to a matrix in Jordan canonical form and any matrices in Jordan canonical form that are
similar to A can be obtained from each other by rearranging the Jordan blocks.
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11.1 PROBLEM SET 11

ALGEBRA HOMEWORK, EDITION 11

TWELFTH WEEK

MODULES

PROBLEM 48.
Let R and S be commutative Noetherian rings. Prove that R×S is also Noetherian.

PROBLEM 49.
Let R be a commutative ring such that every submodule of a free R-module is also a free R-module. Prove
that R is a principal ideal domain.

PROBLEM 50.
Let R be a principal ideal domain and let M and N be finitely generated R-modules such that M×M ∼= N×N.
Prove M ∼= N.

PROBLEM 51.
Give an example of two 4×4 matrices with real entries that have the same minimal polynomial and the
same characteristic polynomial but are not similar.



Groups and Fields
Part II

L0[ζ1] = K1

L1[ζ2] = K2

L2[ζ3] = K3

Ln−1[ζn] = Kn
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Ln

F1

F2 = F1[u2]

F3 = F2[u3]
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Fn = Fn−1[un]

L1[u2]

L2[u3]

Ln−1[un]
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p1

p2
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PREFACE FOR PART II

The first part of this account of first-year graduate algebra was devoted to the essentials of rings and mod-
ules. There the central ambition was to give an account of the theory of unique factorization and the
fundemental structure theorem for finitely generated modules over a principal ideal domain.

This second part begins with a presentation of the basics of the theory of groups, a presentation which
is rapid in view of the sophistication gained by the graduate students in the first part of the course. But
the real focus here will be an effort to lay our hands on the roots of polynomials whose coefficients all lie
in some given field. In short, our most important goal will be a development of Galois theory. Along the
way, we will see how to devise algebraically closed fields, we will have in hand a proof of the Fundamental
Theorem of Algebra, a proof of the transcendence of the numbers π and e, as well as a proof of Hilbert’s
Nullstellensatz, which illuminates the Galois connection between algebraic geometry and the ring of poly-
nomials in several variables over an algebraically closed field.

Amongst this rich array of material are the solutions, devised by mathematicians in the 19th century, to
open problems of long standing—some for thousands of years. You will see why it is impossible to trisect
arbitrary angles, duplicate the cube, or square the circle with only straightedge and compass—and why
there is no formula similar to the quadratic formula for describing roots of polynomials of degree 5 or
higher.

Once more, as you proceed through these pages you will find many places where the details and some-
times whole proofs of theorems will be left in your hands. The way to get the most from this presentation
is to take it on with paper and pencil in hand and do this work as you go. There are also weekly problem
sets. Most of the problems have appeared on Ph.D. examinations at various universities. In a real sense,
the problem sets are the real heart of this presentation.

George F. McNulty
Columbia, SC
2016
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12
CONCRETE GROUPS

Consider the Euclidean plane P. As a mathematical system we might construe P as 〈P,B ,E〉 where P is the
set of points on the plane, B is the three-place betweenness relation among points (we want B(a,b,c) to
mean that the point b is on the line segment joining the points a and c) and E is the four-place equidistance
relation among points (we want E(a,b,c,d) to mean that the distance between points a and b is the same
as the distance between the points c and d ; that is the line segment joining a and b is congruent to the line
segment joining c and d). Were this a course in Euclidean geometry we would consider in detail the maps
from plane into the plane that preserved the relations B and E . A bit of thought should lead hard-working
graduate students to the conclusion that among these maps are the maps that preserve distance. That is
σ is such a map provided for all points a and b, the distance from a to b is the same as the distance from
σ(a) to σ(b). The fancy word for distance-preserving maps is isometry. More plain spoken folks call these
rigid motions.

There are lots of isometries. For example, translating every point 2 units of distance to the northwest is
an isometry. You could pick an arbitrary point as a center, and rotate the whole plane about that point by
some angle θ. You could pick an arbitrary line and reflect the plane across the line.

The rigid motion easiest to understand is the one that does nothing: the identity map. Rigid motions can
be composed and the result is again a rigid motion—one might first perform a translation and follow that
by a reflection, for example. Each rigid motion is plainly one-to-one. It takes a bit of thought to see that
they must map P onto P . This means that each rigid motion can be inverted. The hard-working graduate
students can see that the inverse is again a rigid motion. In this way, more complex rigid motions can be
devised by repeatedly composing and inverting the translations, rotations, and reflections. An interesting
exercise, well within the grasp of hard-working graduate students, is to determine all of the isometries of
the plane. Let I denote the set of all isometries of the plane.

There are some other maps that preserve the relations B and E . Here is one example. Fix a particular
point a ∈P. Letσ be the map that sends any q ∈P to the midpoint of the line segment joining p and q (and
sending p to itself). This map is a contraction toward the point p. There are, of course, other contractions,
to say nothing of expansions. Let AutP be the collection of all automorphisms of the plane—that is all the
one-to-one maps from P onto P that preserve both the relations B and E . This collection includes all the
isometries but is larger since it also includes all the expansions and contractions, as well as all the maps
that arise from them by way of composition. These maps are sometimes called similarities. The hardy
graduate student may try to classify all the maps that belong to AutP.

Here is a similar situation. Let R2 denote the two-dimensional vector space over the field of real num-
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bers. The automorphisms of R2 are just the invertible linear operators on this vector space. While we may
identify the vectors with points on the plane, the vector space R2 and the Euclidean plane P are not the
same. For example, R2 gives a special role to the origin whereas any point of P is like any other point. Also
AutR2 and AutP are different as well. Each automorphism of R2 fixes the origin. So there are no nontrivial
translations in AutR2, the only rotations must use the origin as their centers, and the only reflections must
be reflections across lines through the origin. So a lot of maps in AutP seem to be missing from AutR2. On
the other hand, AutR2 has maps that are not rigid motions. For example, in AutR2 one can find scalings,
that is maps which stretch or shrink vectors. This is effected by multiplying by a fixed nonzero scalar. At
any rate, AutR2 contains the identity map, it is closed under composition of linear operators, and it is also
closed under the formation of inverse of linear operators.

Here is a related situation. Let us consider just a part of AutR2, namely those linear operators with de-
terminant 1. (It may help to think of each linear operator as a 2×2 matrix.) Let S denote this collection
of more specialized invertible linear operators. The only scalings that remain in S are multiplication by 1
(namely, the identity map) and multiplication by −1. However, S is still pretty rich. For all intents and pur-
poses, it is the collection of 2×2 matrices with real entries that have determinant 1. As with the other cases,
the identity map belongs to S and S is closed under composition of operators and under the formation of
inverses of operators.

We have four examples: I, AutP, AutR2, and S. Each of these is a collection of one-to-one functions from
some set onto itself. Each of these collections includes the identity map and is closed under composition of
functions and under the formation of inverse functions. In a sense, each of these are collections of second
order objects that are functions on some (first-order) mathematical system. Evidently, we could derive
such collections of the second-order from a wide assortment of mathematical systems. We can convert
these three sets, and any others that arise in a similar way, into algebraic systems (algebras, for short) as

〈AutP,◦,−1 ,1〉 〈AutR2,◦,−1 ,1〉 〈S,◦,−1 ,1〉.

Here we use 1 to denote the identity map, ◦ to denote the composition of functions, and −1 to denote the
formation of inverses. These are algebras whose signature provides one two-place operation symbol to
designate the composition, a single one-place operation symbol to designate the formation of inverses,
and an operation symbol of rank 0 to designate the identity.

The general situation, of which these are three special cases, starts with a set X . In our first example X
is the Euclidean plane. We consider a set G of one-to-one maps from X onto X that includes the identity
map 1X on X and that is closed with respect to both the composition of functions and the formation of
inverse functions. The resulting algebra

〈G ,◦,−1 ,1X 〉
is called a concrete group. Since X can be any set and the selection of a particular G given X is unre-
strained, apart from the closure conditions, there is quite a rich assortment of concrete groups. Even so,
we see that for concrete groups we know very well how the operations of functional composition and the
formation of inverse functions work and we have a firm grip on the identity map.

A group is any algebra that is isomorphic to a concrete group. It is interesting to note that the concept
of a group arises by the process of abstraction from its concrete instances. Loosely speaking, an (abstract)
group is a mathematical system that shares all its “algebraic” properties with some concrete group. This
process differs from the process of generalization which prompted the concept of a ring. There, the idea
was to extract from many particular instances, like the integers or the system of 2× 2 matrices, a set of
common properties. A ring was any algebra that had the selected common properties. One should notice
that the properties we selected in coming to the notion of a ring were conventional and practical—that
is, they were convenient properties like the distributive law, which arose again and again in practice. The
theory of rings, in some sense, is the working out of the logical consequences of these selected properties.
While these properties of plus and times are fairly natural in that they arose in the course of millennia of
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mathematical practice, there does not appear to be anything absolutely inevitable about them. The notion
of a group, on the other hand, did not arise through the selection of a set of properties but rather through
the selection of a class of concrete instances.

Groups of Permutations

Before turning to the theory of abstract groups, we will develop the first facts about concrete groups.
Let X be any set. A permutation on X is just a one-to-one function from X onto X . We use Sym X to the

denote the set of all permutations on X and Sym X to denote the (concrete) group 〈Sym X ,◦,−1 ,1X 〉. We
refer to this group as the symmetric group on X or sometimes as the groups of symmetries of X .

If Y is a set such that |Y | = |X |, that is if X and Y have the same cardinality, then Sym X and SymY will
be isomorphic. Indeed, suppose that f is a one-to-one correspondence from X to Y . Then the map

σ 7→ f ◦σ◦ f −1

for all σ ∈ Sym X , turns out to be an isomorphism from Sym X to SymY , as the hard-working graduate can
check.

For many purposes the thing about X that really matters for Sym X is the cardinality of X . This being the
case, for a cardinal κ we use Sκ to denote the concrete group of all permutations of κ. Here we take κ to
be the set of all ordinals strictly smaller than κ. When κ is finite, this means that κ= {0,1,2, . . . ,κ−1}. For
example, 6 = {0,1,2,3,4,5}. So S6 = Sym{0,1,2,3,4,5}.

Let x ∈ X and σ ∈ Sym X . The set
{σk (x) | k ∈Z}

is called the orbit of x under the action of σ. For a fixed permutation σ, the set X is actually partitioned
into orbits. The equivalence relation that lies behind this partition makes elements x, y ∈ X equivalent if
and only if σk (x) = y for some integer k. Notice that an orbit is either countably infinite or finite. The
countably infinite orbits arise when σk (x) 6= σ j (x) whenever k 6= j . These orbits can the arranged like the
integers:

(. . . ,σ−3(x),σ−2(x),σ−1(x),σ0(x),σ1(x),σ2(x),σ3(x), . . . )

where, of course, σ0(x) = x. Suppose, on the other hand, that σk (x) = σ j (x) where j < k. Then some
fiddling reveals that σk− j (x) = x. Let n be the smallest positive integer such that σn(x) = x. Then the orbit
of x under the action ofσ turns out to be {x,σ(x), . . . ,σn−1(x)}, as checked by every one of the hard-working
graduate students. We can also regard this orbit as a kind of arranged list:

(x,σ(x),σ2(x),σ3(x), . . . ,σn−1(x))

so long as we think of it as a linear representation of a circular arrangement—that is we think of σn−1(x)
as the (unrepresented) predecessor of x. We could represent the permutation σ by simply listing all these
arranged orbits. For instance, here is such a representation of one member of S6:

σ= (0,2,4)(1)(5,3)

This is a compact way that writing

σ(0) = 2

σ(2) = 4

σ(4) = 0

σ(1) = 1

σ(5) = 3

σ(3) = 5.
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The natural number 1 is a fixed point ofσ. By convention, fixed points are omitted from the representation.
So we arrive at

σ= (0,2,4)(5,3).

The two parts in this representation are called cycles. They are cyclic representations of the two nontrivial
(here that means have at least two elements) orbits into which σ partitions the set {0,1,2,3,4,5}. These
cycles have lengths: (0,2,4) is a three-cycle, while (5,3) is a two-cycle. The orbits are, of course, disjoint. So
we have decomposed σ into disjoint cycles.

Something interesting emerges here. Let τ be the permutation in S6 represented by (0,2,4) and ρ be the
permutation represented by (5,3). Then, as the hard-working graduate student can check, σ= τ◦ρ. This
suggests that we can capture composition of permutations by juxtaposing a bunch of cycles. Suppose µ is
the permutation on {0,1,2,3,4,5} represented by (0,1)(2,3)(4,5). We would like to represent σ◦µ by

(0,2,4)(5,3)(0,1)(2,3)(4,5).

Observe that the listed cycles are no longer disjoint, so we should not think of this as a list of orbits. Rather,
let us see what happens to the natural number 2 when we apply σ◦µ to it. We know µ(2) = 3 and σ(3) = 5
so that σ◦µ(2) = 5. Now consider the following

σ◦µ(2) = (0,2,4)(5,3)(0,1)(2,3)(4,5)2

= (0,2,4)(5,3)(0,1)(2,3)2 since (4,5) fixes 2

= (0,2,4)(5,3)(0,1)3

= (0,2,4)(5,3)3

= (0,2,4)5

= 5.

A more compact way to display the same information is

(0,2,4) (5,3) (0,1) (2,3) (4,5)
5 ←− 5 ←− 3 ←− 3 ←− 2 ←− 2

In fact, we could extend this to display the whole effect of the composite permutation.

(0,2,4) (5,3) (0,1) (2,3) (4,5)
1 ←− 1 ←− 1 ←− 0 ←− 0 ←− 0
2 ←− 0 ←− 0 ←− 1 ←− 1 ←− 1
5 ←− 5 ←− 3 ←− 3 ←− 2 ←− 2
4 ←− 2 ←− 2 ←− 2 ←− 3 ←− 3
3 ←− 3 ←− 5 ←− 5 ←− 5 ←− 4
0 ←− 4 ←− 4 ←− 4 ←− 4 ←− 5

Inspecting this array we find
σ◦µ= (0,1,2,5)(3,4),

which is the decomposition of σ◦µ into a product of disjoint cycles.
Representing the inverse of a permutation is easy. For example, the inverse of (0,1,2,5)(3,4) is just

(4,3)(5,2,1,0). We just write everything in reverse order.
We could pursue the same strategy of notation for representing the permutations and their products and

inverses for any set X . For infinite sets, this becomes tricky, but when X is finite the strategy can be carried
through without trouble.

Our first Fact is clear.

Fact. Every permutation on a finite set can be decomposed as a product of disjoint cycles. This decompo-
sition is unique, up to rearranging the cycles. Also, any two disjoint cycles commute.
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Permutations, even or odd

Let X be a set. A permutation σ of X is a transposition provided there are distinct elements x, y ∈ X such
that σ exchanges x and y and leaves every other element of X fixed—that is σ(x) = y and σ(y) = x and
σ(w) = w for all w ∈ X \ {x, y}. In the notation above, this means σ= (x, y). Evidently, σ is its own inverse:
σ◦σ= 1X .

Fact. Every permutation on a finite set can be decomposed as a product of transpositions.

Proof. The identity permutation is the product of the empty system of transpositions. Since every per-
mutation is a product of cycles, we need only prove that every cycle is a product of transpositions. Let
a0, a1, . . . , ak−1 be distinct elements of our finite set. Just check

(a0, a1, . . . , ak−1) = (a1, a2)(a0, ak1 ) . . . (a0, a3)(a0, a2).

The decomposition of a permutation into transpositions is not unique. For example, (0,1,2) = (1,2)(0,2) =
(1,0)(1,2) = (0,2)(2,1)(0,1)(0,2). However, a shred of uniqueness remains.

Fact. Let σ0, . . . ,σk−1 and τ0, . . . ,τ`−1 be sequences of transpositions such that

σ0 ◦σ1 ◦ · · · ◦σk−1 = τ0 ◦τ1 ◦ · · · ◦τ`−1.

Then k and ` have the same parity, that is either both k and ` are even or both k and ` are odd.

Proof. Let X be the underlying set. Let us assume to the contrary that k is even and ` is odd. Since every
transposition is its own inverse, we are led to

τ`−1 ◦ · · · ◦τ0 ◦σ0 ◦σ1 ◦ · · · ◦σk−1 = 1X .

So we see that the identity 1X can be written as the product of a sequence of transpositions of length k+`,
which is odd. So our proof will be completed by the following contention, since the identity permutation
fixes every element of X .

Contention. Suppose σ is a permutation of X so that

σ= τ0 ◦τ1 ◦ · · · ◦τm−1

where m is odd and each τ j is a transposition. Then σ moves some element of X .

We assume, without loss of generality, that m is the smallest odd number so that σ is the product of a
sequence of length m of transpositions. Let τm−1 = (a,e) where a and e are distinct elements of X . (The
hard working graduate students must figure out what to do when X has fewer than two elements.) We will
actually prove that σ moves a. We could do the same for any element of X that is moved by any of the
transpositions τ0,τ1, . . . ,τm−1. We achieve this by rewriting the factorization of σ in m −1 steps. We start
by letting ρm−1 = τm−1. So our initial factorization is

σ= τ0 ◦ . . .τk ◦τk+1 ◦τk+2 ◦ · · · ◦τm−2 ◦ρm−1.

It has the property that no transpostion to the right of ρm−1 moves a. After a number of steps, we will have
the factorization

σ= τ0 ◦ . . .τk ◦ρk+1 ◦τ′k+2 ◦ · · · ◦τ′m−2 ◦τ′m−1,

where ρk+1 and τ′j for k +1 < j < m are transpositions and a is moved by ρk+1 but fixed by all the transpo-
sitions to its right in the factorization.
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The rewriting happens in this way. We will replace τk ◦ρk+1 by ρk ◦τ′k+1 so that a is moved by ρk but
fixed by τ′k+1. First we observe that τk 6= ρk+1 since otherwise τk ◦ρk+1 = 1X and we could delete these two
factors resulting in a factorization of σ of smaller odd length—a violation of the minimality of m. Let us
say that ρk+1 = (a,b). Then there are only three alternatives for τk : it is disjoint from (a,b) or it moves b
but not a or it moves a but not b. So τk ◦ρk+1 has one the the following forms

(c,d)(a,b)

(b,c)(a,b)

(a,c)(a,b)

where all the letters in each line stand for distinct elements of X . It is easy to check that each of the equa-
tions below holds in Sym X .

(c,d)(a,b) = (a,b)(c,d)

(b,c)(a,b) = (a,c)(b,c)

(a,c)(a,b) = (a,b)(b,c)

So to obtain the next factorization of σ we simply replace the left side of the appropriate equation by its
right side. For example, if τk = (b,c), then we take ρk = (a,c) and τ′k+1 = (b,c). Here is what happens in
detail:

σ= τ0 ◦ · · · ◦ τk ◦ ρk+1 ◦τ′k+2 ◦ · · · ◦τ′m−1

σ= τ0 ◦ · · · ◦ (b,c)◦ (a,b)◦τ′k+2 ◦ · · · ◦τ′m−1

σ= τ0 ◦ · · · ◦ (a,c)◦ (b,c)◦τ′k+2 ◦ · · · ◦τ′m−1

σ= τ0 ◦ · · · ◦ ρk ◦ τ′k+1 ◦τ′k+2 ◦ · · · ◦τ′m−1

After m −1 rewrite steps of this kind we obtain

σ= ρ0 ◦τ′1 ◦ · · · ◦τ′m−1,

a factorization of σ into transpositions. But now observe that a is moved by ρ0 but fixed by all the τ′k ’s.
Hence, σ moves a, as desired.

We will call a permutation σ of a set X even if it can be decomposed as a product of a sequence of trans-
positions, the sequence being of even length. We call σ odd if it can be decomposed as a product of a
sequence of transpositions, the sequence being of odd length. If the number of elements of X moved by σ
is finite, we see from the two facts above, that these are mutually exclusive and exhaustive alternatives. If
the number of elements of X moved by σ is infinite, then σ cannot be written as the product of an finite
sequence of transpositions, since any permutation that can be written as a product of a finite sequence of
transpositions must fix all members of X that do not arise in the transpositions. Any permutation which
moves infinitely many members of X cannot be either even or odd. For example, the permutation of Z
such that k 7→ k +1 for all k ∈Z is of this kind.

In any case, the set Alt X of even permutations of X , contains 1X and is closed under composition and
the formation of inverses. So

Alt X := 〈Alt X ,◦,−1 ,1X 〉
is another example of a concrete group. It is called the alternating group on X . When X = n = {0,1, . . . ,n−1}
we adopt the notation An .
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12.1 PROBLEM SET 12

ALGEBRA HOMEWORK, EDITION 12

THIRTEENTH WEEK

DEALING WITH ONCRETE GROUPS AND A FEW OTHER MATTERS

PROBLEM 52.

(a) How many elements in S8 commute with the permutation (012)(34567)?

(b) How many elements are there in S8 with order 15?

PROBLEM 53.

(a) Let G be a subgroup of the symmetric group Sn . Show that if G contains an odd permutation, then
G∩An is of index 2 in G.

(b) Let G be a group of order 2t , where t is odd, and consider the representation τ : G → S2t , given by
τ(g )(h) = g h, for h ∈G . Show that if g 2 = 1, then τ(g ) is an odd permutation.

(c) Deduce that a group of order 2t , where t is odd, cannot be simple.

PROBLEM 54.

(a) Let Sn denote the group of permutations of the set {0,1, . . . ,n −1}. How many different subgroups of
order 4 does S4 have? Justify your calculation. (Two subgroups are considered different if they are
different as sets.)

(b) There is a homomorphism of S4 onto S3. (You do not need to prove that there exists such a homo-
morphism.) Show that there is no homomorphism of S5 onto S4.

PROBLEM 55.
Let M and N be finitely generated modules over the same principal ideal domain. Prove that if M×N×M ∼=
N×M×N, then M ∼= N.

PROBLEM 56.
Give an example of two dissimilar matrices A and B with real entries that have all the following properties:

(a) A and B have the same minimal polynomial,

(b) A and B have the same characteristic polynomial, and

(c) The common minimal polynomial has no real roots.
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13
THE THEORY OF ABSTRACT GROUPS: GETTING OFF THE

GROUND

13.1 DEFINING THE CLASS OF GROUPS BY EQUATIONS

In a concrete group the operations are easy to understand: composition of functions, the formation of in-
verse functions, and the identity function as distinguished function. In an abstract group we lose this tight
grip on the basic operations. Nevertheless, since an isomorphism ties each abstract group to a concrete
group many properties of the basic operations of the concrete group must also hold in the abstract case.
In the midst of the 19th century Arthur Cayley made the breakthrough to the class of abstract groups with
the following theorem.

Cayley’s Equational Axiomatization Theorem. Let G = 〈G , ·,−1 ,1〉 be an algebra of the signature of groups.
G is a group if and only if the following equations are true in G:

x−1 · x = 1 x · (y · z) = (x · y) · z 1 · x = x

x · x−1 = 1 x ·1 = x

Proof. Suppose first that G is a group. This means that it is isomorphic to a concrete group. The five
equations above hold about composition of functions, the formation of inverse functions, and the identity
function. So they must also hold in G.

Now let us suppose that G is an algebra in which these five equations happen to be true. To prove that G
is a group we will devise a concrete group and show that G can be embedded into it. Having nothing else
at hand we will take SymG as our concrete group. Our embedding Φ : G → SymG can be given explicitly.
We see that for each g ∈G thatΦ(g ) is supposed to be a permutation of G . Since writing things likeΦ(g )(h)
is clumsy, we use Φg in place of Φ(g ). For each g ∈ G we define Φg : G → G in the following way. For any
h ∈G , put

Φg (h) = g ·h.

We need to verify that each Φg is indeed a permutation of G , that the map Φ is one-to-one, and that Φ is
a homomorphism. The five equations above allow us to succeed.

Contention. Φg is a permutation of G , for each g ∈G .

100



13.1 Defining the class of groups by equations 101

It is evident from the definition of Φg that it is a function from G to G . Since the permutations of G are
just the invertible functions from G to G , we will prove here that Φg and Φg−1 are inverses of each other.
We will need this anyway to see thatΦ is a homomorphism. ThatΦg andΦg−1 are inverses is equivalent to
the assertion that for all h,k ∈G

Φg (h) = k if and only ifΦg−1 (k) = h.

Here is the argument:

Φg (h) = k ⇒ g ·h = k

⇒ g−1 · (g ·h) = g−1 ·k

⇒ (g−1 · g ) ·h =Φg−1 (k) by associativity

⇒ 1 ·h =Φg−1 (k) by x−1 · x = 1

⇒ h =Φg−1 (k) by 1 · x = x

⇒ h = g−1 ·k

⇒ g ·h = g · (g−1 ·k)

⇒Φg (h) = (g · g−1) ·k by associativity

⇒Φg (h) = 1 ·k by x · x−1 = 1

⇒Φg (h) = k by 1 · x = x

This argument is a bit pedantic but it does show where four of our five equations come into play.

Contention. Φ is one-to-one.

Let us suppose thatΦg =Φh . Then in particular, Φg (1) =Φh(1). So we find

g = g ·1 =Φg (1) =Φh(1) = h ·1 = h.

Here we have appealed to our fifth equation x ·1 = x, to conclude that Φ is one-to-one.
Here is our last contention:

Contention. Φ is a homomorphism.

So we must establish the following:

Φg ·h =Φg ◦Φh

Φg−1 = (
Φg

)−1

Φ1 = 1G

Let k be any element of G . Here is the demonstration of the first piece.

Φg ·h(k) = (g ·h) ·k = g · (h ·k) = g ·Φh(k) =Φg (Φh(k)) =Φg ◦Φh)(k).

We already established the second piece on the way to showing thatΦg is a permutation. The last is easiest
of all:

Φ1(k) = 1 ·k = k, for all k ∈G .

So Φ1 is the identity function, as desired.
Notice that what we showed is that Φ is a one-to-one homomorphism from G into SymG . We did not

claim thatΦ is onto SymG . Rather that concrete group isomorphic to G is a subalgebra of SymG .
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Corollary 13.1.1. Every subalgebra of a group is again a group. Every homomorphic image of a group is
again a group. The direct product of any system of groups is again a group.

These facts all follow since the truth equations is preserved under all these constructions.
In our proof of Cayley’s Theorem each of the five equations came into play, suggesting that perhaps all of

them are needed. On the other hand, maybe a slicker proof would avoid the use of some of those equations.
Actually, two of the equations can be omitted, as indicated in one of the problem sets.

Notably absent from the five equations listed in Cayley’s Theorem is the commutative law: x · y = y · x.
Of course the reason is that composition of functions (even permutations) is not generally commutative.
However, there are many familiar groups, like 〈Z,+,−,0〉, that satisfy the commutative law. They are called
Abelian groups in honor of Niels Hendrick Abel.

While starting with concrete groups and then forming the class of all abstract groups and then seeing that
this latter class can be described by a set of simple equations reflects the actual historical development,
most expositors of group theory have chosen to start with the set of five equations (or something like
them) as a way to define the notion of a group. From this perspective Cayley’s Theorem is called the Cayley
Representation Theorem because it shows that every group (i.e. an algebra satisfying those equations) is
isomorphic to (can be represented as) a group of permutations.

A large number of authors conceive a group as an algebra 〈G , ·〉 with the follow properties:

(a) · is an associative operation on G .

(b) There is an element 1 ∈G such that 1 ·a = a ·1 = a for all a ∈G .

(c) For every a ∈G there is some b ∈G so that a ·b = b ·a = 1.

They then go on to show that only one element of a group can play the role of 1 and that every element of
a group has exactly one inverse. This approach has the advantage that the algebras involved have only one
operation. But it carries with it some annoyance as well. To see why, here is a more formalized presentation
of this axiomatic approach.

(a) ∀x, y, z
[
x · (y · z) ≈ (x · y) · z

]
.

(b) ∃u∀x [u · x ≈ x ·u ≈ x].

(c) ∀x∃y∀z
[
(x · y) · z ≈ z ≈ z · (x · y)&(y · x) · z ≈ z ≈ z · (y · x)

]
.

By formalizing these statements we can see easily that they have more involved logical forms than equa-
tions. While it takes more work, one can prove that the truth of sentences of these forms are preserved
under the formation of homomorphic images and direct products. The same does not apply to subalge-
bras. For example 〈R+, ·〉 the positive reals under multiplication, is a group in this sense. It is easy to see that
the positive reals strictly less than 1 constitute a subalgebra. But this subalgebra has neither a multiplica-
tive unit (1 is just not in there) nor does any element have a multiplicative inverse. So this sublagebra is not
a group. This annoyance in minor, of course. When group theory is developed from this starting point it
very soon (say within five pages) gets to the point where one has named the multlipicative unit and begins
using some notation for the formation of inverses. From that point on the development is carried forward
just as if these operations were given at the very beginning.

One might wonder if group theory could be developed using a different choice of basic operations. In-
deed, it can. Since x · x−1 = 1 we see that the distinguished element can be defined by an equation. We
could regard 1 as an abbreviation for x · x−1 provided we add the equation x · x−1 = y · y−1 to our list. The
we could dispense with 1 and make do with just · and −1. A more radical step is to use the operation

x | y := x−1 · y.
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It takes some doing, but the hard working graduate students filled up with interest about this point should
be able to write down a short list of equations just in terms of the one two-place operation symbol | which
entirely captures the notion of group. One way to start this project is to try to devise a term in x and y
and | to recapture ·. A peculiar feature of this approach to group theory is the discovery of a single (rather
long) equation in | that defines the class of all groups. From the perspective of group theory, such a single
equation would be a very cumbersome basis upon which to develop the subject. On the other hand, from
the perspective of mathematical logic, it is a remarkable and intriguing property of the notion of a group.

13.2 HOMOMORPHISMS AND THEIR KERNELS—AND AN EXTRAORDINARY PROPERTY OF SUBGROUPS

Just as they did in the case of rings, homomorphisms and their kernels will play a central role in the devel-
opment of group theory.

Fact. Let G and H be groups and let f : G → H . Then f is a homomorphism if and only if f (a·b) = f (a)· f (b)
for all a,b ∈G .

Proof. Of course the direction from left to right is immediate. For the converse, we need to show that f
preserves the other operations. The equalities

f (1) ·1 = f (1) = f (1 ·1) = f (1) · f (1)

hold because both G and H are groups and because f preserves the product. So we see f (1) ·1 = f (1) · f (1)
holds in H. Because H is a group we can cancel f (1) from both sides, leaving 1 = f (1), which we need if f
is going to be a homomorphism. So what about inverses? Well

1 = f (1) = f (a ·a−1) = f (a) · f (a−1).

So 1 = f (a) · f (a−1) holds in H. Since H is a group, we can multiply both sides of this equation by
(

f (a)
)−1

to arrive at
(

f (a)
)−1 = f (a−1), as desired. So the Fact is established.

In using this fact to prove that some map is a homomorphism it is important to prove in advance that
both G and H are groups.

Now suppose G is a group and h is a homomorphism from G onto H. Let

θ := {(a,b) | a,b ∈G and h(a) = h(b)}.

So θ is the functional kernel of h. It was convenient in the theory of rings to replace θ with the congruence
class of 0. We can do something along these lines in groups as well. Observe for all a,b ∈G we have

a θb ⇔ (b−1 ·a)θ (b−1 ·b) ⇔ (b1 ·a)θ 1.

Another way to formulate this is b ∈ a/θ ⇔ (b−1 · a) ∈ 1/θ. The upshot is that the congruence class 1/θ
completely determines the whole congruence relation. (Just as in ring theory congruence class of 0—an
ideal—completely determined the congruence relation.) What properties of 1/θ make it so special?

• 1/θ is a subgroup of G.

• If a ∈ 1/θ and b ∈G , then (b−1 ·a ·b) ∈ 1/θ.

The hard-working graduate student will have no trouble verifying these points. For instance, the last fol-
lows since if h(a) = 1, then h(b−1 ·a ·b) = h(b)−1 ·h(a) ·h(b) = h(b)−1 ·1 ·h(b) = 1.

A subgroup N of a group G is said to be normal provided for all a and b, if a ∈ N and b ∈G , then (b−1·a·b) ∈
N . We use N/G to symbolize that N is a normal subgroup of G.
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Theorem on Congruences and Normal Subgroups. Let G be a group. The following are equivalent.

(a) N is a normal subgroup of G.

(b) N = 1/θ for some congruence θ of G.

(c) N = {a | a ∈G and h(a) = 1} for some homomorphism from G.

(d) {(a,b) | a,b ∈G and (b−1 ·a) ∈ N } is a congruence of G.

Proof. Based on the discussion above and on our general understanding of the connection between ho-
momorphisms and congruence relations, the only implication that really calls for further attention is
(a) ⇒ (b).

To establish this implication, let N be a normal subgroup of G and put

θ := {(a,b) | a,b ∈G and (b−1 ·a) ∈ N }.

Contention. θ is an equivalence relation on G .

For every a ∈ G we see that a−1 · a = 1 ∈ N since N is a subgroup of G. This means that (a, a) ∈ θ, so θ is
reflexive.

To see symmetry, suppose (a,b) ∈ θ. This means (b−1 · a) ∈ N . Since N is a subgroup of G we know that
(b−1 · a)−1 ∈ N . But because N is a group we know that a−1 ·b = (b−1 · a)−1. Hence (a−1 ·b) ∈ N . But this
entails (b, a) ∈ θ and the symmetry of θ is proved.

Finally, for transitivity suppose (a,b), (b,c) ∈ θ. This means

(b−1 ·a) ∈ N

(c−1 ·b) ∈ N .

Since N is a subgroup of G we get
(c−1 ·b) · (b−1 ·a) ∈ N .

Just a bit of fiddling gives (c−1 ·a) ∈ N . This entails (a,c) ∈ θ and establishes the transitivity of θ, concluding
the proof that θ is an equivalence relation on G . It is useful to point out that only the fact that N is a
subgroup of G was used here.

Contention. θ is a congruence relation of G.

We need to establish two things:

a θb and c θd ⇒ (a · c)θ (b ·d)

a θb ⇒ a−1 θb−1.

Using the definition of θ, these become

(b−1 ·a) ∈ N and (d−1 · c) ∈ N ⇒ (
(b ·d)−1 · (a · c)

) ∈ N

(b−1 ·a) ∈ N ⇒ (
(b−1)−1 ·a−1) ∈ N .

After some minor fiddling this gives

(b−1 ·a) ∈ N and (d−1 · c) ∈ N ⇒ (
d−1 ·b−1 ·a · c

) ∈ N

(b−1 ·a) ∈ N ⇒ (
b ·a−1) ∈ N .

Let’s tackle the top implication. Suppose (b−1 · a), (d−1 · c) ∈ N . Because N is a normal subgroup we see
that (d−1 ·b−1 ·a ·d) ∈ N . Because N is a subgroup d−1 ·b−1 ·a · c = (d−1 ·b−1 ·a ·d ·d−1 · c) ∈ N as desired.
For the remaining implication, suppose (b−1 ·a) ∈ N . Since N is a subgroup we can apply the inverse to get
(a−1 ·b) ∈ N . Now invoking the normality of N we see b ·a−1 = b · (a−1 ·b) ·b−1 ∈ N as desired.
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The import of this theorem is that we can use normal subgroups and congruences interchangeably, just
as we used ideals and congruences interchangeably in ring theory. When h is a homomorphism from the
group G we will call {a | a ∈G and h(a) = 1} the kernel of h. Of course, it is a normal subgroup and in fact,
the normal subgroups of G are exactly the kernels of homomorphisms from G.

Let N be a normal subgroup of the group G. What are the congruence classes associated with N? We
know that N itself is the congruence class containing the element 1. What about the others? Let a ∈G . The
congruence class containing a is evidently

{b | b ∈G and (a−1 ·b) ∈ N }.

Let aN = {a·c | c ∈ N }. Then it is clear that (a−1·b) ∈ N if and only if b ∈ aN . This means that the congruence
class containing a is

{b | b ∈G and (a−1 ·b) ∈ N } = {b | b ∈G and b ∈ aN } = aN .

We observe that this little line of reasoning remains true even if N is only a subgroup of G (of course we
should only say “equivalence class” in this case). Sets of the form aN are called (left) cosets of N. Right
cosets I leave to your imagination. Here is the remarkable thing discovered by Lagrange in 1771. (Actually,
Euler may have made the same discovery a decade earlier. One difficulty with these attributions is that the
concept of a group itself did not emerge in a fully explicit form until almost a century later.)

Lagrange’s Theorem. Let H be a subgroup of the group G. All the cosets of H have the same cardinality. In
particular, |H | divides |G|. Moreover, if K is a homomorphic image of G, then |K | also divides |G|.
Proof. Let a be an arbitrary element of G . We need only exhibit a one-to-one correspondence from H onto
aH . Just define Φ : H → aH via

Φ(b) = ab for all b ∈ H .

This map is onto aH by the very definition of aH . It is one-to-one since a · b = a · c ⇒ b = c, since the
cancellation law works in all groups. The first divisibility statement works because we know that G is
partitioned into the cosets of H—that is, G is the disjoint union of some number of sets all of size |H |. The
second divisibility statement follows since if H is the kernel of a homomorphism from G onto K, then by
the Homomorphism Theorem |K | must be the number of distinct cosets of H.

Lagrange’s Theorem (well this is only one of his theorems. . . ) holds for all groups, finite or infinite, but it
was the first key tool for dealing with finite groups. So a group of size 21 cannot have a subgroup of size 6
and the sizes of its homomorphic images can be found only among 1,3,7, and 21.

Let G be a group and let H be a subgroup. We put

[G : H] = |{aH | a ∈G}|.

That is [G : H] is the number of left cosets of H in G. It is called the index of H in G. Another way to frame
Lagrange’s Theorem is to assert, for H a subgroup of G and h : G� L, that

|G| = [G : H]|H | = |L||kerh|.

It is evident that everywhere in the above discussion, if we were to replace left coset by right coset the
result would be entirely similar. In particular, The number of left cosets of H is the same as the number of
right cosets of H. This does not mean that every left coset is a right coset (and vice versa). The demonstra-
tion of the fact below is left to the hard-working graduate students.

Fact. Let H be a subgroup of the group G. Then H is a normal subgroup of G if and only if every left coset
of H is G is a right coset of H in G.
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13.3 PROBLEMS SET 13

ALGEBRA HOMEWORK, EDITION 13

FOURTEENTH WEEK

SOME LITTLE PROBLEMS ABOUT GROUPS

PROBLEM 57.
Derive a list of equations that follow from the equations axiomatizing the theory of groups. This is rather
open ended, but see if you can get a handful of useful looking equations.

PROBLEM 58.
The five equations used to axiomatize groups are not all needed. Find a simpler set of equations that will
serve.

PROBLEM 59.
Prove that the additive group of all polynomials in x with integer coefficients is isomorphic to the multi-
plicative group of all postive rational numbers.

PROBLEM 60.
Let A and B be groups and let f : A → B . Prove that f is a homomoprhism if and only if f (aa′) = f (a) f (a′)
for all a, a′ ∈ A.

PROBLEM 61.
Let A,B, and C be groups. Let h be a homomorphism from A onto B and let g be a homomorphism from A
onto C such the kerh = ker g .

Prove that there is an isomorphism f from B onto C.

PROBLEM 62.

(a) Let G be a subgroup of the symmetric group Sn . Show that if G contains an odd permutation, then
G∩An is of index 2 in G.

(b) Let G be a group of order 2t , where t is odd, and consider the homomorphism τ : G → Sym(G), given
by τ(g )(h) = g h, for h ∈G . Show that if g 2 = 1, then τ(g ) is an odd permutation.

(c) Deduce that a group of order 2t , where t is odd, cannot be simple.



L
E

C
T

U
R

E

14
ISOMORPHISM THEOREMS: THE GROUP VERSIONS

Last semester we learned a collection of theorems in the general context. Seeing in the previous lecture
that, in group theory, we can replace congruences by normal subgroups, in this lecture we simply present
the corresponding specializations without further proof.

The Homomorphism Theorem (Group Version). Let A be a group, let f : A�B be a homomorphism from
A onto B, and let N be a normal subgroup of A. All of the following hold.

(a) The kernel of f is a normal subgroup of A.

(b) A/N is a group.

(c) The map η that assigns to each a ∈ A the left coset aN is a homomorphism from A onto A/N and its
kernel is N.

(d) If N is the kernel of f , then there is an isomorphism g from A/N to B such that f = g ◦η.

The Second Isomorphism Theorem (Group Version).

theorem!Second Isomorphism Theorem (Group Version) Let A be a group, let N be a normal subgroup of A,
and let B be a subgroup of A. Then each of the following holds.

(a) N∩B is a normal subgroup of B.

(b) NB is a subgroup of A and N is a normal subgroup of NB.

(c) NB/N ∼= B/N∩B.

The Third Isomorphism Theorem (Group Version). Let A be a group and let N and K be normal subgroups
of A with N ⊆ K . Then

(a) K/N is a normal subgroup of A/N, and

(b) A/N
/

K/N ∼= A/K.
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The Correspondence Theorem (Group Version). Let A be a group and let N be a normal subgroup of A.
Let P = {K | K/A and N ⊆ K }. Then the map from P to set of normal subgroups of A/N that sends each K ∈ P
to K/N is an isomorphism between the ordered set 〈P,⊆〉 and the set of normal subgroups of A/N ordered by
set inclusion.

Just as the corresponding special cases for rings were handy in the development of the theory of rings,
these special cases for groups will play a similar role. Here is an interesting conclusion that comes from
putting Lagrange’s Theorem and the Second Isomorphism Theorem together.

Corollary 14.0.1. Let A be a finite group and let B be a subgroup of A and let N be a normal subgroup of
A. Then |N B ||N ∩B | = |N ||B |. In particular if N and B have only the identity element in common, that
|N B | = |N ||B |.

We conclude this lecture with a more involved theorem for groups that is due to Hans Zassenhaus. We will
use this theorem later. This theorem is called the Zassenhuas’s Butterfly Lemma. The name is suggested
by the following picture, which displays part of the lattice of subgroups of some group G.

A∗

A

B∗

B

A∗∩B A∩B∗

A∩B

B∗(A∩B)

B∗(A∗∩B)

(A∗∩B)(A∩B∗)

A∗(A∩B)

A∗(A∩B∗)

The Butterfly of Hans Zassenhaus

The Butterfly Lemma of Hans Zasssenhaus. Let G be a group with subgroups A,A∗,B and B∗, where A∗ is
a normal subgroup of A and B∗ is a normal subgroup of B. Then all of the following hold.

(a) A∗(A∩B∗)/A∗(A∩B).

(b) B∗(A∗∩B)/B∗(A∩B).

(c) A∗(A∩B)/A∗(A∩B∗) ∼= B∗(A∩B)/B∗(A∗∩B).
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Proof. Because B∗ is a normal subgroup of B it is easy to see that A∩B∗/A∩B. Likewise, A∗∩B/A∩B. So
we can also conclude that (A∗∩B)(A∩B∗)/A∩B. Here is why. First we know that the product of a normal
subgroup and a subgroup is again a subgroup. (This point came up in the Second Isomorphism Theorem—
hard working graduate students checked it then. . . .) So we find that (A∗∩B)(A∩B∗) is a subgroup of A∩B.
For normality, pick c ∈ A∗∩B , d ∈ A∩B∗, and a ∈ A∩B . Then notice

a(cd)a−1 = aca−1ad a−1 = (aca−1)(ad a−1).

Since aca−1 ∈ A∗∩B , by normality of A∗∩B in A∩B, and likewise ad a−1 ∈ A∩B∗, we see that

a(cd)a−1 ∈ (A∗∩B)(A∩B∗).

Let D denote (A∗∩B)(A∩B∗). So we have D/A∩B.
Define the map f : A∗(A∩B) → (A∩B)/D in the following way. Let a ∈ A∗ and c ∈ A∩B . Put f (ac) = cD .

First we need to see that we can get away with this. Suppose ao ∈ A∗ and co ∈ A ∩B so that ac = aoco . We
need cD = coD or what is the same coc−1 ∈ D . We certainly get a−1

o a = c0c−1. The left side is in A∗ and the
right in A∩B . Since they are equal, we see that c0c−1 ∈ A∗∩ A∩B = A∗∩B ⊆ (A∗∩B)(A∩B∗) = D . So our
definition of the map f is sound.

It is evident from the definition that f maps onto (A∩B)/D . We aim to show that f is a homomorphism
with kernel A∗(A∩B∗). Then we can appeal to the Homomorphism Theorem to obtain an isomorphism.
Reversing the roles of A∗ and B∗ we can obtain a second isomorphism. Composing one with the inverse
of the other gets us the isomorphism we desired in the statement of the lemma.

We need to see that f preserves products. Let a, ao ∈ A∗ and c,co ∈ A∩B . Then

f ((ac)(aoco)) = f (acaoc−1cco) = f (aa′
occo) = ccoD = cDcoD = f (ac) f (aoco).

Observe the appeal to normality of A∗ in A. So we find that f is a homomorphism.
Last, we need to understand the kernel of f .

ac ∈ ker f ⇔ f (ac) = 1D ⇔ cD = D ⇔ c ∈ D ⇔ c = de for some d ∈ A∗∩B and some e ∈ A∩B∗.

This means

ac ∈ ker f ⇔ ac = (ad)e for some d ∈ A∗∩B and some e ∈ A∩B∗ ⇔ ac ∈ A∗(A∩B∗).

Hence, we find ker f = A∗(A∩B∗) and our proof of the Butterfly Lemma is complete.
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SUBGROUPS AND HOMOMORPHIC IMAGES OF GROUPS

PROBLEM 63.
Prove that every group that has a proper subgroup of finite index must have a proper normal subgroup of
finite index.

PROBLEM 64.
Let G be a group. Prove that G cannot have four distinct proper normal subgroups N0,N1,N2, and N3 so
that N0 ≤ N1 ≤ N2 ≤ G and so that N1N3 =G and N2 ∩N3 = N0.

PROBLEM 65.
Let H and K be subgroups of the group G each of finite index in G. Prove that H∩K is also a subgroup of
finite index in G.

PROBLEM 66.
Let p be a prime number. Prove that if a and b are elements of the symmetric group Sp , where a has order
p and b is a transposition, then {a,b} generates Sp .

PROBLEM 67.
Show that there is no group that has exactly one subgroup that is not a normal subgroup.
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USEFUL FACTS ABOUT CYCLIC GROUPS

Let G be a group and let X ⊆ G . We use 〈X 〉 to denote, ambiguously, both the subgroup of G generated
by X and the underlying universe of that subgroup. So we can construe 〈X 〉 has the intersection of all the
subgroups of G that include X (the shrinkwrap viewpoint) or as the set of all elements of G that can be built
from the elements of X by iteratively applying the basic operations of the group G.

The group G is cyclic provided there is some a ∈ G so that G = 〈{a}〉. That is, G is generated by some
single element. To save notation, we write 〈a〉 for 〈{a}〉. Taking a−n := (a−1)n for every natural number, we
see that

〈a〉 = {ar | r ∈Z}.

It is easy to see that in any group, the equation xr xs = xr+s must be true, where r and s are any integers.
From this we get

Fact. Every cyclic group is Abelian.

For any group G and any a ∈G , we let order of a, denoted by o(a), be |〈a〉|.
Fact. The order of any element of a group is either countably infinite or it is finite and not 0.

Fact. Let G be a group and a ∈G . The element a has finite order n if and only if n is the smallest positive
natural number such that an = 1 in G.

Proof. Let us first consider the case when a = 1. Then 〈a〉 = {1}, a set with 1 element and n = 1 is also the
least positive natural number so that 1n = 1. So in the remainder of this proof we consider the case when
a 6= 1.

First suppose that a has finite order n. Then {ar | r ∈ Z} is finite. So pick integers k < ` so that ak = a`.
It follows that a`−k = 1 and `−k > 0. Pick m to be the least positive natural number so that am = 1. So
the elements 1 = a0, a1, . . . , am−1 must all be distinct. This set evidently contains 1 and it is closed under
inverses since ak am−k = ak+m−k = am = 1, for all k < m. It is also closed under products since for k,`< m
we have ak a` = ak+` = amq+r = (am)q ar = 1q ar = ar , where q and r are the unique integers such that

k +`= mq + r where 0 ≤ r < m.

So 〈a〉 = {1, a, a2, . . . , am−1}. In this way we see that n = m, as desired.
For the converse, suppose that n is the least positive integer so that an = 1. Then we have just shown that

〈a〉 = {1, a, a2, . . . , an−1} and that the elements listed are distinct. So n is the order of a.
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The proof above carries a bit more information.

Fact. A finite cyclic group of order n is isomorphic to the group Zn = 〈{0,1, . . . ,n −1},+n ,−n .0〉 where the
operations work modulo n.

Proof. Let 〈a〉 be the cyclic group of order n. The elements of this group are a0, a1, a2, . . . , an−1. As shown
above, the operations work like this for all natural numbers k,`< n

(ak )−1 = an−k

ak a` = ar where 0 ≤ r < n and k +`≡ r (mod n).

Now just observe that the “logarithm” that sends ak 7→ k for all natural numbers k < n is an isomorphism
from 〈a〉 onto Zn .

The same sort of logarithm function applies to infinite cyclic groups, giving the following

Fact. Every infinite cyclic group is isomorphic to the additive group of integers, that is to Z := 〈Z,+,−,0〉.
Fact. Let G be a group and let a ∈G have finite order n. If am = 1 in G then n | m.

Proof. Let q and r be the unique integers such that

m = nq + r where 0 ≤ r < n.

Then 1 = am = anq+r = (an)q ar = 1q ar = ar . Since n is the order of a and 0 ≤ r < n, we must have r = 0.
Thus m = nq and n | m.

Fact. Every subgroup of a cyclic group is cyclic.

Proof. Let H be a subgroup of the cyclic group G and let a be an element of G which generates G. As the
trivial group is cyclic, we will consider the remaining case that H is nontrivial. Let k be the least positive
natural number so that ak ∈ H . We see that k must be strictly smaller than o(a). Our contention is that ak

generates H. So let a` be an arbitrary element of H . Let q and r be the unique integers so that

`= kq + r where 0 ≤ r < k.

Then a` = (ak )q ar . Now since ak ∈ H , then so is (ak )−q . But a` ∈ H . Hence ar = a`(ak )−q ∈ H . Since
0 ≤ r < k, we see that r = 0 by the minimality of k. Hence a` = (ak )q and so a` is in the subgroup generated
by ak . Since a` was an arbitrary element of H , we see that H is generated by ak and therefore that H is
cyclic.

The next fact provides a remarkable property that cyclic groups possess that is not common even among
Abelian groups.

Fact. Let G be a cyclic group of finite order n and let k be a natural number so that k | n. Then G has exactly
one subgroup of order k. Moreover, G has no other subgroups.

Proof. Let a generate G and let m be the natural number so that km = n. Then the order of am is the least
` so that am` = 1. Since mk = n, we see that `≤ k. But also mk = n ≤ m`. Hence k ≤ `. Thus k = ` is the
order of am . This means that G has at least one subgroup of order k, namely 〈am〉. Since every subgroup of
G is cyclic, let us suppose that a j generates a subgroup of order k. That is, a j has order k. Pick the integers
q and r so that

j = mq + r where 0 ≤ r < m.
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Now we know that k is the least positive integer so that a j k = 1, so we see

1 = a j k = amkq+r k = (amk )q ar k = (an)q ar k = 1q ar k = ar k .

But since 0 ≤ r < m we have 0 ≤ r k < mk = n. Since n is the order of a, we see that r = 0. But then j = mq .
Hence a j = (am)q . This means that a j ∈ 〈am〉. Hence 〈a j 〉 ⊆ 〈am〉. But both of these sets are finite and
have the same cardinality. So they must be equal, as desired.

That G has no other subgroups is immediate by Lagrange.

The next couple of facts deal with Abelian groups and will help us distinguish which Abelian groups are
actually cyclic.

Fact. Let G be an Abelian group and let a,b ∈ G . If the orders of a and b are finite and relatively prime,
then o(ab) = o(a)o(b).

Proof. Suppose (ab)k = 1. Then ak = b−k ∈ 〈a〉∩〈b〉. So according to Lagrange, the order of ak must divide
the order of a and also the order of b. These orders are relatively prime, so the order of ak must be 1. That
is ak = (ak )1 = 1. A similar argument gives that bk = 1. So we have both o(a) | k and o(b) | k. Since o(a) and
o(b) are relatively prime we see o(a)o(b) | k. But it is easy to verify (as hard working graduate students will)
that (ab)o(a)o(b) = 1. So we see o(ab) = o(a)o(b).

Let G be a group. The exponent of G is the least positive integer e so that ae = 1 for all a ∈G . Every finite
group has an exponent. Certain infinite groups also have exponents, but most do not.

Fact. Let G be an Abelian group and suppose that a is an element of largest order and that order is finite.
Then the exponent of G is the order of a.

Proof. Let b be an arbitrary element of G and n be the order of a. We need only show that bn = 1. Now we
know that the order of b is bounded above by n, so in particular it is finite. Let it be m. Now factor n and
m:

n = pe0
0 pe1

1 . . . pek

k

m = p f0

0 p f1

1 . . . p fk

k

where p0, . . . , pk are distinct primes and the e j ’s and f j ’s are natural numbers. In the event that m|n we
have bn = 1 as desired.

So consider the case when m - n. Then there is some j ≤ k so that f j > e j . Without loss of generality (and
to simplify notation) let j = 0.

Now put c = ap
e0
0 and d = bp

f1
1 ...p

fk
k . Then

o(c) = pe1
1 . . . pek

k

o(d) = p f0

0

This means that the orders of c and d are relatively prime. It follows that the order of cd is p f0

0 pe1
1 . . . pek

k .
But this is larger than n contrary to the maximality of the order of a. So we must reject this case.

Fact. Let G be a finite Abelian group. G is cyclic if and only if |G| is the exponent of G.
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The proof is immediate from the two preceding facts.
Let ϕ(n) be Euler’s totient function. That is, ϕ(n) is the number of natural numbers less than n that are

relatively prime to n.

Fact. Let G be a finite cyclic group of order n. Then G has precisely ϕ(n) elements of order n and they are
those of the form am where a generates G and m is relatively prime to n with 0 ≤ r < n.

Proof. First, suppose that m satisfies the listed conditions. Let k be the order of am . Then k is the least
positive natural number such that 1 = (am)k = amk . So n | mk. But since m and n are relatively prime, we
find that n | k. On the other hand, Lagrange tells us that k | n. Thus k = n. So am indeed has order n.

Now suppose am has order n and 0 ≤ m < n. Let d be the greatest common divisor of m and n. Let s be
the natural number so that d s = n and let t be the natural number so that d t = m. Then (am)s = ad t s =
(ad s)t = (an)t = 1t = 1. Since n is the order of am we find that n | s. On the other hand, n = d s. So n = s and
d = 1. Since d = 1 we conclude that m and n are relatively prime.

Fact. Let G and H be finite cyclic groups of order n. Then ϕ(n) is the number of isomorphisms from G
onto H.

Proof. We already observed that each of these groups is isomorphic to Zn , so there are certainly isomor-
phisms between them. Let a generate G. Now any isomorphism must preserve the order of elements
and so it must take a to a generator of H. Suppose b is a generator of H. Now in our proof that these
cyclic groups were isomorphic to Zn we use logarithm maps. Composing the logarithm map from G to Zn

with the inverse of the logarithm map from H to Zn we obtain an isomorphism from G onto H that sends
ak 7→ bk for all natural numbers k < n. Since there are ϕ(n) choices for b, we have found ϕ(n) distinct
isomorphisms from G onto H. Are there anymore?

Suppose Φ is an isomorphism from G onto H. Then Φ(a) = b is a generator of H. Moreover, we have
Φ(ak ) = (Φ(a))k = bk for all natural numbers k < n. So Φ is one of the isomorphisms counted in the
previous paragraph.

Let Un = {m | m is a natural number relatively prime to n and m < n}. Notice that 1 ∈ Un . By imposing
multiplication modulo n and the correct inversion we make a group Un . (In finding the inverse, the hard-
working graduate students should consider that the relative primeness of m and n leads to 1 = ms+nq for
appropriate integers s and t .) We leave the following, which is a corollary of the fact above as a challenge to
the graduate students. We use AutG to denote the set of all automorpisms of the group G. This set contains
the identity map and is closed under composition of functions and the formation of inverse functions. So
we can turn it into a group, denoted, of course, by Aut G.

Fact. Let G be a finite cyclic group of order n. Then Aut G ∼= Un .

Finally, here is a theorem of Euler.

Fact. For all postive natural numbers m and n that are relatively prime, we have mϕ(n) ≡ 1 (mod n).

Proof. First of all, we may insist that m < n. The reason is that the modulo n residue map is a homomor-
phism from the ring of integers onto the ring of integers modulo n. So m ∈Un . By Lagrange, the order of
m divides the cardinality of Un which is ϕ(n). So the desired conclusion follows.
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GROUP REPRESENTATION: GROUPS ACTING ON SETS

Let G be a group and let X be a set. By an action of G on X we just mean a homomorphismΦ : G → Sym X .
Cayley’s Theorem gave us one example of G acting on G . Recall that thereΦa(b) := ab for all a,b ∈G . This

action is sometimes called the action of G on G by translation (on the left). We showed thisΦ is one-to-one.
One-to-one actions are said to be faithful.

Lagrange’s Theorem also suggests an action. Let G be a group and let H be a subgroup of G. Let X be the
collection of left cosets of H in G. We can have the actionΦ defined so thatΦa(bH) := (ab)H for all a,b ∈G .

Here is another action. Let G be a group. Let X be G and define Φ so that Φa(b) := a−1ba for all a,b ∈G .
Of course, one must actually show that this Φ is a homomorphism from G into SymG . Of course, this will
be verified by the hard-working. . . . This is the action of G on G by conjugation.

Roughly speaking, the idea of representations is that by exploring (a number of different) concrete ho-
momorphic images of a group we might find out more about the group itself. By analogy, think of the
homomorphic images has shadows onto a two-dimensional screen of some three-dimensional object. By
understanding enough of the shadows we might be able to reconstruct what the object looks like.

The language using the homomorphism Φ can be streamlined. This streamlining can sometimes be
ambiguous, but usually it is not. WhatΦ does is associate with each g ∈G a permutationΦg of X . The first
step in the streamlining is to just regard g as a name for this permutation—in other words, drop theΦ and
raise the g . This means we get things like the following for all x ∈ X and all g ,h ∈G

1(x) = 1X (x) = x

(g h)(x) = (g ◦h)(x) = g (h(x))

The last step in the streamlining process is to drop a set of parentheses—that is, to write g x in place of
g (x). Then the equations above become, for all x ∈ X and all g ,h ∈G ,

1x = x

(g h)x = g (hx)

You might notice that the formation of inverses is not mentioned above. This is legitimate since we know
that both G and Sym X are groups. Sometimes authors say that an action of G on X is a kind of “scalar”
multiplication of group elements by elements of X that satisfies the two equations above. This amounts
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to the same thing since the map Φ can be recovered from this information and it can be shown to be a
homomorphism.

LetΦ be an action of G on a set X and let x ∈ X . The orbit of x under the action is the set

Ox := {Φg (x) | g ∈G}.

In the streamlined notation this becomes

Ox := {g x | g ∈G}.

Observe that x ∈Ox since 1 ∈ G . Also notice that If y ∈Ox , then Ox =Oy . Here is why. Let g ∈ G so that
g x = y . Now observe

z ∈Oy ⇔ hy = z for some h ∈G

⇔ h(g x) = z for some h ∈G

⇔ (hg )x = z for some h ∈G

⇔ kx = z for some k ∈G( careful!)

⇔ z ∈Ox .

Hence Oy =Ox . Thus the orbits of any elements x, y ∈ X either coincide or they are disjoint. This means
that X is partitioned into orbits by the action of G.

Now let x ∈ X . The stablizer of x with respect to the action Φ is the following set

Stab x := {g | g ∈G and g x = x}.

That is, the stablizer of x consists of all the elements of G that leave x fixed under the action. It is easy to
see that Stab x is closed under the group operations:

1x = x so 1 ∈ Stab x

g x = x and hx = x ⇒ (g h)x = x so Stab x is closed under products

g x = x ⇒ x = g−1x so Stab x is closed under inverses.

In this way we arrive at the group Stab x, which is a subgroup of G.
Here is the

Key Fact About Group Actions. Let the group G act on the set X . Then we have |Ox | = [G : Stab x] for all
x ∈ X .

Proof. Notice that [G : Stab x] is the number of left cosets of Stab x in G. To prove the Key Fact we present a
one-to-one correspondence betweenOx and the collection of left cosets of Stab x. As preparation, suppose
y ∈ Ox . Then there is at least one g ∈ G so that g x = y . Suppose also h ∈ G and hx = y . Then, of course
g x = hx and so (h−1g )x = x. This means that h−1g ∈ Stab x or, what is the same, g and h are in the same
left coset of Stab x. This allows us to define Ψ from Ox to the collection of left cosets of Stab x as follows:

Ψ(y) := g Stab x where g x = y.

This definition works for all y ∈Ox . It remains to show that Ψ is the desired one-to-one correspondence.
To see one-to-oneness, let y, z ∈Ox with Ψ(y) =Ψ(z). Pick g ,h ∈G so that g x = y and hx = z. So we get

g Stab x = h Stab x. This means h−1g ∈ Stab x. So (h−1g )x = x. But then g x = hx. So we find y = g x = hx =
z, and conclude thatΨ is one-to-one.

To see that Ψ maps Ox onto the collection of cosets of Stab x, let g ∈ G . We must find y ∈ Ox so that
Ψ(y) = g Stab x. Let us try y = g x. It works, enough said.
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Let the group G act on the set X . By a transversal for this action we mean a set T ⊆ X so that |T ∩Ox | = 1
for each x ∈ X . This means that T is constituted by picking one “representative” element from each orbit.
The next fact is a corollary of the Key Fact.

Fact. Let the group G act of the set X and let T be a transversal for this action. Then

|X | = ∑
t∈T

[G : Stab t ].

There are some interesting consequences when these notions are applied to the action of G on G by
conjugation. Under this action

Φg (h) := g−1hg

for all g ,h ∈ G . (This is one instance where our streamlining is unreasonable.) Our first remark is that
conjugation by g is not only a permutation of G , but is, in fact, an automorphism of G. Just observe that
g−1(hk)g = g−1hg g−1kg = (g−1hg )(g−1kg ). This means that Φ : G → AutG. Automorphisms of G that are
conjugations by some fixed element g are called inner automorphisms. We see that since they constitute
the image of G under the homomorphism Φ, the inner automorphisms of G form a subgroup of Aut G,
which is in turn a subgroup of SymG . The group of inner automorphisms of G is denoted by Inn G. What
is the kernel of Φ? Well, g ∈ kerΦ if and only if Φg is 1G if and only if g−1hg = h for all h ∈ G if and only if
hg = g h for all h ∈G . This means

kerΦ= {g | hg = g h for all h ∈G}.

This group is call the center of G and consist of all elements of G that commute with every element of G .
We use Z(G) to denote the center of the group G. The next fact merely gathers together these findings.

Fact. Let G be a group. Then the center Z(G) is a normal subgroup of G and G/Z(G) ∼= Inn(G).

Now consider the corollary of the Key Fact, applied to the action by conjugation. We get

|G| = ∑
t∈T

[G : Stab t ].

To understand this a little better, look at Stab t = {g | g ∈ G and g−1t g = t } = {g | g ∈ G and t g = g t }. So
under this action Stab t turns out to be the set of those elements of G which commute with t . This set is
called the centralizer of the element t and is denoted by C (t ). So we have

C (t ) := {g | g ∈G and t g = g t }.

We know it is a subgroup of G, as all stablizers must be. This subgroup is denoted by C(t ). Notice that
C (t ) = G is equivalent to t ∈ Z (G) and also to [G : C(t )] = 1. Now break the transversal T into two disjoint
pieces T0 and T1, where t ∈ T0 if and only if C (t ) =G . Then we get

|G| = ∑
t∈T0

[G : C(t )]+ ∑
t∈T1

[G : C(t )].

Now apply the Key Fact to the first sum.

|G| = ∑
t∈T0

|Ot |+
∑

t∈T1

[G : C(t )].

Since the orbits are disjoint we get
|G| = | ⋃

t∈T0

Ot |+
∑

t∈T1

[G : C(t )].
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But actually T0 = Z (G) and each Ot = {t } for t ∈ T0. This means

|G| = |Z (G)|+ ∑
t∈T1

[G : C(t )].

This equation is called the Conjugacy Class Equation or sometimes just the Class Equation.
Here is a useful consequence of the Conjugacy Class Equation.

Fact. Every nontrivial finite group of prime power order has a nontrivial center.

Proof. Let p be a prime number and suppose G is a group of order pn where n is a positive natural number.
The indices [G : C(t )] where t ∈ T1 that occur in the Conjugacy Class Equation are larger than 1 and so by
Lagrange each of them is some positive power of p. Thus p |∑t∈T1

[G : C(t )] and p | |G|. Therefore p | |Z (G)|.
So the center of G must have at least p elements. It is nontrivial.

The Key Fact tells us something about the sizes of the orbits induced by the action of a group on a set.
What about the number of orbits? To get at this, we need a companion to the notion of stablizer. Let G act
on X and let g ∈G . The fixed set of g is

Fix g := {x | x ∈ X and g x = x}.

The Cauchy-Frobenius Formula. Let the group G act on the set X and let κ be the number of orbits of this
action. Then

κ|G| = ∑
g∈G

|Fix g |.

Proof. Let
P := {(g , x) | g ∈G and x ∈ X with g x = x}.

Observe that for each x ∈ X we have (g , x) ∈ P if and only if g ∈ Stab x. This gives us

|P | = ∑
x∈X

|Stab x|.

Now do the same with the other coordinate. For each g ∈G we have (g , x) ∈ P if and only if x ∈ Fix g . So we
find

|P | = ∑
g∈G

|Fix g |.

So we find
∑

g∈G |Fix g | = ∑
x∈X |Stab x|. Now let T be a transversal of the orbits of this action. So |T | = κ,

the number of orbits. But X is the disjoint union of the orbits. So we can rearrange the right-hand sum as
follows: ∑

x∈X
|Stab x| = ∑

t∈T

∑
x∈Ot

|Stab x|.

Let x ∈Ot . Pick h ∈G so that ht = x. Then observe that for all g ∈G we get g x = x ⇔ g ht = ht ⇔ h−1g ht =
t . This means that g ∈ Stab x ⇔ h−1g h ∈ Stab t . But conjugation by h is an automorphism of G, so in
particular it follows the subgroups Stab x and Stab t are isomorphic. But we only want that if x ∈Ot then
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|Stab x| = |Stab t |. In this way we arrive at∑
g∈G

|Fix g | = ∑
x∈X

|Stab x|

= ∑
t∈T

∑
x∈Ot

|Stab x|

= ∑
t∈T

∑
x∈Ot

|Stab t |

= ∑
t∈T

|Stab t | ∑
x∈Ot

1

= ∑
t∈T

|Stab t ||Ot |

= ∑
t∈T

|G|

= |G| ∑
t∈T

1

= |G||T | = κ|G|.

In the above chain of reasoning we use |G| = |Stab t ||Ot |. This is just another way to state the Key Fact.

We see above (and in the next Lecture) that it is informative to consider homomorphismsΦ : G → Sym X .
This is actually just the first—or maybe second step, counting Cayley first—in a direction that leads more
deeply into group theory and its many applications. The idea is to replace Sym X with some other well
understood group. Finite dimensional vector spaces (over such familiar fields as Q,R, and C) are among
the most thoroughly understood algebraic systems. Why not replace Sym X by the group of all invertible
linear operators on some finite dimensional vector space? Such a group might as well be regarded as a
group of invertible square matrices. The notation is various but GL(n,F) is mostly used to denote the
group of all n ×n invertible matrices with entries from the field F. This is called the general linear group.
A related subgroup might be denoted by SL(n,F), called the special linear group, which consists of all the
n ×n matrices of determinant 1. Representation theory proper sets off from this beginning—it is a topic
worth its own course.
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16.1 PROBLEM SET 15

ALGEBRA HOMEWORK, EDITION 15

SIXTEENTH WEEK

AUTOMORPHISMS OF GROUPS

PROBLEM 68.
Prove that Aut(Sn) ∼= Sn , for ever natural number n, except when n = 2 or n = 6. You can use, without proof,
that if n 6= 6 then, in Sn , the image, under any automorphism, of any transposition is again a transposition.

PROBLEM 69.
Let H ≤ G. Prove that NG (H)/CG (H) is embeddable into Aut(H).

PROBLEM 70.
Prove that there is no group G such that G/Z(G) ∼=Z, whereZ denotes the group of integers under addition.

PROBLEM 71.
Let G be a finite group.

(a) If H is a proper subgroup of G, show that there is some element x ∈G which is not contained in any
subgroup conjugate to H.

(b) A maximal subgroup of G is a proper subgroup which is not contained in any other proper subgroup.
Derive from the first part of the problem that if all maximal subgroups of G are conjugate, G must be
cyclic.

PROBLEM 72.
Let G be a group of order n. Define ϕ : G →G by ϕ(a) = an2+3n+1 for all a ∈G . Prove that ϕ is an automor-
phism of G.

PROBLEM 73.
Prove that the group of automorphisms of a finite cyclic group is Abelian.

PROBLEM 74.
Let G be a finite group of order |G| and let Z(G) denote the center of G. Prove the following.

(a) If G/Z(G) is cyclic, then G in Abelian.

(b) if |G| = pq , where p and q are primes, then either Z(G) = {1} or G is Abelian.
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17
WHEN DOES A FINITE GROUP HAVE A SUBGROUP OF

SIZE n?

Let G be a finite group and H be a subgroup of G. Lagrange tells us that |H | must divide |G|. What about
the converse? If n divides |G| must G have a subgroup of order n? How many such subgroups? If not for all
such n then for which?

Example. The alternating group A4, which has cardinality 12, has no subgroup of order 6.

Proof. By writing down the disjoint cycle decompositions one can see that in addition to the identity per-
mutation, A4 has 3 elements of order 2 and 8 elements of order 3 making altogether 12 elements. The
elements of order 3 are the 3-cycles and the elements of order 2 are the product of disjoint transpositions.

Let us try to make a subgroup H of order 6. There not being enough elements of order 2, we see that H
must have an element of order 3. It does not harm to suppose that (0,1,2) ∈ H . Then the square of this
element (which is also its inverse) (0,2,1) also belong to H . With the identity permutation this gives us 3
of the 6 elements. We must also leave out of H the permutations (0,2,3), (0,3,1), and (1,3,2), since putting
them in would also force in their inverses as well as their products with (0,1,2). After a bit of computation
we find that H would then have to have more than 6 elements. Next we see that we cannot put any of the
element of order 2 into H since the product of (0,1,2) with any element of order 2 yields one of the three
3-cycles we just threw out of H . This leaves 3 other 3-cycles to consider. But the product of (0,1,2) with
any of them yields an element of order 2. So we cannot put together six of the element of A4 to form a
subgroup.

We cannot have the full-blown converse to Lagrange’s Theorem. In the example above, while we didn’t
get a subgroup of order 6, we certainly saw subgroups of order 2 and 3, the primes that divide 12. Of course
that is for just the one group A4. But it suggests a starting point. Cauchy noticed the following fact.

Fact. Let G be a finite group and let p be a prime number. If p divides |G|, then G has a subgroup of order
p.

Proof. Since p is prime, having a subgroup of order p is the same as having an element of order p.
For the sake of contradiction, suppose it were not so. Then let G be a smallest finite group witnessing this

failure. Consider the Conjugacy Class Equation

|G| = |Z (G)|+ ∑
t∈T1

[G : C(t )]

121
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recalling that for t ∈ T1 we have that centralizer C(t ) is a proper subgroup of G. By the minimality of G we
find that p - |C (t )|. Since p does divide |G| we have by Lagrange that p must divide [G : C(t )] for each t ∈ T1.
This forces the conclusion that p divides |Z (G)|. By the minimality of |G| this entails that G = Z (G). So G
is Abelian. Now let H be any subgroup of G. Because G is Abelian H is a normal subgroup of G. So G/H
is again a group and Lagrange tells us that |G| = |G/H ||H |. So p divides |G/H | or p divides |H |. Suppose
H is a proper nontrivial subgroup of G. Then both G/H and H are smaller groups. So if p divides one of
these order then it must have an element of order p. This is impossible in the case of H since then the
same element would be an element of order p in G. What about if G/H has an element of order p? This
is the same as asserting that there is some a ∈ G with a ∉ H but ap ∈ H . Let r be the order of ap in H. So
p and r are relatively prime since p does not divide |H | and apr = 1. But then (ar )p = 1. Since G has no
elements of order p, it must be that ar = 1. Since p and r are relatively prime, pick integers u and v so that
1 = pu + r v . Then a = a1 = (ap )u(ar )v = (ap )u1v = (ap )u . But ap ∈ H . Therefore, a ∈ H contrary to the way
a was chosen.

What all that means is that G is a finite Abelian group with no proper nontrivial subgroups. That is, it is
a finite cyclic group. But we already know that every finite cyclic group has elements of every order that
divide the order of the group. That is the desired final contradiction.

Here is a second slicker (but perhaps not as revealing a) proof published by J. H. McKay in 1959.

Proof. Let
X := {(g0, . . . , gp−1) | gi ∈G for all i < p and g0g1 . . . gp−1 = 1}− {(1, . . . ,1)}.

Let A be a cyclic group of order p and let a be a generator of A. Let A act on X in such a way that
a(g0, g1, . . . , gp−1) = (gp−1, g0, g1, . . . , gp−2) for any (g0, . . . , gp−1) ∈ X . So the action of the generator of A
is to rotate the coordinates of members of X by one notch. The hard-working graduate students should
verify that the resulting rotated tuple belongs again to X and that this really does describe a group action.
Now Lagrange and the Key Fact tell us that the size of each orbit must divide |A| = p. Because p is prime
this means that an orbit must have size 1 or size p. An orbit of size one is just what we are looking for:
a p-tuple that multiplies to 1 but which is the same tuple under all those rotation (i.e. every entry in the
tuple is identical with every other entry).

So what if all the orbits were of size p? Since X is the disjoint union of the orbits, this would mean that
|X | would be divisible by p. But we can figure out the size of X . To make a p-tuple belonging to X we can
make free and independent choices for the first p − 1 entries. But then the last entry is forced to be the
inverse of the product of the first p −1 entries. This means

|{(g0, . . . , gp−1) | gi ∈G for all i < p and g0g1 . . . gp−1 = 1}| = |G|p−1

So |X | = |G|p−1 −1. But p divides |G| so p cannot divide the cardinality of X . This means that not all the
orbits can have cardinality p. So one of them must have cardinality 1.

Let p be a prime number. A group is said to be a p-group provided each of its elements has an order
which is a power of p. We get the following fact from Lagrange and Cauchy.

Fact. Let G be a finite group and p be a prime number. G is a p-group if and only if |G| is a power of p.

Proof. First, suppose that G is a p-group and that the order of G is n. By Cauchy’s Theorem the only prime
that can divide n is p. So n must be a power of p.

Conversely, if |G| is a power of p, then by Lagrange the order of any subgroup must also be a power of
p. This applies to the cyclic subgroups, so any element must have order a power of p. This means G is a
p-group.
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Using the Correspondence Theorem, the Theorem of Lagrange, and the Theorem of Cauchy as a base,
we can even get a considerable extension of Cauchy’s Theorem in the case of p-groups.

Fact. Let G be a group, let p be a prime number, and let k be a natural number such that |G| = pk . Then
there is a sequence G0/G1/ · · ·/Gk of normal subgroups of G such that |G j | = p j for all j ≤ k.

Proof. Of course G0 will be the trivial subgroup of G and Gk = G.
We will prove our fact by induction on k. In the base step of the induction we have k = 0 and the sequence

we desire has just one group in it: G itself, which is a trivial group. So consider the inductive step. Here we
take as an hypothesis that our fact is true for k and prove it for k +1. So let G be a group of order pk+1. We
know that the center Z(G) is nontrivial. Cauchy tells us it must have an element of order p. Let G1 be the
subgroup generated by such an element. Since G1 is a subgroup of the center, each of the elements of G1

commutes with all the elements of G . This ensures that G1/G. Now according to Lagrange, G/G1 of order
pk . By our inductive hypothesis it has a sequence

H0/H1/ · · ·/Hk = G/G1

of normal subgroups so that |H j | = p j for all j ≤ k. According to the Correspondence Theorem there is a
corresponding sequence

G1/G2/ · · ·/Gk+1 = G

of normal subgroups of G so that H j = G j+1/G1 for all j ≤ k. So according to Lagrange, |G j+1| = p j+1 for all
j ≤ k. So the sequence

G0/G1/G2/ · · ·/Gk+1 = G

is just what we desire.

A generation after Cauchy, the great Norwegian mathematician Peter L. M. Sylow (a high school teacher
for most of his life) made the breakthrough that launched a century and more of vigorous development of
the rich theory of finite groups.

Let G be a finite group and p be a prime number. Then there must be a natural number m such that pm

divides |G| but pm+1 does not divide |G|. Any subgroup of G of order pm is said to be a Sylow p-subgroup
of G. Of course, if p does not divide |G| then m = 0 and the Sylow p-subgroup is the trivial group (and not
of much interest).

The First Sylow Theorem. Let G be a finite group and p be a prime number. If pk divides |G|, then G has a
subgroup of order pk . In particular, G has a Sylow p-subgroup.

Proof. There is really nothing to prove unless p divides |G|. So we take that to be the case.
Once we prove that G has a Sylow p-subgroup we can appeal to a fact above to get the other subgroups

we desire.
Our proof is by induction of |G|. As the base step is trivial, we consider just the inductive step.
Suppose H is a proper subgroup so that p does not divide [G : H]. Lagrange tells us that |G| = [G : H]|H |.

So we see that p divides |H | and that any Sylow p-subgroup of H is a Sylow p-subgroup of G. So we could
appeal to the induction hypothesis to get a Sylow p-subgroup of G.

So it remains to consider the case that for every proper subgroup H of G we have that p divides [G : H].
Recall the Conjugacy Class Equation:

|G| = |Z (G)|+ ∑
t∈T1

[G : C(t )].

In the sum each of the centralizers C(t ) is a proper subgroup of G. So it follows from the Conjugacy Class
Equation that p divides |Z (G)|. According to Cauchy, Z(G) has a subgroup N of order p. Since N ⊆ Z (G)
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we know that N is a normal subgroup of G. But G/N is smaller than G , so by the inductive hypothesis it
must have a Sylow p-subgroup Po . Let m be the natural number so that pm divides |G| but pm+1 does not
divide |G|. Because |N | = p, in view of Lagrange’s Theorem, we see that |Po | = pm−1. Now let P = {a | a ∈
G and a/N ∈ Po}. It is easy to check that P is closed under the group operations (the inverse image under
any homomorphism of a subgroup of the range is a subgroup of the domain). So we have a subgroup P of
G and Lagrange tells us that |P | = |Po ||N | = pm−1p = pm . This means that P is a Sylow p-subgroup of G, as
desired.

Our proof of the Second Sylow Theorem uses the notion of the normalizer of a subgroup. Suppose H is
a subgroup of the group G. Let NGH := {a | a ∈G and aH = H a}. We see and H ⊆ NGH ⊆G . Hard-working
graduates can check that NGH is closed under the group operations. So we have the subgroup NGH. It is
called the normalizer of H in G. Evidently, H is a normal subgroup of NGH, and indeed the normalizer is
the largest subgroup of G in which H is normal.

There is another way to get at the normalizer. Let G be a group and let X be the collection of all subgroups
of G. Let G act on X by conjugation. Then a little work shows, for any subgroup H, that Stab H = NGH. The
orbit of H under this action is just all the subgroups of G that are conjugate to H. The Key Fact tells us, in
this setting, that the number of subgroups conjugate with H is [G : NGH].

The Second Sylow Theorem. Let G be a finite group and let p be a prime number. Let P be a Sylow p-
subgroup of G and let H be a p-subgroup of G. Then H is a subgroup of some conjugate of P. In particular,
any two Sylow p-subgroups of G are conjugates.

Proof. Pick m so that |P | = pm .
Let X be the collection of subgroups of G that are conjugates of P. Let H act on X by conjugation. Con-

sider one of the orbits OH and let Po be a member of OH . We have superscripted this orbit with H since
later in this proof we will use a second action and consider one of its orbits. The Key Fact tells us

|OH | = [H : StabPo].

Now StabPo = {h | h ∈ H and h−1Poh = Po} = H ∩NGPo . Let H1 = H ∩NGPo . Now H1 is a subgroup of NGPo

and Po is a normal subgroup of NGPo . Working inside NGPo we apply the Second Isomorphism Theorem:

H1Po/Po
∼= H1/H1 ∩Po .

We have [H1Po : Po] = [H1 : H1 ∩Po]. Since H is a p-group so is H1. So pick ` so that [H1Po : Po] = p`. By
Lagrange |H1Po | = [H1Po : Po]|Po | = p`pm = p`+m . Since Po is a Sylow p-subgroup of G, it must be that
`= 0 and so |H1Po | = |Po |. But Po ⊆ H1Po and these sets are finite. That means Po = H1Po . In turn we have
H1 ⊆ H1Po = Po . Recalling the definition of H1, we get H ∩NGPo ⊆ Po . So intersecting H on both sides of
this inclusion we get H ∩NGPo ⊆ H ∩Po . But since Po ⊆ NGPo we find

StabPo = H ∩NGPo = H ∩Po .

So the size of our arbitrary orbit OH is [H : H∩Po]. Notice that this must be a power of p.
On the other hand, if we let G act on X by conjugation then, as noted above the statement of the theorem,

|OG
P | = [G : NGP]. Since P is a Sylow p-subgroup of G we see that p cannot divide |OG

P |. Since OG
P is a disjoint

union of H-orbits and each H-orbit has cardinality a power of p, there must be at least one orbit whose
size is p0 = 1. Let Po = a−1Pa be the element of this orbit. Then [H : H∩Po] = 1, the size of the orbit. This
means H = H ∩Po . Hence H ⊆ Po = a−1Pa, as desired.

Here is a useful corollary of the Second Sylow Theorem.

Fact. If G is a finite group and p is a prime number. A Sylow p-subgroup of G is normal if and only if G has
exactly one Sylow p-subgroup.
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So can we get a handle on the number of Sylow p-subgroups a finite group might have?

The Third Sylow Theorem. Let G be a finite group and let p be a prime number. Then the number of distinct
Sylow p-subgroups of G is congruent to 1 modulo p and divides |G|.
Proof. Let X be the collection of all Sylow p-subgroups of G. Let P be a Sylow p-subgroup of G and let P
act on X by conjugation. Consider any orbit O of this action and let Po ∈O. Now just as in the proof for the
Second Sylow Theorem (letting P play the role here that H played there), we find

|O| = [P : P∩Po].

Again we find that each orbit has cardinality a power of p. Observe that {P} is an orbit of this action and it
is of size 1. For any other orbit O we have for Po ∈ O that P 6= Po so that P ∩Po is strictly smaller than P .
This entails, by the equation displayed above, that p divides the size of every orbit different from {P}. But
X is a disjoint union of the orbits, so |X | is the sum of the size of the orbits. So we get that |X |, the number
of Sylow p-subgroups of G, is congruent to 1 modulo p.

On the other hand, by letting G act on X by conjugation we get only one orbit, according to the Second
Sylow Theorem. So letting P be any Sylow p-subgroup (we have one by the First Sylow Theorem), the Key
Fact tells us

|X | = [G : Stab P].

By Lagrange we have |G| = [G : Stab P]|StabP| = |X ||StabP|. So the number |X | of Sylow p-subgeroups of G
divides the order of G.
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17.1 PROBLEMS SET 16

ALGEBRA HOMEWORK, EDITION 16

SEVENTEENTH WEEK

ASK SYLOW

PROBLEM 75.
Let p be the smallest prime that divides the cardinality of the finite group G. Prove that any subgroup of G
of index p must be normal.

PROBLEM 76.
How many elements of order 7 are there in a simple group of order 168?

PROBLEM 77.
Let N be a normal subgroup of the finite group G and let K be a p-Sylow subgroup of N for some prime p.
Prove that G = NG(K)N.

PROBLEM 78.
Prove that there is no simple group of order 56.

PROBLEM 79.
Let G be a finite group, let P be a Sylow p-subgroup of G and let H = NG(P) be the normalizer of P in G.
Show that, for all g ∈G we have g H g−1 = H if and only if g ∈ H .

PROBLEM 80.
Let G be a finite group, and P be a Sylow p-subgroup of G. Let H be a subgroup of G containing P:

P ≤ H ≤ G.

Suppose that P is normal in H and H is normal in G. Show that P is normal in G.



L
E

C
T

U
R

E

18
DECOMPOSING FINITE GROUPS

We have seen the Structure Theorem for Finitely Generated Modules over a Principal Ideal Domain. That
theorem said there was a way to assemble each such module from indecomposable pieces in a way that
was essentially unique. Recall that it had three aspects: an existence statement, a uniqueness statement,
and a description of the indecomposable modules. Roughly speaking, such a theorem opens a way to
tackle many problems: first figure out what happens to the indecomposable pieces and then figure out
what goes on when you put the indecomposable pieces together to form more complicate modules. An-
other very useful consequence was the association with each such finitely generated module a sequence
of numbers that determines the module up to isomorphism.

Of course, that theorem gave us an excellent structure theorem for finitely generated Abelian groups.
Here we want to address the question of whether there is a similar result that applies to all finite groups or
at least some way to pull a complicated finite group apart into less intricate pieces.

18.1 DIRECT PRODUCTS OF GROUPS

Since we know how to form direct products of any system of algebras all of the same signature, we know
how to form direct products of any system of groups and, as we observed after Cayley’s Theorem, such
direct products will again be groups.

Just as for modules, so for groups we can give a nice internal representation of the direct product of two
groups N and H.

Indeed, notice that in N×H we have that N∗ := {(a,1) | a ∈ N } is the kernel of the projection from N×H
onto H and that H∗ := {(1,b) | b ∈ H } is the kernel of the other projection function. Observe that we have
the following properties:

(a) N∗/N×H.

(b) H∗/N×H.

(c) N∗H∗ = N×H.

(d) N∗∩H∗ is trivial.

(e) N∗ ∼= N.
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(f) H∗ ∼= H.

On the other hand, let us start with a group G and subgroups N and H such that

(a) N/G.

(b) H/G.

(c) NH = G.

(d) N ∩H is trivial.

Then it is an enjoyable task for hard-working graduate students to verify that G ∼= N×H.
So we will say that G is the (internal) direct product of its subgroups N and H provided

(a) N/G.

(b) H/G.

(c) NH = G.

(d) N∩H is trivial.

We write G = N⊗H to mean that G is the internal direct product of N and H. Of course, N⊗H ∼= N×H.
Here is a fact that hard-working graduate students should enjoy proving.

Fact. Let G be a finite group so that each of its Sylow subgroups is normal. Then G is the (internal) direct
product of its Sylow subgroups.

Recall that we should say that a group G is directly indecomposable provided

• G is nontrivial and,

• if G = N⊗H, then either N or H is trivial.

The Krull-Schmidt Theorem. Any finite group can be decomposed as a direct product of directly indecom-
posable groups. Any two such decompositions of the same finite group must have the same number (counting
multiplicity) of direct factors and, after some rearranging of the factors, the corresponding direct factors in
each decomposition are isomorphic.

Thus a finite group has unique direct factorization property: it can be directly decomposed into directly
indecomposable factors and the decomposition is unique (in the sense expressed in the theorem).

Even though I called this the Krull-Schmidt Theorem (as it is commonly called in the literature) it was
known to J. H. M. Wedderburn and R. Remak in the early years of the 20th century.

This theorem is somewhat more troublesome to prove than the Structure Theorem for Finitely Generated
Modules over a PID. Moreover, a description of the directly indecomposable finite groups seems currently
out of reach (even though a century has passed since this theorem was first proved). The lack of such a
description limits some of the usefulness of the Krull-Schmidt Theorem.

No proof is included here (but there are a number of accessible proofs in the literature).
The Krull-Schmidt Theorem has been extended in a number of ways. It remains true (and is still called

the Krull-Schmidt Theorem) when the finite group is expanded by one-place operations that are endomor-
phisms of the original group. These kinds of expanded groups are called groups with operators. It also
remains true, even in the expanded form, when the finiteness restriction is weakened to the restriction
that the congruence lattice of the group (with operators) satisfies the finite chain condition. This is what
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Krull and Schmidt did in the 1920’s. There is also a Krull-Schmidt Theorem for modules satisfying the finite
chain condition on their lattices of submodules.

There are more difficult and more far-reaching theorems that extend the Krull-Schmidt Theorem that are
due to Garrett Birkhoff and to Bjarni Jónsson. These theorems depend on properties of the congruences
of the algebras and of their congruence lattices and will not be formulated here.

In another direction there is a really striking extension of the Krull-Schmidt Theorem due to Bjarni Jóns-
son and Alfred Tarski. An algebra A is said to be an algebra with a zero provided A has among its basic
operations an element designated by 0 and a two-pace operation + satisfying the following properties:

(a) The set {0} is closed under all the basic operations.

(b) The equations x +0 = 0+x = x hold in the algebra A.

The Jónsson-Tarski Theorem. Every finite algebra with a zero is uniquely factorable.

Algebras with a zero retain just a whiff of groupness: a two-place operation with a two-sided identity
element so that the identity element constitutes a one-element subuniverse. No associativity is assumed
nor any inverses. The other basic operations can be completely unrestricted, apart from the stipulation
that if 0 is plugged into each input position, then the output is also 0. This whiff is enough!

18.2 DECOMPOSING A GROUP USING A CHAIN OF SUBGROUPS

We saw another way to take a group apart. When G is a finite p-group, where p is a prime number, we saw
that there was a sequence

G = G0.G1. · · ·.Gs

of normal subgroups of G such that Gs is trivial and each Gk /Gk+1 is a cyclic group of order p. So we
conceive G as a sort of increasing union where the steps Gk /Gk+1 are especially simple.

We weaken this in a couple of ways to reach the notion of a solvable group. We say a group G is solvable
provided there is a finite sequence of subgroups of G such that

G = G0.G1. · · ·.Gs

where Gs is trivial and the factor groups Gk /Gk+1 are Abelian for all k < s. Here we did not insist that each
Gk was a normal subgroup of G. We also only required the factor groups to be Abelian rather than the more
stringent requirement that they be cyclic.

Sequences like the one appearing in the definition of solvable, but without the stipulation about the fac-
tor groups, are called normal series. Some authors call them subnormal series since the groups involved
may not actually be normal subgroups of G. Since this label might bear a demeaning psychological con-
notation, other authors use normal series.

The following fact just records an obvious point and restates a previous Fact.

Fact. Each Abelian group and each finite p-group, where p is a prime number, is solvable.

With this definition in hand, the hard-working graduate student should also be in a position to prove that
both S3 and S4 are solvable.

Recall that a group G is said to be simple provided it has exactly two normal subgroups. This is equivalent
to saying G is nontrivial and its only normal subgroups are the trivial subgroup and G itself.

A composition series of a group is a normal series in which every factor group is simple. In view of the
Correspondence Theorem, another way to say this is that for any link Gi .Gi+1 in the series there is no
group H properly between Gi and Gi+1 so that Gi .H.Gi+1. In other words, the normal series cannot be
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made longer by inserting additonal groups in the series. The series we devised for finite p-groups was a
composition series since each factor was a cyclic group of prime order and such groups are simple.

It is clear that every normal series for a finite group can be enhanced by the insertion of additional groups
until a composition series is obtained. In particular, every finite group has at least one composition series.

Fact. Let G be a finite group. G is solvable if and only if G has a composition series in which each factor
group is a finite cyclic group of prime order.

Proof. Since every composition series is a normal series and since every cyclic group is Abelian, we see
that the condition about composition series implies that G is solvable.

For the converse, suppose G is solvable. Let

G = G0.G1. · · ·.Gs

witness the solvability of G. Obtain from this series a composition series by inserting additional subgroups
along the series. So a part of this composition series would be

Gi .H1. · · ·.Hk .Gi+1.

Now consider the situation where we have three groups so that K.L.M and we know that K/M is Abelian.
By the Third Isomorphism Theorem we have

(K/M)/(L/M) ∼= K/L.

Since K/M is Abelian and K/L is a homomorphic image of K/M, and every homomorphic image of an
Abelian group is Abelian, we find that K/L is Abelian. We also see that L/M is a subgroup of K/M. So
L/M is also Abelian. This means each time we insert a new subgroup in our normal series we get a longer
normal series for which all the factor groups are still Abelian. This means that the composition series we
ultimately obtain has the property that each of its factor groups is a finite simple Abelian group. But the
hard-working graduate students will have no trouble convincing themselves that the finite simple Abelian
groups are exactly the (cyclic) groups of prime order. Of course many different primes might be associated
in this way with our composition series.

There is another characterization of the notion of solvable group which we will find useful. It involves
the notion of the commutator of two normal subgroups of a group. We start by devising a new two-place
operation on a group. Let G be a group and a,b ∈G . We put [a,b] := a−1b−1ab and call it the commutator
of a and b. Notice that if a and b commute with each other in G, then [a,b] = 1. Also it proves convenient
to know that [a,b]−1 = [b−1ab,b−1], as can be verified by hard-working graduate students with a bit of
calculation.

Now let N and K be normal subgroups of the group G. We let [N,K] denote the subgroup of G that is
generated by the set {[a,b] | a ∈ N and b ∈ K }. We call [N,K] the commutator of N and K.

Fact. Let G be a group with normal subgroups N and K. Then the elements of [N,K] are exactly the ele-
ments of G of the form

[a0,b0][a1,b1] . . . [ak ,bk ]

where k is some natural number and ai ∈ N and bi ∈ K for each i ≤ k.

This Fact just depends on the normality of N and K, and on the fact that H is a subgroup of G, in view
of the description of [a,b]−1 given above. Some crucial properties of the commutator are gathered in the
next Fact. Its proof requires a straightforward pleasant effort from the hard-working graduate students.

Fact. Let G be a group with normal subgroups N and K and subgroup H. Then
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(a) [N,K]/G.

(b) [N,K] ≤ N∩K.

(c) [H,H] ≤ [G,G].

(d) [H/N ,H/N ] = [H,H]/N .

In conclusion (d) above we mean by H/N and [H,H]/N the subgroups of G/N that are the images of H
and of [H,H] respectively under the quotient map. Some care is needed in noting this, because it may well
be that N is neither a subgroup of H nor of [H,H]. We also observe that [H,H] and [H/N ,H/N ] are to be
understood for the commutator in th groups H and H/N respectively.

Let G be a group. The derived group of G is the group G′ := [G,G]. We can iterate this formation of
derived groups by the following recursion.

G(0) := G

G(k+1) := [G(k),G(k)] for all natural numbers k

So G′ = G(1), (G′)′ = G(2), and so on.
Perhaps the next Fact gives more support to the label “commutator”.

Fact. Let G be a group. Then G/[G,G] is Abelian; moreover, if N/G and G/N is Abelian, then [G,G] ≤ N.

Proof. Let a,b ∈G . The cosets a[G,G] and b[G,G] are arbitrary elements of G/[G,G]. To say that they com-
mute is just to assert ab[G,G] = ba[G,G]. But this is evidently the same as asserting [a,b] = (ba)−1(ab) ∈
[G,G]. This assertion is certainly true since we took the elements of the form [a,b] as generators of [G,G].

Now suppose N/G and G/N is Abelian. Let a,b ∈G . So we see that abN = baN . But this means [a,b] ∈ N .
So all the generators of [G,G] belong to N . Since N is a subgroup, this entails that [G,G] ≤ N.

So we see that for an arbitrary group G we have

G = G(0).G(1).G(2). · · ·.G(k).G(k+1). . . .

As far as it goes it is a normal series (and moreover each of the groups is even a normal subgroup of G) and
each factor group is Abelian. Here is our characterization of solvability.

Fact. The group G is solvable if and only if G(n) is the trivial group, for some natural number n.

Proof. In the event that G(n) is trivial, the series

G = G(0).G(1).G(2). · · ·.G(n)

witnesses that G is solvable.
For the converse, suppose that G is solvable and let

G = G0.G1. · · ·.Gn

be a normal series that witnesses the solvability of G. So Gn is trivial and all the factor groups are Abelian.
Consider the first link G.G1. We certainly get G1.[G,G] = G(1). Similarly, at the next link we see G2.[G1,G1].
But we already know G1 .G(1). Since we know the commutator respects the inclusion ordering, we get
[G1,G1].[G(1),G(1)] = G(2). Putting things together, we get G2.G(2). Continuing in this way, we get Gk.G(k)

in general. So at the end we have Gn.G(n). Since Gn is trivial, we find that G(n) is also trivial, as desired.
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Fact. Every subgroup of a solvable group is solvable. Every homomorphic image of a solvable group is
solvable. Let N be a normal subgroup of the group G. G is solvable if and only if both N and G/N are
solvable.

Proof. Let G be a solvable group.
For any normal subgroup N of G we know [G/N ,G/N ] = [G,G]/N . Another way to write this is (G/N )(1) =

G(1)/N . Using this equality, we also see

(G/N)(2) = [(G/N)(1), (G/N)(1)] = [G(1)/N,G(1)/N] = [G(1),G(1)]/N = G(2)/N

Proceeding in this way we find (G/N)(k) = G(k)/N. So if G(n) turns out to be the trivial group, then so will
(G/N)(n). This means that if G is solvable, then so is its homomorphic image G/N.

For any subgroup H of G we know that H(1) = [H,H] ≤ [G,G] = G(1). An easy induction argument shows
that H(n) ≤ G(n) for all natural numbers n. So if G is solvable so must its subgroup H be solvable.

Now suppose that G is an arbitrary group and that N is a normal subgroup such that both N and G/N are
solvable. Pick a natural number so that (G/N )(n) is trivial. Since we now know that (G/N)(n) = G(n)/N it
follows that G(n) ≤ N. But N is solvable, so we know all its subgroups are solvable. This means we can pick
a natural number m so that (G(n))(m) is trivial. But it is easy to discover that (G(n))(m) = G(n+m), which must
be trivial. So G is solvable.

A somewhat different proof could be mounted that involves manipulating the normal series witnessing
the various solvability constraint. Those proofs make heavy use of the isomorphism theorems.

So far this approach to decomposing a group using a normal series has concentrated on existence. We
have seen that at least every finite group has a composition series (where the factor groups are all simple).
For solvable groups we even got the existence of a composition series where the factor groups were cyclic
groups of prime order. What about uniqueness?

Even for finite Abelian groups it easy to find examples where there are several different composition
series. This is something like the situation with direct decompositions—one could get a different decom-
position just by rearranging the direct factors in the direct product and swapping out some factors with
isomorphic copies. So we aim to prove a kind of uniqueness theorem for composition series.

Let G be a group. We will say that two normal series for G

G = G0.G1. · · ·.Gn

G = H0.H1. · · ·.Hm

are equivalent provided n = m and for some permutation σ of {0,1, . . . ,n} we have

Gi /Gi+1
∼= Hσ(i )/Hσ(i )+1 for all i < n

That is, the series are the same length and the sequence of factor groups along one of the normal series
can be rearranged to obtain, within isomorphism, the sequence of factor groups along the other normal
series.

Our aim is to prove

The Jordan-Hölder Theorem. Any composition series of a group is equivalent to any other composition
series.

We will be able to obtain this theorem as an immediate consequence of another theorem.
Let G be a group. We say one normal series for G is a refinement of another if the first can be obtained

from the second by inserting some finite number of additional subgroups along the series. The Jordan-
Hölder Theorem is an immediate consequence of
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Schreier’s Refinement Theorem. Any two normal series for a group have refinements that are equivalent
to each other.

Proof. Let the group G have two normal series

G = A0.A1. · · ·.An

G = B0.B1. · · ·.Bm .

So we know that both An and Bm are the trivial subgroup of G.
We will invoke the Zassenhaus Butterfly Lemma to construct the two refinements we require. From the

coarsest view, that lemma allows us to insert in

A.A∗

B.B∗

two additional groups each so that

A.≥ Au .A` ≥ A∗

B.≥ Bu .B` ≥ B∗

Au/A`
∼= Bu/B`

.

This coarse view is not adequate for our purposes because some of the subgroup relations are not normal.
But the Butterfly Lemma is certainly tempting due to that isomorphism. Fortunately, the actual Butterfly
Lemma carries more detail.

Here is what works. Let
Ci , j := Ai+1(Ai ∩B j ) and Di , j := B j+1(B j ∩Ai )

These are the groups that come up in full detail in the Butterfly Lemma. What the Butterfly Lemma say
about them is

Ci , j .Ci , j+1

Di , j .Di+1, j

Ci , j /Ci , j+1
∼= Di , j /Di+1, j

To understand better what is going on, fix a value of i . Then we see

Ci ,0 = Ai+1(Ai ∩B0) = Ai+1(Ai ∩G) = Ai

Ci ,1 = Ai+1(Ai ∩B1)

...

Ci ,m = Ai+1(Ai ∩Bm) = Ai+1

where the last line comes about since Bm is the trivial subgroup. Moreover, the Butterfly Lemma tells us

Ai = Ci ,0.Ci ,1. · · ·.Ci ,m = Ai+1

In this way, we see that the Ci , j ’s, once they are arranged in the proper order, form a normal series for G
that refines the series of the Ai ’s. The proper order is the lexicographic order on {(i , j ) | i < n and j < m}
given by

(i , j ) ≥ (`,k) ⇔ i ≥ ` or else i = ` and j ≥ k.
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Of course an entirely similar analysis leads us to the conclusion that the Di , j ’s, arranged properly, form a
normal series that refines the series of the B j ’s.

But these two refinements are equivalent since for all i ≤ n and all j ≤ m we have

Ci , j /Ci , j+1
∼= Di , j /Di+1, j .

You should notice that we did not insist that the normal subgroups along a normal series be proper
subgroups. It would be sensible to insist on this since it gives a cleaner connotation to the length of a
series. Then in the proof above one must systematically delete one of the groups when

Ci , j = Ci , j+1 or Di , j = Di+1, j .

Since we know Ci , j /Ci , j+1
∼= Di , j /Di+1, j every deletion from the series of Ci , j ’s must be accompanied by a

deletion from the series of Di , j ’s, and vice versa. So after all the deletions, the resulting refinements will
still have the same length.

The Jordan-Hölder Theorem was proved, in some form, late in the 19th century when Otto Hölder put
the finishing touches on a proof of Camille Jordan.

There are a number of different ways to prove the Jordan-Hölder Theorem. For finite groups, it is possible
to devise a proof by induction of the size of the group. It is also possible to make a proof by induction of
the length of the composition series involved. Otto Schreier’s proof of the Jordan-Hölder Theorem using
the Refinement Theorem was published in 1928. Hölder was still alive but Jordan had died six years ear-
lier. Hans Zassenhaus gave a new proof of Shreier’s Refinement Theorem using his own Butterfly Lemma
in the early 1930’s while he was still a hard-working graduate student under the direction of Emil Artin.
Zassenhaus himself became a prolific mathematician with over 200 papers and 41 PhD students. He died
in 1991.

The theorem has been called the Jordan-Hólder-Schreier Theorem or even the Jordan-Hölder-Schreier-
Zassenhaus Theorem. It attaches to every finite group a sequence of finite simple groups that provides
some structural information about the finite group.

18.3 ADDENDUM: A NOTION RELATED TO SOLVABILITY

It is an easy observation that every finite Abelian group can be decomposed as a direct product of its Sylow
subgroups. In fact one path to the Fundamental Structure Theorem for Finite Abelian Groups starts from
this observation. One could consider the class of all finite groups that can the decomposed as a direct
product of their Sylow subgroups. This proves to be a class that is wider than the class of finite Abelian
groups but narrower than the class of finite solvable groups. Finite groups that are the direct product of
their Sylow subgroups are called nilpotent. Just as the class of solvable groups can be characterized using
the commutator of normal subgroups, so can the class of nilpotent groups.

Let G be a group. The G[n] is defined by the following recursion:

G[0] = G

G[k+1] = [G[k],G] for all natural numbers k.

An easy induction shows the G(k) is always a subgroup of G[k].
The group G is said to be nilpotent provided G[n] is trivial for some natural number n. This definition

works for groups that might not be finite. So it is true that every nilpotent group is solvable, although the
converse fails. The class of nilpotent groups is a proper subclass of the class of solvable groups. It is also
a theorem that a finite group is nilpotent if and only if it is the direct product of its Sylow subgroups. The
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theories of nilpotent and of solvable groups have elaborate developments, exhibiting many parallels and
interconnections.

It was, of course, Galois that first noticed the significance of the class of (finite) solvable groups in his
investigations of the solvability of polynomial equations of degree n by means of radicals.

One of the most notable theorems about solvable groups is

The Feit-Thompson Theorem. Every group of odd order is solvable.

The proof of this one theorem extends to hundreds of pages—longer than this whole account of algebra
for first year graduate students!
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18.4 PROBLEM SET 17

ALGEBRA HOMEWORK, EDITION 17

EIGHTEENTH WEEK

MR. SYLOW DEALS WITH FINITE ABELIAN GROUPS AND OTHER MATTERS

PROBLEM 81.
Prove that if G, H, and K are finite Abelian groups and G×H ∼= G×K, then H ∼= K.

PROBLEM 82.
Prove that every group of order 35 is cyclic.

PROBLEM 83.
Describe, up to isomorphism, all groups of order 1225.

PROBLEM 84.
Let G be a finite Abelian group. Prove that if |G| is not divisible by k2 for any k > 1, then G is cyclic.

PROBLEM 85.
Let p be a prime number. For any finite group G, let B(G) denote the subgroup of G generated by all the
Sylow p-subgroups of G.

(a) Show that B(G) is the unique normal subgroup of G minimal with respect to the property that its
index is not divisible by p.

(b) Let L be a normal subgroup of the finite group G. Show that B(L) is normal in G and that B(L) =B(G)
if [G : L] is not divisible by p.

(c) Now let H be a subgroup of the finite group G with [G : H] = p. If L is the largest normal subgroup of
G contained in H, prove that [H : L] is not divisible by p and deduce that B(H) is normal in G.

PROBLEM 86.
Let G be finite group with an automorphism σ such that σ2 = id and the only element fixed by σ is the
identity of G. Show G is Abelian.
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19
WHERE TO FIND THE ROOTS OF A POLYNOMIAL

A leading motivation for the rest of the semester is the project: to describe all the roots of a given polyno-
mial in one variable with coefficients from some field.

Let F be a field and f (x) ∈ F [x] be a polynomial with coefficients from F . For instance, F might be the
field Q of rational numbers and f (x) might be x2 −2. This polynomial has no roots in Q, but on the other
hand, f (x) is also a polynomial over the field R of real numbers and in this larger field we find two roots
of f (x), namely

p
2 and −p2. After a bit of reflection, observing that Q is countable and R is uncountable,

we see that on the one hand there is quite a gap between Q and R, while on the other hand R is not really
adequately supplied with roots—the polynomial x2 +1, has no roots in R.

Wanting to describe the roots of the polynomials from the ring F[x], we see that we might well consider
fields K that extend F. There is an unlimited supply of these. The principle of parsimony leads us to look for
the ones that are some way or another close to F but still rich enough to allow us to have a full complement
of roots of f (x) or, what is the same, to be able to factor f (x) into a product of polynomials of degree 1.

19.1 ALGEBRAIC EXTENSIONS OF FIELDS

There are two key insights that are the starting point of our efforts. The first is that if F is a subfield of K,
then K can be construed as a vector space over F. This allows us to use one of the most well-understood
and thoroughly developed branches of mathematics, the theory of vector spaces. We might even hope that
the most interesting extension fields K will turn out to be finite dimensional over F. We use [K : F] to denote
the dimension of K as a vector space over F. We also refer to this dimension as the degree of the extension.
It may be an infinite cardinal number.

The second insight is that, when K has a full complement of roots of f (x), then every automorphism of
K that has all the coefficients of f (x) as fixed points must permute the roots of f (x) that are in K. The set
of roots of f (x) is a finite subset of K . So we see emerging a finite subgroup of the concrete group of all
permutations of this set of roots. This allows us to bring in the theory of (finite) groups.

So we see our enterprise as a mixture of ring theory (to understand the rings like F[x] and K[x]), the
theory of fields, the theory of vector spaces, and group theory.

The first step we will take is to lay our hands on the minimal extension K of F that has a complete set of
roots of f (x).

We say that f (x) splits over the field K provided f (x) ∈ K [x] and the irreducible factors of f (x) in K [x] all
have degree 1. We start looking for at least one root.

137
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Kronecker’s Theorem, (1887). Let F be a field and let f (x) ∈ F[x] be irreducible. Then there is a field K
extending F such that f (x) has a root s ∈ K and if L is any field extending F such that f (x) has a root r ∈ L,
then there is an embedding of K into L that fixes each element of F and sends s to t . Moreover, the dimension
of K as a vector space over F is the degree of f (x).

Proof. Because F[x] is a principal ideal domain we know that irreducible and prime elements coincide
and that so do the prime ideals and the maximal ideals. So ( f (x)) is a maximal ideal of F[x]. Consequently,
F[x]/( f (x)) is a field. Essentially, this is the field we desire and the element x/( f (x)) is the root s. A both-
ersome point is that it does not actually extend the field F, but rather has a subfield (with underlying set
equal to {a/( f (x)) | a ∈ F }) easily seen to be isomorphic to F. So one must do some set theoretic surgery,
snipping out the isomorphic copy and stitching in its place the field F itself. The result is the field K.

Now let L be any field extending F that has a root r of f (x). We know that we can map F[x] into K via a
homomorphismΨ that extends the identity map on F and so thatΨ(x) = r . We see thatΨ( f (x)) = f (r ) = 0
since Ψ is a homomorphism and r is a root of f (x) in L. This means that f (x) ∈ kerΨ. On the other hand,
if g (x) ∈ F[x] and g (r ) = 0 in L, then f (x) and g (x) have a common factor x − r in L[x]. So they are not
relatively prime. This means they cannot be relatively prime in F[x] either. Since f (x) is prime in F[x]
we find that f (x) | g (x). Hence every polynomial belonging to the kernel of Ψ is a multiple of f (x). So
( f (x)) = kerΨ. This means, according to the Homomorphism Theorem, that F[x]/( f (x)) ∼= L′ where L′ is
the image of F[x] under Ψ. But this means that K ∼= L′ (so L′ is actually a field) and we see that K embeds
into L by a map that fixes each element of F and sends s to r .

Finally, suppose s is a root of f (x) in K and suppose that n is the degree of f (x). Let Φ be a homo-
morphism from F[x] onto K that fixes every element of F and maps x to s. So every element of K is the
image of some h(x) ∈ F [x] under Φ. But in F[x] we can pick (uniquely) polynomials q(x) and r (x) so that
h(x) = q(x) f (x)+ r (x) such that either r (x) is the zero polynomial or else the degree of r (x) is strictly less
than n, the degree of f (x). So we find h(s) = q(s) f (s)+ r (s) = r (s). But r (s) is a linear combination with
scalars from F of {1, s, . . . , sn−1}. So the latter set spans K as a vector space over F. But our contention is that
this set is also linearly independent. Were it otherwise, we would have a nontrivial linear combination of
these that would be 0. This would give us a nonzero polynomial g (x) in F[x] that has s as a root. So we
would see that f (x) and g (x) are not relatively prime. But f (x) is prime (in F[x]) and so f (x) | g (x) in F[x],
which is impossible since g (x) is a nonzero polynomial of degree strictly less than the degree of f (x). So
the degree of f (x) is the dimension of K as a vector space of F.

There is a bit more mileage to be had from the proof of Kronecker’s Theorem. Let K be a field extending
the field F. We say that an element s ∈ K is algebraic over F provided s is a root of some polynomial of
positive degree from F[x]. Of course, since every such polynomial can be factored into irreducible poly-
nomials, and since K is an integral domain, we must have that every algebraic element of K actually is
the root on an irreducible monic polynomial from F[x]. This monic irreducible polynomial is called the
minimal polynomial of s. An element of K that is not algebraic over F is said to be transcendental over
F. So here are some corollaries of our proof of Kronecker’s Theorem.

Corollary 19.1.1. Let the field K extend the field F and let s ∈ K be algebraic over F. Then the smallest
subring of K that includes F ∪ {s} is, in fact, a subfield of K.

In general, when K is a field extending the field F and s ∈ K , we use the notation F[s] for the subring of
K generated by F ∪ {s} and the notation F(s) for the subfield of K generated by F ∪ {s}. The corollary above
says that if s is algebraic over F, then F(s) = F[s].

Corollary 19.1.2. Let the field K extend the field F and let s ∈ K be algebraic over F. Then every element of
F[s] is algebraic of F.
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In general, we say that K is an algebraic extension of F provided every element of K is a root of some
polynomial in F[x] that has positive degree. So this corollary asserts that if s ∈ K is algebraic over F,
then F[s] is an algebraic extension of F. If K is not an algebraic extension of F we call it a transcendental
extension of F.

Now the field K given to us in Kronecker’s Theorem provides us with an essentially unique extension of
F that contains at least one root r of our irreducible polynomial f (x) ∈ F[x]. So in K[x] we can factor f (x)
at least a little bit: there is q(x) ∈ K[x] so that f (x) = (x − r )q(x). But we are not assured that q(x), which
still might have large degree, can be factored any further. So while K has at least one root of f (x) it may not
have a full complements of roots. Of course, the remedy is obvious. The degree of q(x) is smaller than the
degree of f (x), so first we factor q(x) into irreducibles in K[x] and then we invoke Kronecker on each of
these, doing this again and again until some field L is reached in which f (x) splits. While each step in this
envisioned construction yields an essentially unique way to get to the next field extension, there are lots
of arbitrary choices that have to be made along the way. The question of which irreducible polynomial to
address next can be resolved at any stage in a number of ways. So maybe there are lots of different fields
like L in which f (x) splits, with any one of them as minimal as it can be. Fortunately, the whole business
works out better than that.

Let F be a field and let S be a collection of of polynomials of positive degree, all drawn from F[x]. A field
K that extends F is said to be a splitting field of S over F provided

• in K[x] every polynomial in S factors as a product of polynomials of degree 1, and

• K is generated by F ∪ {r | r ∈ K and r is a root of some polynomial in S}.

We say that K is a splitting field of f (x) over F instead of that K is a splitting field of { f (x)} over F. Then
the step-by-step, recursive extension of Kronecker’s Theorem outlined above gives us

Corollary 19.1.3. Let F be a field and f (x) be a polynomial of positive degree that belongs to F [x]. Then f (x)
has a splitting field over F.

We would like to see that the splitting field is essentially unique, that it is an algebraic extension of F, and
that it is finite dimensional as a vector space over F (and even more, we would like to lay hands on this
dimension).

The Dimension Formula. Let the field L be an extension of the field K that is in turn an extension of the
field F. Then [L : F] = [L : K][K : F].

Proof. Let B be a basis for the vector space K over the field F and let C be a basis for the vector space L over
the field K. Put

BC := {bc | b ∈ B and c ∈C }.

Our contention is that the set BC is a basis for the vector space L over the field F and that |BC | = |B ||C |.
So we must prove that BC spans L (with scalars chosen from F ), that BC is linearly independent, and that
there is a one-to-one correspondence between B ×C and BC .

Contention. BC spans L as a vector space over F.

Let w ∈ L. Since C spans L over K, pick c0,c1, . . . ,cn−1 ∈C and d0,d1, . . . ,dn−1 ∈ K so that

w = ∑
i<n

di ci .

Now consider any i < n. We have di ∈ K . Since B spans K over F, pick bi ,0,bi ,1, . . . .bi ,mi−1 ∈ B and
ai ,0, ai ,, . . . , ai ,mi−1 ∈ F so that

di =
∑

j<mi

ai , j bi , j .
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Putting these two pieces together, we get

w = ∑
i<n

di ci =
∑
i<n

( ∑
j<mi

ai , j bi , j

)
ci .

In this way, we see
w = ∑

i<n, j<mi

ai , j (bi , j ci ),

which is a linear combination of elements of BC using scalars from F .

Contention. The set BC is a linearly independent subset of the vector space L over the field F.

Let us suppose that a0, a1, . . . , an−1 ∈ F , b0,b1, . . . ,bn−1 ∈ B , and c0,c1, . . . ,cn−1 ∈ C have been chosen so
that ∑

i<n
ai (bi ci ) = 0

and that b0c0,b1c1, . . . ,bn−1cn−1 are distinct. Now perhaps not all the ci ’s are distinct. However, by rear-
ranging the indices we may suppose that c0, . . . ,c`−1 are all distinct but that any c with a later index is equal
to one of these ` distinct c’s. For each k < `we put Ik = {i | ci = ck }. Then we can reorganize the sum above
as

0 = ∑
i∈I0

(ai bi )c0 +
∑

i∈I1

(ai bi )c1 +·· ·+ ∑
i∈I`−1

(ai bi )c`−1

=
( ∑

i∈I0

ai bi

)
c0 +

( ∑
i∈I1

ai bi

)
c1 +·· ·+

( ∑
i∈I`−1

ai bi

)
c`−1.

Because C is linearly independent (over K) and because c0, . . . ,c`−1 are distinct, we find, for each k < `, that

0 = ∑
i∈Ik

ai bi .

Now suppose i , j ∈ Ik and i 6= j . So we know that bi ci 6= b j c j but also that ci = c j = ck 6= 0, with the last 6=
following because 0 cannot be in any linearly independent set like C . So we see that bi ci 6= b j ci and ci 6= 0.
Dividing away the ci , we conclude that bi 6= b j . This means that the bi ’s occurring in 0 =∑

i∈Ik
ai bi are all

distinct. Since B is linearly independent (over F) we find that ai = 0 for all i ∈ Ik and for all k < `. This
means that ai = 0 for all i < n, and the set BC is linearly independent, as desired.

Contention. The map from B ×C to BC that sends (b,c) to bc for all (b,c) ∈ B ×C is a one-to-one corre-
spondence.

According to the definition of BC , this map is onto BC . So it remains to show that it is one-to-one. So pick
b0,b1 ∈ B and c0,c1 ∈C so that b0c0 = b1c1. We need to show that b0 = b1 and c0 = c1. We note that none of
b0,b1,c0, and c1 can be 0 since 0 belongs to no linearly independent set. There are two cases: either c0 = c1

or else c0 6= c1. In the first case we can cancel the c’s from b0c0 = b1c1 to obtain as well that b0 = b1, our
desire. In the second case we see that b0c0 −b1c1 = 0. Since in this case c0 and c1 are distinct and linearly
independent, we find that b0 =−b1 = 0, which we have already observed is impossible. So we must reject
the second case.

This establishes the Dimension Formula.

Notice that since the product on any two infinite cardinals is always an infinite cardinal (in fact, the larger
of the two), we see that in the Dimension Formula, [L : F] is infinite if and only if at least one of [L : K] and
[K : F] is infinite.

The following fact will be useful in our ensuing work.



19.1 Algebraic Extensions of Fields 141

Fact. Let the field K extend the field F and suppose that [K : F] is finite. Then K is an algebraic extension of
F.

Proof. Let s ∈ K . Since K is a finite dimensional vector space over F it cannot happen that all the elements
on the list below are distinct and linearly independent:

1, s, s2, s3, s4, . . . .

This means that there must be elements a0, a1, . . . , an ∈ F that are not all 0 such that

a0 +a1s1 +a2s2 +·· ·+an sn = 0

It does no harm to suppose that an 6= 0. Notice that n 6= 0. So we see that s is a root of the polynomial
a0 +a1x +a2x2 +·· ·+an xn ∈ F [x] of positive degree. Therefore s is algebraic over F.

Extensions like the one in this Fact are called finite extensions. Another way to frame the Fact is “Finite
extensions are algebraic extensions”.

The Algebraic Extension Theorem. Let the field L be an algebraic extension of the field K and let K be an
algebraic extension of the field F. Then L is an algebraic extension of F.

Proof. Let s ∈ L. Since L is an algebraic extension of K, we pick c0,c1, . . . ,cn ∈ K with n > 0 and cn 6= 0 such
that s is a root of c0 + c1x +·· ·+cn xn . Now let

K0 = F[c0]

K1 = K0[c1]

...

Kn = Kn−1[cn].

Using the Dimension Formula repeatedly we find

[Kn : F] = [Kn : Kn−1][Kn−1 : Kn−2] · · · [K1 : K0].

But we know each of the dimensions on the right is finite. So [Kn : F] is finite. But s is a root of a polynomial
in Kn[x]. So [Kn[s] : Kn] is finite. Invoking the Dimension Formula one more time yields that [Kn[s] : F] is
finite. Since s ∈ Kn[s], we see that s is algebraic over F, which is just what we want.

There is one more thing to do. Tackle the uniqueness of splitting fields.

The Basic Fact about Extending Isomorphisms. Let F and F∗ be fields. Let Φ be an isomorphism from F
onto F∗. Let L be a field extending F and let L∗ be a field extending F∗. Let s ∈ L be algebraic over F with
minimal polynomial f (x). Then Φ can be extended to an embedding of F[s] into L∗ if and only if f ∗(x) has
a root in L∗, in which case the number of distinct extensions of Φ is the same as the number of distinct roots
of f ∗(x) in L∗. (Here f ∗(x) ∈ F∗[x] is obtained from f (x) by applying Φ to each of its coefficients.)

Proof. Suppose first that Φ has an extension Ψ. Applying Ψ to the equation f (r ) = 0, which is true in L,
gives f ∗(Ψ(s)) = 0, which is true in L∗. Hence Ψ(s) ∈ L∗ is a root of f ∗(x).

On the other hand, let r be any root of f ∗(x) that belongs to L∗. We apply Kronecker’s Theorem twice. So
we have isomorphisms

Λ : F[x]/( f (x))�� F[s] withΛ(x/( f (x))) = s

Θ : F∗[x]/( f ∗(x))�� F∗[r ] withΘ(x/( f ∗(x))) = r.
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But the isomorphism Φ from F to F∗ induces an isomorphism Π : F[x]/( f (x))�� F∗[x]/( f ∗(x)). Putting
things together we get an isomorphism Θ ◦Π ◦Λ−1 from F[s] onto F[r ] that sends s to r and extends Φ.
Since every embedding from F[s] into L∗ that extends Φ is determined by what image it gives to s, we see
that there are precisely as many extensions ofΦ as there are distinct roots of f ∗(x) in L∗.

Existence and Uniqueness of Splitting Fields. Let F be a field and f (x) ∈ F [x] be a polynomial of degree
n > 0. Then there is a field E extending F such that

(a) E is a splitting field of f (x) over F,

(b) [E : F] ≤ n!, and

Moreover, suppose that E and E∗ are splitting fields of f (x) over F. Then

(c) E and E∗ are isomorphic via an isomorphism that fixes each element of F , and

(d) The number of isomorphisms from E onto E∗ that fix each element of F is no greater than [E : F] and
it is equal to [E : F] if f (x) has n distinct roots in E.

Proof. Let us prove the existence part by induction of n. The base step is that f (x) = ax +b where a,b ∈ F
and a 6= 0. So b

a ∈ F is a root of f (x). So we take E = F.
For the induction step we take f (x) to be a polynomial of degree k+1 and we assume the (existence parts

of) the theorem over arbitrary fields for n < k+1. Let p(x) ∈ F [x] be an irreducible factor of f (x). According
to Kronecker’s Theorem there is an extension E of F and an s ∈ K so that s is a root of f (x). So in F[s] we
can factor f (x) = (x − s)g (x) where g (x) ∈ F [s][x] has degree k. Using the induction hypothesis we obtain
a splitting field E of g (x) over F[s] such that [E : F[s]] ≤ k !.

In E we see that f (x) factors into a product of polynomials of degree one and that the roots of f (x) in E
consist of the element s and the roots of g (x). Because E is a splitting field of g (x) over F[s] we know that
it is generated by F [s]∪R, where R is the set of all roots of g (x) in E . But F[s] is generated by F ∪ {s}. So
F ∪ {s}∪R generates E. In this way we see that E is a splitting field of f (x) over F. So condition (a) is met in
the inductive step.

We know, by Kronecker, that [F[s] : F] is the degree of the irreducible factor p(x) of f (x). So the degree of
p(x) ≤ k +1, which is the degree of f (x). By the Dimension Formula, we see

[E : F] = [E : F[s]][F[s] : F]

≤ k !(k +1) = (k +1)!

So condition (b) is met in the inductive step.
For the rest, it proves more convenient to prove something a bit stronger.
Let F∗ be a field and Φ : F�� F∗. Let f ∗(x) be the polynomial over F∗ obtained from f (x) by applying Φ

to each coefficient.
Now suppose E and E∗ are splitting fields of f (x) over F and of f ∗(x) over F∗ respectively. Instead of

considering maps that fix each element of F (i.e. those extending the identity map on F ) we consider maps
extendingΦ.

We proceed by induction on [E : F].
For the base step, we will have F = E and f (x) factors into polynomials of degree 1 over F. So all the roots

of f (x) lie in F . Likewise for f ∗(x) ∈ F∗[x]. Since the roots of f (x) together with F itself generate E and

likewise for f ∗(x) and E∗, we see that E = F
Φ
�� F∗ = E∗ and there is only one isomorphism between E and

E∗ that extends Φ, namely the map Φ itself. So the appropriately modifications of conditions (c) and (d)
both hold in the base step.
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Now we turn to the inductive step, where we have [E : F] > 1. So there must be a root r ∈ E that does
not belong to F . Let p(x) be the minimal polynomial of r0. The degree of p(x) must be at least 2. Since
we see that p(x) is a factor of f (x) so the corresponding p∗(x) is a factor of f ∗(x) and p∗(x) must split in
E∗. Let us say that it has m > 1 roots in E∗. Then by our basic fact about extending isomorphisms there
are exactly m distinct extensions of Φ to embeddings of F[r ] into E∗. Consider one of them Φ′ and let
s = Φ′(r ). Now [E : F] = [E : F[r ]][F[r ] : F] since [F[r ] : F] is the degree of p(x), which is at least 2, we see
that [F : F[r ]] < [E : F]. But E is a splitting field of f (x) over F[r ] and E∗ is a splitting field of f ∗(x) over
F∗[s]]. So we can appeal to the induction hypothesis to get at least one extension of Φ′ to an isomorphism
between E and E∗. Evidently, such an isomorphism also extends Φ and we obtain, in the inductive step,
the appropriate modification of condition (c).

The induction hypothesis also tells us that the number of such extensions of Φ′ is not greater than [E :
F[r ]] and is equal to [E : F[r ]] if the number of distinct roots of f (x) in E coincides with the degree of f (x).
Recall that Φ′ was one of the m extensions of Φ that embed F[r ] into E∗. So the number of extensions
of Φ to an isomorphism between E and E∗ is no greater than the product of [E : F[r ]] and m. But m,
the number of distinct roots of p∗(x) in E∗, can be no greater than the degree of p(x), which we know is
[F[r ] : F]. So [E : F] = [E : F[r ]][F[r ] : F] is an upper bound on the number of ways Φ can be extended to an
isomorphism between E and E∗. Last suppose that f (x) has distinct roots. Then so must p(x). This means
that m = [F[r ] : F]. In this case we know there are precisely [F[r ] : F] ways to extend Φ to an embedding of
F[r ] into E∗ and, for each such extension, there are precisely [E : F[r ]] ways to extend it to an isomorphism
between E and E∗. So the number of extensions of Φ to an isomorphism from E onto E∗ is precisely [E : F]
by the Dimension Formula. So condition (d) holds in the inductive step.

The proof is complete.

19.2 TRANSCENDENTAL EXTENSIONS OF FIELDS

While our main effort is centered on describing the roots of polynomials (and so describing the extensions
of fields by adjoining algebraic elements), it is useful to give some consideration to forming field extensions
by adjoining transcendental elements. Lecture 29 is devoted to the Lindemann-Weierstrass Theorem. One
consequence of that theorem is that the real number π is transcendental over the field Q of rational num-
bers. What does the subfieldQ(π) of the field of real numbers look like? Well, it is the subfield generated by
Q∪ {π}. So for each polynomial f (x) ∈Q[x], the number f (π) belongs to Q(π). Moreover, so long as f (x) is
not the zero polynomial, 1

f (π) will also belong toQ(π), since then f (π) 6= 0 because π is transcendental and
cannot be a root of f (x). Consider the set{

f (π)

g (π)

∣∣∣∣ f (x), g (x) ∈Q[x] with g (x) not the zero polynomial

}
.

I leave it in the capable hands of the graduate students to check that this set of real numbers is actually a
subfield of R—so it must beQ(π). But notice that the set displayed above is very similar to{

f (x)

g (x)

∣∣∣∣ f (x), g (x) ∈Q[x] with g (x) not the zero polynomial

}
.

You can see that this is just the field of fractions of the integral domainQ[x]. It should come as no surprise
(and as no real bother to check) that the evalutation map

f (x)

g (x)
7→ f (π)

g (π)

is a homomorphism from the field of fractions onto Q(π). Since fields are simple, this map must actually
be an isomorphism. Now the only feature of π that was important in the discussion was that π is transcen-
dental over Q. It follows that if a,b ∈ R so that a and b are transcendental over Q, then Q(a) and Q(b) are
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isomorphic via an isomorphism that fixes each element of Q. But no special properties of Q or of R came
into the discussion above either.

This means we can have a version of the Basic Fact about Extending Isomorphisms that applies to tran-
scendental elements. Here it is

The Basic Fact about Extending Isomorphisms, Transcendental Version. Let F and F∗ be fields. Let Φ be
an isomorphism from F onto F∗. Let L be a field extending F and let L∗ be a field extending F∗. Let s ∈ L be
transcendental over F and let s∗ ∈ L∗ be transcendental over F∗. ThenΦ can be extended to an isomorphism
of F(s) onto F∗(s∗) that sends s to s∗.
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ALGEBRAICALLY CLOSED FIELDS

A field F is said to be algebraically closed provided irreducible polynomials in F[x] coincide with the poly-
nomials of degree 1. This is the same as saying that every polynomial in F[x] of positive degree has a root
in F. It is also evidently equivalent to the requirement that F has no proper algebraic extensions.

Neither the fieldQ of rational numbers nor the field R of real numbers is algebraically closed. It is a non-
trivial fact (which we will prove later in the semester) that the field C of complex numbers is algebraically
closed.

20.1 ALGEBRAIC CLOSURES

An extension K of the field F is an algebraic closure of F provided K is an algebraically closed algebraic
extension of F.

Consider how we might arrive at an algebraic closure of the field Q of rational numbers. We might begin
by making a list of all the polynomials of positive degree in Q[x]. This list is countably infinite and it
takes a bit of work to arrange these polynomials like the natural numbers are arranged. But image we
have made this list: f0(x), f1(x), f2(x), . . . . Now we could proceed by letting F0 be the splitting field of f0(x)
over Q. Next, we let F1 be the splitting field of f1(x) over F0. We continue in this way to split, one after
another, all the polynomials on our list. We get in this way a chain of fields, each extending the one before.
Fearlessly, we form the union of this chain of fields to arrive at K0. A little thought shows us that K0 is
an algebraic extension of Q, that it is generated over Q by the roots of all those polynomials, and that all
those polynomials split in K0. Unfortunately, along the way we have added a lot of new elements and
these new elements can be coefficients of polynomials in K0[x] that haven’t yet been addressed. So now
we must list all of these polynomials, build another infinite chain of splitting fields, and finally arrive at
the union K1. Now many more polynomials have been split but many more new elements have also been
introduced. But we continue anyhow to construct K2, then K3, . . . . Finally, we take one last union of this
chain to obtain the field A. We would be able to show that A is an algebraically closed algebraic extension
ofQ and even thatA is countably infinite. The idea behind this proof sketch could be made to work starting
with any field (although the countability of the algebraic closure has to be modified if the field we start with
is uncountable). In general, this construction requires making a lot of choices along the way (particularly,
choices about how to order the polynomials at each step).

We can avoid the complexity of this construction by invoking Zorn’s Lemma.

145
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The Existence Theorem for Algebraic Closures. Every field has an algebraic closure.

Proof. The basic idea is that we will take F to be the collection of all algebraic extensions of the given
field F. Using Zorn’s Lemma we will extract a maximal member of F that will turn out to be an algebraic
extension of F that is algebraically closed. There is one stumbling block to this scheme: the collection F

turns out to be too large and wild to be a set.
Let F be a field. Let U be an uncountably infinite set of cardinality properly larger than the cardinality of

F so that F ⊆U . Take F to be the collection of all algebraic extensions K of F so that K ⊆U .
To invoke Zorn’s Lemma, consider any nonempty chain C⊆ F. We contend C has an upper bound in F.

Indeed, let L =⋃
{K | K ∈C}. Of course 0,1 ∈ L. We impose + and · on L in the natural way: for a,b ∈ L, using

the fact that C is a chain, pick K ∈ C so that a,b ∈ K . Take a +b and a ·b in L just as they are understood
in K. (The hard-working graduate students should confirm that the particular K chosen works no bad
idiosyncratic influence here.) This, of course, is just another case of the union of a chain of algebraic
entities resulting in another entity of the same kind. It is straightforward to provide the details showing
that L is a field that extends F and of course L ⊆U . It is also clear the L is an upper bound of C. To conclude
that L ∈ F, we need to show that L is also an algebraic extension of F. But this is clear: let a ∈ L and pick
K ∈ C⊆F so that a ∈ K . Since K ∈F it is an algebraic extension of F. So a is a root of a polynomial in F[x].
That is, a is algebraic over F, as desired.

So Zorn’s Lemma provides us with a field M that is a maximal element ofF. In particular, M is an algebraic
extension of F. Now the idea is to take any irreducible polynomial p(x) ∈ M[x]. Applying Kronecker’s
Theorem, we obtain an algebraic extension M[r ] of M so that r is a root of p(x). We know that an algebraic
extension of M must be an algebraic extension of F, since M is an algebraic extension of F. Were we able
to appeal to the maximality of M, we would conclude that M = M [r ], so that r ∈ M and the arbitrary
irreducible polynomial p(x) has a root in M. Thus M would be algebraically closed.

The point of difficulty is that M [r ] might not be contained in U .
This would present no trouble if there were enough room in U \ M to fit in a copy of M [r ] \ M . So what is

the size of M \ M [r ]? Well, we know that M[r ] is a vector space over M with dimension equal to the degree
d of the minimal polynomial of r . So, as with any finite dimensional vector space, we find |M [r ]| = |M |d .
So we see that |M [r ] \ M | ≤ |M [r ]| = |M |d . We could argue (maybe the curious graduate student will do it)
that M must be infinite. We take κ = |M | if M is infinite (as it is) and otherwise take κ to be the smallest
infinite cardinal (namely |N|). One useful fact from the arithmetic of infinite cardinals is that κ ·κ= κ. So a
touch of induction shows that |M [r ] \ M | ≤ κ.

How big is |U \ M |? Every element of M is a root of some irreducible polynomial in F[x] and each such
polynomial has only finitely many roots. How many polynomials are there? The zero polynomial together
with the polynomials of degree 0 make up F . So |F | = |F |1 is an upper bound on this collection. The
polynomials of degree 1 each have two coefficients. So |F | · |F | = |F |2 is an upper bound on the number of
these polynomials. In general, |F |d bounds the number of polynomials of degree d . Now each polynomial
of degree d can have at most d distinct roots in M . Altogether, we set that∑

1≤d<ω
d |F |d

is an upper bound on the number of elements of M . Let µ= |F | if F is infinite and let µ be the least infinite
cardinal ω otherwise. Then ∑

1≤d<ω
d |F |d ≤ ∑

1≤d<ω
dµd = ∑

1≤d<ω
µ≤ω ·µ=µ.

Our choice of the size of U at the beginning of the proof ensures that |U | >µ and hence that

|U \ M | = |U | >µ≥ κ≥ |M [r ] \ M |.



20.1 Algebraic Closures 147

This means that there is enough room left over in U , after M is in hand, to construct a copy of M[r ].
Now we can really appeal to the maximality of M to complete the proof.

The Uniqueness Theorem for Algebraic Closures.

The Basic Fact about Extending Isomorphisms. Let F and F∗ be fields. Let Φ be an isomorphism from F
onto F∗. Let L be a field extending F and let L∗ be a field extending F∗. Let s ∈ L be algebraic over F with
minimal polynomial f (x). Then Φ can be extended to an embedding of F[s] into L∗ if and only if f ∗(x) has
a root in L∗, in which case the number of distinct extensions of Φ is the same as the number of distinct roots
of f ∗(x) in L∗. (Here f ∗(x) ∈ F ∗ [x] is obtained from f (x) by applying Φ to each of its coefficients.)

Let F be a field and let A and K be algebraic extensions of F which are algebraically closed. Then there is
an isomorphism from A onto K which fixes each element of F.

Proof. Let I be the set of all isomorphisms with domains which are subfields of A that extend F, whose
images are subfields of K that extend F, and which fix every element of F.

Recalling that each function is a set of ordered pairs, we see that I is partially ordered by ⊆. It is easy to
see that this ordering is the same as the ordering by extension of functions.

To invoke Zorn’s Lemma, we need to see that any chain C in I has an upper bound. If C is empty, then the
identity function of F is an upper bound of C and it belongs to I. Consider the case when C is not empty.
LetΦ=⋃

C.

Claim. Φ is a function.

Proof. Suppose (a,b), (a,c) ∈ Φ. Pick ϕ,ψ ∈ C so that (a,b) ∈ ϕ and (a,c) ∈ ψ. Since C is a chain, either
ϕ ⊆ ψ or ψ ⊆ ϕ. Without loss of generality, let us suppose that ψ ⊆ ϕ. Then (a,b), (a,c) ∈ ϕ. But ϕ is a
function, so b = c. Consequently, Φ is a function.

Claim. The domain ofΦ is a subfield of A which extends F.

Proof. A routine argument shows that domΦ = ⋃
{domϕ | ϕ ∈ C}. Since C is not empty and F ⊆ domϕ for

each ϕ ∈C, we see that F ⊆ domΦ. Let a,b ∈ domΦ. As above, pick ϕ ∈C so that a,b ∈ domϕ. Since domϕ

is a subfield of A, we see that a+b, ab ∈ domϕ⊆ domΦ and also that a−1 ∈ domΦ if a 6= 0. This means that
domΦ is a subfield of A.

Claim. Φ is a homomorphism.

Proof. Let a,b ∈ domΦ. Pickϕ,ψ ∈C so that a ∈ domϕ and b ∈ domψ. As above, without loss of generality
we suppose that a,b ∈ domϕ. Now ϕ is a homomorphism, so (a +b,ϕ(a)+ϕ(b)) and (ab,ϕ(a)ϕ(b)) both
belong to ϕ, as do (a,ϕ(a)) and (b,ϕ(b)). But ϕ⊆Φ. So those four ordered pairs belong to the function Φ.
Translated into usual usage we have

Φ(a +b) =ϕ(a +b) =ϕ(a)+ϕ(b) =Φ(a)+Φ(b)

Φ(ab) =ϕ(ab) =ϕ(a)ϕ(b) =Φ(a)Φ(b).

We see, even more easily, that Φ(0) = 0 and Φ(1) = 1. So Φ is a homomorphism.

Claim. Φ fixes each element of F.

Proof. This is too easy to prove.
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Since Φ is a homomorphism from one field into another and it fixes each element of the subfield F, we
see it cannot collapse everything to one value. So it must be one-to-one (after all, fields are simple). So Φ
is an isomorphism. All this, taken together, means that Φ ∈ I. So Φ is an upper bound of C as desired.

Invoking Zorn’s Lemma, we see that I must have a maximal member. Let Ψ be such a maximal member.
It remains to show that A is the domain ofΨ and that K is the image ofΨ.

The field A is an algebraic extension of domΨ, because any element of A is a root of some polynomial of
positive degree with coefficients in F ⊆ domΨ. Let u ∈ A. Let p(x) ∈ domΨ[x] be an irreducible polynomial
with root u. Say p(x) = a0+a1x+·· ·+an xn with an 6= 0. Then the polynomialΨ(a0)+Ψ(a1)x+·· ·+Ψ(an)xn

is irreducible over the field that is the image ofΨ. Denote the image ofΨ by B. But K is algebraically closed,
so this polynomial must have a root v in K. Consider the possibility that the degree of p(x) is bigger than
1. In that event, u ∉ domΨ and v ∉ B. Then we can extendΨ to an isomorphism from domΨ[u] onto B[v].
This extension also belongs to I. In this way the maximality of Ψ is violated. So p(x) must have degree 1.
But this entails that u ∈ domΨ. Since u was an arbitrary element of A, we see that A = domΨ.

It remains to see that the image B of Ψ is K. Since we have seen, by this point, that B is isomorphic to
A, and we know that A is algebraically closed, we conclude that B is also algebraically closed. Now K is an
algebraic extension of B. But algebraically closed fields cannot have proper algebraic extensions. So K is
not a proper extension of B. This means B = K, concluding our proof.

In one of the problem sets you will be asked to prove that no algebraically closed field can be finite. In
the proof of existence of algebraic closure we saw that the algebraic closure of a finite field in countably
infinite. For any infinite field, our argument shows that the algebraic closure is the same cardinality as the
original field. So the algebraic closure of the field of rational numbers is countably infinite.

The field of complex numbers turns out to be algebraically closed, a fact customarily referred to as the
Fundamental Theorem of Algebra. Proofs of this fact were offered in the 18th century, notably by Euler,
Lagrange, and Laplace. These proofs all had gaps. Roughly speaking, these gaps are filled by Kronecker’s
Theorem. In his 1799 doctoral dissertation, Gauss devoted a lot of space to picking out the flaws in these
proofs, and then supplied a flawed proof of his own. (This proof by Gauss had an ingenious geometric
turn—the gap was finally filled by Ostrowski in 1920). The first complete proof was given in 1806 by Argand.
Gauss later gave two further proofs. In Lecture 27 you will find a proof due to Emil Artin and Otto Schreier
from 1927.

The Fundamental Theorem of Algebra no longer plays a fundamental role in algebra. At some level, it
is basically an analytical rather than an algebraic theorem, although we will give toward the end of these
lectures a largely algebraic account. The quickest modern proofs appeal to theorems in complex analysis,
for example to Liouville’s Theorem.

As a consequence, the algebraic closure of the rationals can be construed as a subfield of the complex
numbers.

20.2 ON THE UNIQUENESS OF UNCOUNTABLE ALGEBRAICALLY CLOSED FIELDS

Two algebraically closed fields might differ in some obvious way. They might have different characteristics.
They might have different cardinalities: the algebraic closure of the rationals is countable, whereas the
field of complex numbers is an algebraically closed field that is uncountable. Getting a bit more subtle,
let A be the algebraic closure of the rationals, construed as a subfield of C. The transcendental extension
A(π) is again countable. Let B be the algebraic closure of A(π). So A and B will be countable algebraically
closed fields of characteristic 0. But the are not isomorphic. We could go on to extend B in a similar way,
to eventually obtain an increasing tower of field extensions, each countable and each algebraically closed
and no two of them would be isomorphic. It is a striking discovery made by Ernst Steinitz in 1910 that this
is basically the whole story. Here is one part of his discovery.
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The Steinitz’s Theorem on Isomorphisms between Algebraically Closed Fields. Let F,A,E and B be al-
gebraically closed fields so that F is a subfield of A and E is a subfield of B. Further suppose that Φ is an
isomorphism from F onto E. If A and B have the same cardinality κ and κ is larger than the cardinality of
F, then there is an isomorphism Φ∗ from A onto B that extends Φ. Thus, any two uncountable algebraically
closed fields of the same characteristic and the same cardinality are isomorphic.

Proof. I would like to emulate the proof of the uniqueness of the algebraic closure and employ Zorn’s
Lemma. However, the situation at hand is a bit more delicate and Zorn’s Lemma seems too blunt an in-
strument. Instead, the desired isomorphism is built in stages. The proof itself requires a very modest
understanding of cardinal and ordinals.

To start, let κ be the common cardinality of A and B. The first little bit of knowledge about cardinals and
ordinals is that κ itself is an ordinal and consists of the set of all ordinals of cardinality less than κ. Thus κ
itself is well-ordered and each of its proper initial segments has cardinality smaller than κ. So we have

κ= {α |α< κ}.

We use κ to enumerate both A and B . So A = {aα |α ∈ κ} and B = {bα |α ∈ κ}. It does no harm to suppose
that a0 and b0 are the zero’s in their respective fields.

For any set X , we use |X | to denote the cardinality of X . The addition of cardinals is just the cardinality
of there disjoint union. So |X |+ |Y | is just the maximum of |X | and |Y |, provided at least one of X and Y is
infinite. The product of two cardinals is just the cardinality of their direct product. That is |X ||Y | := |X ×Y |.
In case at least one of these sets is infinite, it is true that |X ||Y | is the maximum of |X | and |Y |. This fact is
somewhat subtle—its proof lies outside the scope of this book.

The construction here has a stage for each ordinal α ∈ κ. At Stage α we will have in hand for each earlier
Stage β:

(a) two algebraically closed subfields Aβ of A and Bβ of B, so that for each ordinal γ< β, Aβ extends Aγ
and Bβ extends Bγ;

(b) an isomorphism Φβ between Aβ and Bβ that extends all earlier isomorphisms in the construction;

(c) the common cardinality of Aβ and Bβ will be no more than |β|+ |F |;
(d) for each β<α we will have that aβ ∈ Aβ and bβ ∈ Bβ.

The constraint (c) concerning cardinalities is perhaps obscure, but it ensures that the construction at
Stage α can be carried out. The task at Stage α is to produce Aα and Bα and an isomorphism Φα between
them to keep the construction going by fulfilling for α all the attributes of the construction attributed to β
above.

We take A0 = F and B0 = E in A and Φ0 =Φ. In this way, Stage 0 of our construction is completed.
To finish describing the construction by stages we need another little bit of knowledge about ordinals and

cardinals. Ordinals (which are representatives up to isomorphism of well-orderings) come in two kinds:
successor ordinals and limit ordinals. Successor ordinals are those that have an immediate predecessor
(and they represent those well-orderings with a largest element). Any other kind of ordinal is a limit or-
dinal. The natural numbers coincide with the finite ordinals. The natural number 0 is a limit ordinal and
the other natural numbers are all successor ordinals. The whole set of natural numbers is the next ordinal
after all the finite ordinals and it is a limit ordinal.

There are two kinds of stages, depending on whether α is a limit ordinal or an successor ordinal.
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The Construction at Stage α, in case the ordinal α is a limit ordinal
We already have the case α= 0 in hand. So consider that α is an infinite limit ordinal. We let

A′
α = ⋃

β<α
Aβ

B ′
α = ⋃

β<α
Bβ

Φ′
α = ⋃

β<α
Φβ

Recalling that 〈Aβ | β < α〉 and 〈Bβ | β < α〉 are towers of field extensions, the diligent graduate student
should find it a straightforward matter to check that the sets A′

α and B ′
α are closed under all the operations

(including forming inverses of nonzero elements). This gives us fields A′
α and B′

α. A bit more effort should
reveal that Φ′

α is an isomorphism between these two fields. Finally, a little more work shows that each
of the fields A′

α and B′
α is algebraically closed. Now here is the last bit a knowledge about cardinals and

ordinals that we need. Since for each β<αwe know that the cardinality |A′
β
| of Aβ isnolarger than |β|+|F |,

then we know that

|A′
α| = | ⋃

β<α
Aβ| ≤

∑
β<α

|Aβ| ≤
∑
β<α

(|β|+ |F |) ≤ ∑
β<α

(|α|+ |F |) ≤ |α|(|α|+ |F |) = |α|+ |F |.

That is |A′
α| ≤ |α|+|F |. Likewise that |B ′

α| is bounded in the same way. The bit of knowledge about cardinals
then ensures us that |A′

α| and |B ′
α| must both be smaller than κ. According to how we have defined things

here, we know that for each β < α that aβ ∈ A′
α and that bβ ∈ B ′

α. But we need aα and bα to be in the
fields we construct at this stage. Now |A′

α| < κ. This means that there are elements of A that are not in
A′
α. Let c be the least such element in our enumeration of A. So c = aα, unless aα is already in A′

α. Since
A′
α is algebraically closed, c is transcendental over A′

α. Likewise, let d be the least member of B not in B ′
α.

According to the transcendental version of the Basic Fact about Extending Isomorphisms, the fields A′
α(c)

and B′
α(d) are isomorphic via an isomorphism Φ′′

α that extends Φ′
α. Finally, let Aα be the algebraic closure

of A′
α(c) and let Bα be the algebraic closure of B′

α(d) and let Φα be an isomorphism between these two
algebraic closures that extends Φ′′

α. The careful graduate student should check that these two fields and
the isomorphism between them fulfill all the desires (a)–(d) we had listed above.

The Construction at Stage α, in case the ordinal α is a successor ordinal
In this case, take α to be the successor of β. Then we have in hand the algebraically closed fields Aβ and
Bβ and an isomorphismΦβ between them. Furthermore, we know that, for each ordinal γ≤β that aγ ∈ Aβ

and bγ ∈ Bβ. We also know that either both |Aβ| and |Bβ| are no larger than |β|+ |F | < κ. So, as above, we
let c be the least element of A not in Aβ and d be the least element of B not in Bβ. The elements c and d
are transcendental over Aβ and Bβ respectively. Also as above, aα will be a member of the extension Aβ(c)
and likewise bα will be in the field Bβ(d). So take Aα to be the algebraic closure of Aβ(c) in A and Bα to be
the algebraic closure of Bβ(d) in B. ThenΦβ can be extended to an isomorphismΦα from Aα onto Bα. The
remaining properties that we desire can be established through a small effort of the graduate student.

Now having the construction in hand, it only remains to show that

Φ∗ : = ⋃
α<κ

Φα

is an isomorphism from A onto B. Notice that the sequence 〈Φα | α < κ〉 is a sequence of isomorphisms,
each extending all the preceding ones. A small argument will establish that the Φ∗ with the definition
displayed above will be itself an isomorphism from a subfield of A onto a subfield of B. But the construction
was carefully designed to include all the aβ’s in the domain of Φ∗ and also to include all the bβ’s among
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the outputs of Φ∗. So the domain of Φ is A and Φ∗ maps A onto B , as desired. This establishes that A and
B are isomorphic by an isomorphism that extends Φ.

Now consider the last contention in the theorem. Let A and B are uncountable algebraically closed fields
of the same cardinality and with the same characteristic. Then each of these fields has a smallest subfield.
In the case of characteristic p, these smallest subfields will be isomorpic the Zp . In the case of characteris-
tic 0, the will both be isomorphic toQ. Take F and E to be the algebraic closures of these smallest subfields
(these algebraic clusores will be countably infinite) and letΦ be any isomorphism between them. This sets
up the main part of the theorem and the conclusion follows.
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20.3 PROBLEM SET 18

ALGEBRA HOMEWORK, EDITION 18

NINETEENTH WEEK

ROOTS OF POLYNOMIALS OVER FIELDS

PROBLEM 87.
Show that any finite field has an extension of degree 2.

PROBLEM 88.
Let F be a field and let n be a positive integer such that F has no nontrivial field extensions of degree
less than n. Let L = F[u] be an extension field with un ∈ F . Prove that every element in L is a product of
elements of the form au +b where a,b ∈ F .

PROBLEM 89.
Show that

[
Q[ 5

p
2+p

5] :Q
]= 10.

PROBLEM 90.
Let f (x) ∈ Q[x] be an irreducible polynomial of odd degree and suppose that u is a root of f (x). Prove
Q[u] =Q[u2k

] for every natural number k.

PROBLEM 91.
Let the field L extend the field F so that [L : F] = 4.

(a) Prove that there are no more than 5 fields K with F ⊆ K ⊆ L. Given an example where there are 5 such
intermediate fields.

(b) Give an example where the only intermediate fields are F and L.

PROBLEM 92.
Prove that every algebraically closed field is infinite.
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21
CONSTRUCTIONS BY STRAIGHTEDGE AND COMPASS

Euclid’s book, sadly now fallen from the mathematician’s bookshelf, should properly still be the property
of every mathematician. It is filled with theorems proved by means of constructions using straightedge
and compass. Loosely speaking, these constructions started with a given finite configuration of points on
the plane and then proceeded in a step-by-step fashion to construct further points. The new points could
only arise in one of three ways:

(a) As the point of intersection of two line segments, each drawn with the help of the straightedge
through two distinct points already at hand. Here the endpoints of the segments, and indeed
almost all the points on the segments, need not be among the constructed points.

(b) As points of intersection between a line segment and a circle, where the line segment arises as
above and the circle is drawn with the help of the compass by placing the foot and the drawing
points of the compass on points constructed at some prior step. Again the only points on the line
segment and the circle that qualify as constructed are the points of intersection.

(c) As points of intersection between two circles, each circle drawn as described above.

Among the problems left as unsolved by the geometers of this classical period were the following:

The Trisection of Angles. Given an arbitrary angle, to trisect it by means of straightedge and compass.

The Duplication of the Cube or the Delian Problem. Given an arbitrary cube, to construct a cube of twice
the volume by means of straightedge and compass.

A legend behind this problem concerns a serious plague. The advice of the great oracle of Apollo at Delphi
was sought. The Altar of Apollo was an impressive cube. The oracle advised that Apollo would intercede
once the altar had been exactly doubled in volume. Apollo never interceded.

Squaring the Circle. Given a circle, to construct, by means of straightedge and compass, a square with the
same area as the circle.

The Construction of Regular Polygons. Given a line segment to construct, by means of straightedge and
compass, a regular polygon of n sides each of length the same as the given line segment.

We are now in a position to present the solutions to most of these problems.

153
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If we identify Euclid’s plane withR×R, we can convert these geometric problems into algebraic problems.
To set a unit length, we start our analysis with two points (0,0) and (1,0). Let C be the totality of all points
that can be constructed by straightedge and compass from these first two points. Since at any stage only
finitely many new points are constructed and since any constructible point is reached after some finite
sequence of steps, we see that C is countable. We say a real number r is constructible provided r is one
of the coordinates of a point that belongs to C. It is an informative exercise in straightedge and compass
construction to show that r is constructible if and only if |r | is the length of a line segment joining to
constructible points (including degenerate segments of length 0). Let E be the set of constructible real
numbers.

[The leading sentence of the last paragraph might well have given you pause. Is it really permissible to
identify Euclid’s plane with R×R? What would you have to do to prove this statement?]

It is clear that 0,1 ∈ E . We will show next E is closed under addition and multiplication, and that every
nonzero constructible real has a constructible multiplicative inverse. In this way, we will arrive at E, the
field of constructible reals. Actually, E has very special properties. Let us say that a subfield K of R is
closed under the extraction of square roots provided a real number r belongs to K whenever r 2 ∈ K . This
property holds for R, essentially by default, but not forQ.

Let F be a field. By a square root tower over F we mean a finite sequence

F = F0 ≤ F1 ≤ ·· · ≤ Fn

of field extensions such that for each j < n there is some u j so that u2
j ∈ F j and F j [u j ] = F j+1. That is, we

obtain the next field up the tower F j+1 by adjoining to F j a square root of an element belonging to F j . Let
K be a field extending F and let r ∈ K . We say r is captured in a square root tower over F provided r ∈ Fn

for some square root tower F = F0 ≤ ·· · ≤ Fn .

The Basic Theorem for the Field of Constructible Reals. The constructible real numbers constitute the
smallest subfield E of R that is closed under the extraction of square roots. Moreover, r ∈ E if and only if r
captured in a square root tower over Q. In particular, E is algebraic over Q and [Q[r ] :Q] is a power of 2, for
all r ∈ E.

Proof. That E is closed under addition, multiplication, inversion of nonzero elements, and square roots of
positive elements will follow from a series of diagrams. The intention of the diagrams is to display how the
construction by straightedge and compass should proceed. Some familiarity with the use of straightedge
and compass is needed to interpret the diagrams. For instance,

• given a line segment (i.e. its endpoints) and a point on the line segment, there is a straightedge and
compass construction of a second line segment perpendicular to the first at the given point;

• given a line segment ` and a point p not collinear with `, there is a straightedge and compass con-
struction of a point q collinear with ` so that the segment joining p and q is perpendicular to `

(extended as required to include the point q);

• given a line segment ` and a point p not collinear with `, there is a straightedge and compass con-
struction of a line segment through p that is parallel to `.
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(0,0) (s,0) (r,0) (r + s,0)

(0,1) (r,1) (r + s,1)

Construction of r + s

when 0 ≤ s ≤ r

(−r,0) (0,0) (r,0)

(0,1) (r,1)

Construction of −r

when 0 < r

(0,0)

(0, s)

(r,0) (r s,0)

(0,1)

Construction of r s

when 1 ≤ s and 0 ≤ r

(0,0) (r,0)

(0,1)

(0, 1
r )

(1,0)

Construction of 1
r

when 0 < r

(0,0) (1,0) (1+ r,0)

(1,
p

r )

Construction ofp
r when 0 < r

At this point we see that E is indeed a subfield of the field R of real numbers and it is closed under the
extraction of square roots. Of course, it is also an extension of the fieldQ of rationals.

Now suppose that r ∈ E . Pick s ∈ E so that (r, s) ∈C. There is a finite sequence

p0, . . . ,pn = (r, s)

of points so that p0 is constructible from the points (0,0) and (1,0) in one step by straightedge and compass,
and for each k < n the point pk+1 is constructible in one step from points in {(0,0), (1,0),p0, . . . ,pk }. For each
j < n put p j = (r j , s j ). Let K =Q[r0, s0,r1, s1, . . . ,rn−1, sn−1].

Contention. r ∈ K [u] for some u ∈R so that u is positive and u2 ∈ K .

There are three kinds of straightedge and compass steps.
The first produces a point of intersection of two lines. Each of the lines is determined by two distinct

points. Construing this algebraically, we have a system of two linear equations in two unknowns, which
are the coordinates of the point of intersection. We can solve this system just using the field operations.
This yields that r ∈ K and so r ∈ K [1].
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The second produces points of intersection of a line and a circle. The line is determined by two distinct
points (a,b) and (c,d), and the circle is determined by its center (a′,b′) and one point (c ′,d ′) on the circle.
Construing this algebraically we arrive at a system of two equations:

(c −a)(y −b) = (d −b)(x −a)

(x −a′)2 + (y −b′)2 = (c ′−a′)2 + (d ′−b′)2

The point (r, s) is a root of this system. Using just the field operations solve the first equation for one of
the unknowns in terms of the other (taking care not to divide by 0). Substituting the result into the second
equation yields a quadratic equation with coefficients in K . Invoking the quadratic formula will produce
values for the unknown. The formula involves the extraction of a square root of a nonnegative number
u ∈ K . The value of the other unknown can be determined just using the field operations. So r ∈ K [u]
where u2 ∈ K in this case.

The last kind of straightedge and compass step produces the points of intersection of two circles, each
determined by its center and a point of the circle. Algebraically, this yields the system

(x −a)2 + (y −b)2 = (c −a)2 + (d −b)2

(x −a′)2 + (y −b′)2 = (c ′−a′)2 + (d ′−b′)2

Subtracting these equations eliminates the x2’s and y2’s. The resulting equation is of the form Ax+B y =C .
This equation can be solved for one of the unknowns in terms of the other and the result substituted into
the first displayed equation. From this point the argument proceeds as before.

In this way the contention is established.
Evidently, square root towers can be extended by square root towers to obtain longer square root towers.

So we see, inductively, that r0, s0,r1, s1, . . . ,rn , sn are all contained in a single square root tower overQ.
So every element of E is captured in some square root tower overQ.
Conversely, since square roots of nonnegative constructible numbers are themselves constructible, we

see, via induction, that any real number captured in a square root tower overQmust be constructible.
Now observe that if K is any subfield of R that is closed under the extraction of square roots, then every

square root tower over Q is included in K. Therefore, E is a subfield of K. Since E is itself closed under the
extraction of square roots, we see that indeed it must be the smallest subfield of R that is closed under the
extraction of square roots.

Finally, let r ∈ E and let Q = F0 ≤ F1 ≤ ·· · ≤ Fn be a square root tower that captures r . We know that
1 ≤ [Fk+1 : Fk ] ≤ 2. It follows from the Dimension Formula that [Fn :Q] must be a power of 2. But

[
Fn :Q

]=[
Fn :Q[r ]

][
Q[r ] :Q

]
. So we conclude that [Q[r ] :Q] must also be a power of 2, and also that r is algebraic

ofQ.

While the Basic Theorem for the Field of Constructible Reals is probably close to the spirit of Euclid, it
is convenient to recast this result over the field of complex numbers, which can itself be construed as the
Euclidean plane. It helps to recall that a complex number can be written as

z = r e iθ = r (cosθ+ i sinθ)

where r is a nonnegative real number and 0 ≤ θ < 2π. A bit of trigonometry yields

p
z =p

r (cos
θ

2
+ i sin

θ

2
)

So every element of the field of complex numbers has a square root back in the field (for the field of real
numbers, the corresponding statement was only true for nonnegative reals). Now we already saw how to
construct

p
r with straightedge and compass. As Euclid taught us how to bisect angles with straightedge

and compass. What more would the willing graduate student need to convert the proof above into a proof
of the theorem below?
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The Basic Theorem for the Field of Constructible Complex Numbers. The constructible complex numbers
constitute the smallest subfield Ec of C that is closed under the extraction of square roots. Moreover, r ∈ Ec if
and only if r captured in a square root tower over Q. In particular, Ec is algebraic over Q and [Q[r ] :Q] is a
power of 2, for all r ∈ E.

Using these basic theorems about constructible numbers, we are in position to tackle problems that were
inaccessible to the ancient geometers.

The Impossibility of General Angle Trisection. The angle π
3 radians (whose construction was given in Eu-

clid’s First Proposition), cannot be trisected with straightedge and compass.

Proof. This is the angle in an equilateral triangle. Its trisection results in an angle of π
9 radians. The con-

struction of such an angle entails the constructibility of a right triangle with hypotenuse 1 and legs of length
cos(π9 ) and sin(π9 ). In turn, this entails that cos(π9 ) would be a constructible real number. We will see that
this is not the case.

The hard-working graduate student can verfiy the following trigonometric identity

cos3α= 4cos3α−3cosα.

Since cos3π9 = 1
2 , we see that cos π9 is a root of 4x3 − 3x − 1

2 . This polynomial is irreducible over Q (the
verification of this is left to the enjoyment of the graduate students). This means, according to Kronecker,
that [Q[π9 ] :Q] = 3. Since 3 is not a power of 2, we see that cos π9 is not constructible.

The Impossibility of Duplicating the Unit Cube. A line segment the cube of whose length is 2 cannot be
constructed by straightedge and compass.

Proof. Evidently, 3
p

2 is a root of x3 −2. According to Eisenstein, this polynomial is irreducible over Q and
according to Kronecker [Q[ 3

p
2] :Q] = 3. Since 3 is not a power of 2 we are done.

The Impossibility of Squaring the Unit Circle. A line segment the square of whose length is the area of the
unit circle cannot be constructed by straightedge and compass.

We are not yet in a position to prove this theorem. The area of the unit circle is π. A square of this area
would have sides of length

p
π. The constructibility of this number would entail the constructibility of π.

But it turns out that π is not even algebraic overQ. We will prove this later, finally putting this old problem
to rest.

This leaves the problem of constructing regular polygons. Here is what is known.
A prime number p is said to be a Fermat prime provided p = 2a +1 for some positive natural number

number a. Here are the first five Fermat primes: 3,5,17,257, and 65537. These five were already known to
Fermat—no further Fermat primes have been found in the ensuing years, even with the very considerable
computational power now at our disposal. It was conjectured by Eisenstein that there are infinitely many
Fermat primes. It is even conceivable that Eisenstein was wrong and that those we now know are all that
there are.

Gauss’s Theorem on Constructible Regular Polygons. Let n ≥ 3. It is possible to construct by straightedge
and compass a regular n-gon if and only if n has the form

n = 2e p1p2 . . . pm

where e is a natural number and p1, . . . , pm are distinct Fermat primes.

We also have to defer the proof of this theorem. Essentially, we can identify the vertices of a regular n-gon
as the complex numbers that are the roots of xn −1. We will take up a detailed study of these roots of unity
later. At that time we can provide a proof of this theorem of Gauss. Even then, our grasp of the situation is
incomplete since our knowledge of Fermat primes is so sketchy.
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22
GALOIS CONNECTIONS

In his investigation of the solvability of polynomial equations by radicals, Galois came across a way to
connect (the splitting field of) a polynomial with a finite combinatorial object (in fact a finite group) which
proved more amenable to analysis than the splitting field, which was an infinite object. It turns out that the
connection Galois discovered is a particular instance of what has turned out to be a common phenomena.
Because more general situation is not encumbered with all the details of Galois’s particular connection,
and because the idea requires hardly any mathematical background, I will present the general situation
first.

22.1 ABSTRACT GALOIS CONNECTIONS

Consider any two classes A and B and any two-place relation R ⊆ A×B . Two-place relations are ubiquitous
in mathematics. Here are some examples:

• Take A =Z= B and let R be the divisibility relation.

• Take A and B each to be the set of rational numbers in the unit interval and let R be their usual
ordering ≤.

• Let A and B both be the set of vertices of some graph and let R be the relation of adjacency.

• Let A and B both be the class of all groups and let R be the relation of one group being a homomor-
phic image of another.

• Let A be the ring of polynomials in 5 variables over the complex numbers, let B be the vector space
of 5-tuples of complex numbers. Take R to be the relation between a polynomial and its solutions.

• Let A and B be the class of all sets and take R to be the membership relation.

• Let A be the points in the Euclidean plane and let B be the collection of 2-element subsets of A. Let
R relate the point p to {a,b} provided p is on the line segment joining a and b.

• Imagine two or three more examples.

158
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We call a system (A,B ,R), where R ⊆ A ×B , a Galois connection. Each Galois connection induces two
maps _ and ^, called the polarities of the Galois connection.

_ :P(A) →P(B)

where for each X ⊆ A

X _ := {y | y ∈ B and (x, y) ∈ R for all x ∈ X }

and
^ :P(B) →P(A)

where for each Y ⊆ B

Y ^ := {x | x ∈ A and (x, y) ∈ R for all y ∈ Y }

I read X _ as “X going over” and Y ^ as “Y coming back.”
An example is in order. Let A =Z= B and let R be the divisibility relation. So

{6,9}_ = {r | r ∈Z and 6 | r and 9 | r }

That is, {6,9}_ is just all the multiples of 18, since 18 is the least common multiple of 6 and 9. So even
though we started with a finite set, by going over we got an infinite set—but it is a nice one, an ideal of the
ring of integers. Now let’s see what we get by coming back.

{6,9}_^ = {s | s ∈Z and s | r for all r ∈ {6,9}_}

With a little thought the industrious graduate students will find that

{6,9}_^ = {1,−1,2,−2,3,−3,6,−6,9,−9,18,−18}.

This is just the set of divisors of 18. So we started with a set with two elements and then by going over and
coming back we arrive at a set with 12 elements that includes our original set. Now observe

∅_ =Z and ∅^ =Z.

Also observe
Z_ = {0} and Z^ = {1,−1}.

Now P(A) and P(B) are partially ordered by the inclusion relation ⊆. The basic properties of Galois con-
nections concern how the polarities and this order relation interact.

The Polarity Theorem for Galois Connections. Let (A,B ,R) be any Galois connection. All of the following
hold.

(a) If X0 ⊆ X1 ⊆ A, then X _
1 ⊆ X _

0 . If Y0 ⊆ Y1 ⊆ B, then Y ^
1 ⊆ Y ^

0 .

(b) If X ⊆ A, then X ⊆ X _^. If Y ⊆ B, then Y ⊆ Y ^_.

(c) If X ⊆ A, then X _ = X _^_. If Y ⊆ B, then Y ^ = Y ^_^.

(d) If X0, X1 ⊆ A and X _^
0 = X _^

1 , then X _
0 = X _

1 .
If Y0,Y1 ⊆ B and Y ^_

0 = Y ^_
1 , then Y ^

0 = Y ^
1 .

(e) For all X ⊆ A and all Y ⊆ B,
X ⊆ Y ^ if and only if Y ⊆ X _.
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The proof of this theorem is left in the trustworthy hands of the graduate students. It is even part of an
official problem set. Can you deduce the other parts of this theorem from (a) and (e)?

We say that subsets of A of the form Y ^ are closed, as are the subsets of B of the form X _. Part of
the content of this theorem about polarities is that restricted to the closed sets on each side of the Galois
connection, the polarities are inverses of each other and they are order reversing. So viewed as ordered
sets, the systems of closed sets on each side are anti-isomorphic: one looks like the upside down version
of the other. The polarities are the anti-isomorphisms.

The intersection of any nonempty collection of closed sets from one side of a Galois connection will be
again a closed set. There is a unique smallest closed set on each side. The least closed subset of A is, of
course, B^. This means that any collection of closed subsets from one side of a Galois connection always
has a greatest lower bound. It follows via the polarities (which are anit-isomorphisms, sometimes called
dual isomorphisms) that every collection of closed sets from one side of a Galois connection always has a
least upper bound. A partially ordered set with these properties is called a complete lattice. So the closed
sets from any one side of a Galois connection always constitute a complete lattice. In the example we
worked with, the integers with divisibility, the closed sets on the right side of the Galois connection turn
out to be the ideals of the ring of integers.

22.2 THE CONNECTION OF GALOIS

The Galois connection discovered by Evariste Galois was not listed among our examples in the section
above. We describe it in this section.

Let E be a field that extends a field F. The set E will be the left side of Galois’ connection. Let

GalE/F = {σ |σ is an automorphism of E and σ(a) = a for all a ∈ F }.

GalE/F is the group of automorphisms of E that fix each element of F. It is called the Galois group of E
over F. It is the right side of Galois’ connection. The relation that connects these two sides is

{(a,σ) | a ∈ E and σ ∈ GalE/F and σ(a) = a}.

The polarities of Galois’ connection are given as follows, for any X ⊆ E and any Y ⊆ GalE/F:

X _ = Gal X = {σ |σ ∈ GalE/F and σ(x) = x for all x] ∈ X }

Y ^ = InvY = {a | a ∈ E and σ(a) = a for all σ ∈ Y }

We abandon the arrow notation in favor of Gal and Inv. We leave it in the trustworthy hands of the graduate
students to work out that Gal X is always a subgroup of GalE/F and that InvY is always a subfield of E
that extends F. InvY is called the fixed field of Y and Gal X is called the Galois group of X . In Galois’
investigations, the field E was the splitting field of some polynomial f (x) with coefficients from F. Galois
realized that an automorphism of E that leaves the coefficients of the polynomial fixed must send roots of
f (x) to roots of f (x). And as the roots of f (x) determine the elements of the splitting field E, this meant
that GalE/F was, in essence, just some group consisting of certain permutations of the roots of f (x). Such a
group is finite since f (x) can have only finitely many roots. In this way, Galois saw that it might be possible
to understand the roots of f (x) by understanding this finite group instead of trying to understand how the
roots were situated in the (usually) infinite field E. Galois succeeded.

The next two lectures are devoted to understanding the closed sets on each side of Galois’ connection.
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22.3 PROBLEM SET 19

ALGEBRA HOMEWORK, EDITION 19

TWENTIETH WEEK

GALOIS CONNECTIONS

In Problem 93 to Problem 97 below, let A and B be two classes and let R be a binary relation with R ⊆ A×B .
For X ⊆ A and Y ⊆ B put

X → = {b | x R b for all x ∈ X }

Y ← = {a | a R y for all y ∈ Y }

PROBLEM 93.
Prove that if W ⊆ X ⊆ A, then X → ⊆W →. (Likewise if V ⊆ Y ⊆ B , then Y ← ⊆V ←.)

PROBLEM 94.
Prove that if X ⊆ A, then X ⊆ X →←. (Likewise if Y ⊆ B , then Y ⊆ Y ←→.)

PROBLEM 95.
Prove that X →←→ = X → for all X ⊆ A (and likewise Y ←→← = Y ← for all Y ⊆ B).

PROBLEM 96.
Prove that the collection of subclasses of A of the form Y ← is closed under the formation of arbitrary
intersections. (As is the collection of subclasses of B of the form X →.) We call classes of the form Y ← and
the form X → closed.

PROBLEM 97.
Let A = B = {q | 0 < q < 1 and q is rational}. Let R be the usual ordering on this set. Identify the system of

closed sets. How are they ordered with respect to inclusion? Linearly? Densely?
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THE FIELD SIDE OF GALOIS’ CONNECTION

Suppose that E is the splitting field of a polynomial f (x) over the field F and that K is a field intermediate
between F and E. From general facts about Galois connections, we know that InvGal(E/K) is a subfield of
E that extends K. Our hope is that K = InvGal(E/K). While this hope cannot be realized in general, there is
an important case in which it does hold.

Let us say that an irreducible polynomial p(x) ∈ F[x] is separable provided the number of distinct roots it
has in its splitting field over F is the same as its degree. This means that when p(x) is completely factored
over its splitting field, then all the factors are distinct, that is all the roots are distinct or separated. We say
a polynomial f (x) ∈ F[x] is separable provided each of its irreducible factors is separable.

Notice that a separable polynomial of degree n may have fewer than n distinct roots in its splitting field.
For example x2+2x+1 = (x+1)2 has degree 2 but it has only one root (namely −1). In general, a polynomial
f (x) ∈ F[x] factors over F as

f (x) = g0(x)e0 g1(x)e1 . . . gm−1(x)em−1

where each gk (x) is irreducible and disinct from the other g ’s and each ek is a positive integer. This poly-
nomial must have repeated roots in its splitting field as long as some ek > 1. But consider the polynomial

h(x) = g0(x)g1(x) . . . gm−1(x).

The polynomials f (x) and h(x) have the same splitting field over F, and h(x) will have distinct roots, pro-
vided f (x) (and hence h(x)) is separable.

The Galois Field Closure Theorem. Let E be the splitting field of a separable polynomial over the field F.
Then InvGal(E/K) = K, for every field K intermediate between F and E.

Proof. Let f (x) ∈ F[x] be a separable polynomial from F[x] and let E be the splitting field of f (x) over F.
Let K be a field intermediate between F and E and put L = InvGal(E/K). For the general properties of
polarities for Galois connections, we see that K ⊆ L and that Gal(E/K) = Gal(E/L). But E is the splitting
field of f (x) over both K and L. By the Existence and Uniqueness Theorem for Splitting Fields, we see that
[E : K] = |Gal(E/K)| = |Gal(E/L)| = [E : L]. But we know that [E : K] = [E : L][L : K]. It follows that [L : K] = 1.
Hence, K = L, as desired.

162
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23.1 PERFECT FIELDS

This leaves us with the question of when an irreducible polynomial is separable. It turns out that just a bit
of formal calculus does the trick. Consider a polynomial

f (x) = a0 +a1x +a2x2 +·· ·+an xn .

We can define the derivative of f ′(x) as follows

f ′(x) = a1 +2a2x +3a3x2 +·· ·+nan xn−1.

But we have to be careful. The exponents are natural numbers, but our field F, might not have in it any
natural numbers. So, to be necessarily more fussy, we define

f ′(x) = a1 + ((1+1)a2)x + ((1+1+1)a3)x2 +·· ·+ ((1+·· ·+1︸ ︷︷ ︸
n-times

)an)xn−1.

But after this we will write it as we did at first. Notice that this definition always produces another poly-
nomial, regardless of the field over which we are working. No limits or other notion of convergence enters
here.

It is left to the eager graduate students to verify that the derivatives of sums and products (and even
compositions) of polynomials work out just like they do in calculus.

Fact. Let f (x) be an irreducible polynomial with coefficients in the field F. Then f (x) is separable if and
only if f (x) and f ′(x) are relatively prime.

Proof. It is harmless to suppose that f (x) is monic. Let E be the splitting field of f (x) over F. Let r0, . . . ,rm−1

be the distinct roots of f (x) in E . Then we see that

f (x) = (x − r0)e0 (x − r1)e1 . . . (x − rm−1)em−1 ,

for certain positive integers e0, . . . ,em−1.
Suppose first that f (x) is separable. This only means that e0 = ·· · = em−1 = 1. Under this supposition,

f ′(x) is, according to the product rule, just the sum of all terms made by deleting single factors from the
factorization above. This entails (with the graduate students fiddling down the details) that none of the
irreducible factors (over E) of f (x) can divide f ′(x). This means that f (x) and f ′(x) are relatively prime
over E. Therefore, they must be relatively prime over F.

Now suppose that f (x) is not separable. This means that some ek > 0. Hence, f (x) = (x − r )2g (x) is
a factorization over E for some r ∈ E and some g (x) ∈ E[x]. The product rule now tells us that f ′(x) =
2(x − r )g (x)+ (x − r )2g ′(x). This means that x − r is a common divisor of f (x) and f ′(x). So f (x) and f ′(x)
are not relatively prime over E. Hence (why?) they are not relatively prime over F.

Actually, the proof above does not make significant use of the irreducibility of f (x). The graduate stu-
dents should be able to reformulate the statement of this fact so as to remove the irreducibility condition.

Of course, from our perspective the best thing that can happen is for all polynomials of positive degree
to turn out to be separable. A field F with this property is called perfect.

Here is an important corollary of the Fact above.

Corollary 23.1.1. Every field of characteristic 0 is perfect.

Proof. We only need to pay attention to irreducible polynomials. Observe that in a field of characteristic
0, if f (x) has positive degree, then f ′(x) cannot be the zero polynomial and must have degree properly
smaller than the degree of f (x). (Over fields of prime characteristic it is possible for f ′(x) to be the zero
polynomial.) Since we are taking f (x) to be irreducible, we see that f (x) and f ′(x) must be relatively prime,
since f (x) cannot divide f ′(x), the degree of f ′(x) being too small.
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So what happens for fields of prime characteristic?
Suppose that F is a field of characteristic p, where p is a prime number. There is an interesting thing that

happens. According to the Binomial Theorem (that holds in every commutative ring) in F[x] we have

(a +b)p = ∑
k≤p

(
p

k

)
ak bp−k

for all a,b ∈ F . Recall that
(p

0

) = 1 = (p
p

)
but that p | (p

k

)
when 0 < k < p. Recalling the fussy point made

above about positive integer multiples, we see that
(p

k

)
reduces to 0 in the characteristic p case, whenever

0 < k < p. This means that
(a +b)p = ap +bp

for all a,b ∈ F . But we also know that
(ab)p = ap bp

for all a,b ∈ F . This means that the map a 7→ ap for all a ∈ F , must be a homomorphism from F into F. Now
fields are simple, that is they have just two ideals. So the kernel of this special map must either be {0} (in
which case the map is one-to-one) or F itself (in which case the map sends every element of F to 0). Since
1p = 1 6= 0, we see that our map is actually one-to-one, that is it is an embedding of F into F. This map is
known as the Frobenius embedding.

Theorem on Perfect Fields of Characteristic p. Let F be a field of prime characteristic p. The field F is
perfect if and only if every element of F has a pth root in F .

Proof. Suppose first that there is some a ∈ F so that a has no pth root in F . We contend that the polynomial
xp −a is irreducible. Suppose otherwise. So xp −a = g (x)h(x) where g (x) is a monic polynomial of positive
degree k < p. Let E be the splitting field of xp −a over F and let b ∈ E be a root of g (x). Now notice bp = a
so b ∉ F and

xp −a = xp −bp = (x −b)p

in E[x]. By unique factorization, g (x) = (x −b)k . As bk is the constant term of g (x), we find that bk ∈ F .
But k and p are relatively prime integers (since p is prime and 0 < k < p). Pick integers u and v so that
1 = uk + v p. But then

b = buk+v p = (bk )u(bp )v = (bk )u av ∈ F.

This provides a contradiction to our supposition. So xp −a is irreducible. Its derivative is the zero polyno-
mial. So we see that it is not separable. This means that F is not perfect.

For the converse, suppose that every element of F has a pth root in F . Consider any irreducible polyno-
mial f (x). The only barrier to f (x) being separable is that f ′(x) might be the zero polynomial. This can
only happen when

f (x) = a0 +ap xp +a2p x2p +·· ·+anp xnp .

Since every element of F is a pth power we can pick b0, . . . ,bnp ∈ F so that akp = (bkp )p for all k ≤ n. This
gives us

f (x) = bp
0 +bp

p xp +·· ·+bp
np xnp = (b0 +bp x +b2p x2 +·· ·+bnp xn)p .

But f (x) is irreducible. So it cannot happen that f ′(x) is the zero polynomial. Consequently, f (x) is sepa-
rable and F must be a perfect field.

A nice corollary of this theorem is

Corollary 23.1.2. Every finite field is perfect.

The reason is that the Frobenius map from a finite field to itself must be onto the field since it is one-to-
one (and any one-to-one map of a finite set to itself must be onto). So we see that every element of a finite
field is a pth power of some other element, where p is the characteristic.
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23.2 GALOIS EXTENSIONS

The key hypothesis of the Galois Field Closure Theorem is that E should be the splitting field of a separable
polynomial over F. In this case, we say that E is a Galois extension of F. There are several useful ways to
characterize this kind of extension.

Theorem Characterizing Galois Extensions. Let E be a finite extension of the field F. The following condi-
tions are equivalent.

(a) E is a Galois extension of F.

(b) Every element of E is a root of a separable polynomial in F[x] and every irreducible polynomial in F[x]
that has a root in E splits over E.

(c) F = InvGalE/F.

We say that E is a separable extension of F provided every element of E is a root of a separable polyno-
mial in F[x]. We say that E is a normal extension of F provided every polynomial of F[x] that has a root is
E splits over E. So condition (b) in this theorem says that E is a normal separable extension of F.

Proof.
(a)⇒(c)
According to the Galois Field Closure Theorem, every intermediate field between F and E is closed. In
particular, F is closed. This entails that F = Gal(E/F).

(c)⇒(b)
Let r ∈ E . Since [E : F] is finite we know that r is algebraic over F. Let m(x) be the minimal polynomial of r
over F. We need to show that m(x) is separable and that it splits over E. Now for each σ ∈ GalE/F we know
that σ(r ) is also a root of m(x). Let r0,r1, . . . ,r`−1 be a list of all the distinct images of r by automorphisms
belonging to Gal(E/F). (This is just the orbit of r under the action of Gal(E/F).) Let f (x) = (x − r0)(x −
r1) . . . (x − r`−1). The coefficients of f (x) are fixed by each automorphism belonging to Gal(E/F). That is
these coefficients belong to InvGalE/F. So by (c) we find that f (x) ∈ F [x]. So m(x) | f (x). On the other
hand, (x − ri ) | m(x) for each i < `. This means f (x) | m(x). Since both m(x) and f (x) are monic, we see
m(x) = f (x). So m(x) is separable and splits over E.

(b)⇒(a)
Since [E : F] is finite, there are finitely many elements s0, . . . , sn−1 ∈ E so that E = F[s0, . . . , sn−1]. Let mi (x) be
the minimal polynomial of si over F, for each i < n. According to (b), each of these polynomial is separable
and splits over E. Let f (x) = m0(x)m1(x) . . .mn−1(x). So f (x) is a separable polynomial that splits over E.
Evidently, E is the splitting field of f (x) over F. So E is a Galois extension of F.
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23.3 PROBLEM SET 20

ALGEBRA HOMEWORK, EDITION 20

TWENTY FIRST WEEK

FIELD EXTENSIONS

PROBLEM 98.
Let E and F be fields. Prove that E is an algebraic closure of F if and only if E is an algebraic extension of F
and for every algebraic extension K of F there is an embedding of K into E which fixes each element of F.

PROBLEM 99.
Prove that if E extends the field F and [E : F] = 2, then E is a normal extension of F.

PROBLEM 100.
Let E be a field extending the field F. Let L and M be intermediate fields such that L is the splitting field of a
separable polynomial in F[x]. Let L∨M denote the smallest subfield of E that extends both L and M. Prove
that L∨M is a finite normal separable extension of M and that AutM(L∨M) ∼= AutM∩L L.

PROBLEM 101.
Let L and M be fields. Then the collection of functions from L into M can be regarded as a vector space
over M. (Add functions like we do in calculus. . . ). Prove that the collection of field embeddings from L into
M is a linearly independent set in this vector space.

PROBLEM 102.
Let F be a field. We use F× to denote the group of nonzero elements of F under multiplication and the
formation of multiplicative inverses. Show that every finite subgroup of F× is a cyclic group.

PROBLEM 103.
Let K ⊆ F ⊆ E be fields with [E : F] finite and let A be the subfield of E consisting of all elements of E that are
algebraic over K. Assume that F ∩ A = K .

(a) Suppose α ∈ A and f (x) is the monic minimal polynomial of α over F. Show that all the coefficients
of f (x) lie in K .

(b) Now assume that K has characteristic 0. If B is a field with K ⊆ B ⊆ A and [B : K] finite. Prove that
[B : K] ≤ [E : F].

(c) Conclude that [A : K] ≤ [E : F].
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THE GROUP SIDE OF GALOIS’ CONNECTION AND THE

FUNDAMENTAL THEOREM

24.1 CLOSED SUBGROUPS OF A GALOIS GROUP

Now we want to determine what the closed subgroups of a Galois group are. Since on the field side we
found it convenient to look at Galois extensions, here we will focus on the case when E is a Galois extension
of F.

Our first step is to develop more information on the field side. We begin with a theorem of Ernst Steinitz

Theorem on Primitive Elements—Steinitz, 1910. Let E be a finite extension of F. The following are equiv-
alent.

(a) There is an element r ∈ E so that E = F[r ].

(b) There are only finitely many fields intermediate between F and E.

The element r mentioned in (a) is a primitive element of E with respect to F.

Proof. Since E is a finite extension of F, we observe that E is finite if and only if F is finite. Let us first
dispose of the case when either (and hence both) of these fields is finite. Of course, we have that (b) holds
in this case. So to see that (a) and (b) are equivalent, we must only prove that (a) is also true. Let E× denote
the group of nonzero elements of E under multiplication. This is a finite subgroup of E× (of course). But
we saw last semester that such finite subgroups must be cyclic. Let r be any generator of the group E×.
Evidently, E = F[r ] and we have found our primitive element.

So now we turn to the case when F is infinite.
Let F= {K | F ≤ K ≤ E}. That is, F is the collection of intermediate fields.

(a) =⇒ (b)
Let r ∈ E such that E = F[r ]. Let f (x) be the minimal polynomial of r over F. Let

P := {g (x) | g (x) is a monic polynomial in E[x] that divides f (x)}.

By unique factorization for E[x] we see that P is finite. So our proof of (a) =⇒ (b) will be complete when we
show that F can be mapped into P by a one-to-one map.
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So suppose K ∈ F. Let gK(x) be the minimal polynomial of r over K. Then gK(x) is certainly monic and
irreducible. Also gK(x) must divide f (x) since the set of polynomials over K that have r as a root is just the
ideal generated by gK(x) and f (x) belongs to this ideal since F ≤ K. So letΦ :F→P be defined so that

Φ(K) := gK(x) for all K ∈F.

We need to prove that Φ is one-to-one, or, what is the same, that K can be recovered from gK(x).
So let gK(x) = a0 + a1x + ·· · + am−1xm−1 + xm . Let L = F[a0, . . . , am−1]. Evidently F ≤ L ≤ K and gK(x) is

irreducible over L. This means that gK(x) is the minimal polynomial of r over L. From this and Kronecker
we see

[E : L] = deg gK(x) = [E : K].

But we also have [E : K] = [E : L][L : K]. So it follows that [L : K] = 1. This means that K = L = F[a0, . . . , am−1].
Therefore, K can indeed be recovered from gK(x). We conclude that Φ is one-to-one and that F is finite.
This establishes (a) =⇒ (b).

(b) =⇒ (a)
So we assume that F is finite and we want to prove there is a primitive element. We proceed by induction
of [E : F].

The base step of the induction is the case when E = F = F[1], which almost proves itself.
For the induction step, let s ∈ E \ F . Then [E : F[s]] < [E : F]. As there are only finitely many fields between

F[s] and E condition (b) holds. By the inductive hypothesis pick t ∈ E so that E = F[s][t ] = F[s, t ]. For each
a ∈ F let Ka = F[s+at ]. Each of the fields Ka is between F and E. There are only finitely many intermediate
fields but there are infinitely many choices for a since F is infinite. As pigeons know, this means that there
are a,b ∈ F with a 6= b but Ka = Kb . Now s + at , s +bt ∈ Ka . Subtracting, we find that (a −b)t ∈ Ka . But
a −b 6= 0 and a −b ∈ F ⊆ Ka . So we can conclude that t ∈ Ka . But a ∈ F ⊆ Ka , so at ∈ Ka . But s +at ∈ Ka so
we arrive at s ∈ Ka . But this means

E = F[s, t ] ≤ Ka = F[s +at ] ≤ E.

So we can take our primitive element to be r = s +at .

Corollary: Artin’s Primitive Element Theorem. Let E be a finite separable extension of F. Then E has a
primitive element with respect to F.

Proof. Since E is a finite extension of F, we pick s0, . . . sm−1 ∈ E so that E = F[s0, . . . , sm−1]. For each j < m
let f j (x) be the minimal polynomial of s j over F. Since E is a separable extension, each of these minimal
polynomials is separable. Let f (x) be the product of all the f j (x)’s. Then f (x) is also separable. Let L be a
splitting field of f (x) over F. Since E = F[s0, . . . , sm−1] and each s j is a root of f (x), we can insist that E ≤ L.
Since L is the splitting field over F of a separable polynomial, we know that L is a Galois extension of F. Now
Gal(L/F) is finite, it is even embeddable into the symmetric group on the set of all roots of f (x) in L, which
is a finite set. In particular, Gal(L/F) has only finitely many subgroups. We know our Galois connection sets
up a one-to-one correspondence between the fields intermediate between F and L and certain subgroups
of Gal(L/F). So there can only be finitely many fields intermediate between F and L, and hence, between F
and E. By Steinitz’ Theorem on Primitive Elements E must have a primitive element with respect to F.

Fact. Let E be a finite extension of F. Each of the following statements holds.

(a) |Gal(E/F)| divides [E : F].

(b) |Gal(E/F)| = [E : F] if and only if E is a Galois extension of F.
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Proof. Let F̄ = InvGal(F) = InvGal(E/F). We see that E is a Galois extension of F̄. In particular, E is a finite
separable extension of F̄ and so it has a primitive element. Pick r ∈ E so that E = F̄[r ]. Let f (x) be the
minimal polynomial of r over F̄.

Now Gal(E/F̄) acts on E . Let O be the orbit of r under this action. Of course, every automorphism in
Gal(E/F̄) maps r to some other root of f (x). By Kronecker, there are enough automorphisms in this Galois
group to map r to each other root of f (x). So the orbit O is exactly the set of all roots of f (x). But since f (x)
is an irreducible separable polynomial the number of its roots is just its degree. This tells us

|O| = deg f (x) = [F̄[r ] : F̄] = [E : F̄].

But we can count the number of elements in O using the Key Fact about group actions.

|O| = [Gal(E/F̄) : Stabr ].

Observe that Stabr = {σ | σ ∈ Gal(E/F̄) and σ(r ) = r }. But E = F̄[r ]. So Stabr is just a one element group.
This means that |O| = |Gal(E/F̄)|. Consequently,

[E : F̄] = |Gal(E/F̄)|.

Recalling that [E : F] = [E : F̄][F̄ : F] and Gal(E/F̄) = Gal(E/F) we obtain (a) and the right to left direction of
(b).

To obtain the left to right direction of (b), we need to see that if |Gal(E/F)| = [E : F] then F̄ = F. From
general considerations about Galois connections we know that Gal(E/F) = Gal(E/F̄). But by what we saw
above

[E : F̄] = |Gal(E/F̄)| = |Gal(E/F) = [E : F].

Since F ≤ F̄ we draw the desired conclusion that F = F̄.

With this groundwork, we are prepared to examine the closed subgroups on the group side of the Galois
connection.

The Galois Group Closure Theorem. Let E be a Galois extension of F and let H be a subgroup of Gal(E/F).
Then GalInvH = H. In other words, every subgroup of the Galois group is closed with respect to Galois’
connection.

Proof. On general principles we know H ≤ GalInvH. We need to reverse the order.
Let K = InvH. So K is the subfield of all elements of E fixed by every automorphism in H . Of course

GalK = Gal(E/K).
Now H acts on E . For each s ∈ E let fs(x) be the minimal polynomial of s over K. Since E is a Galois

extension of F it must also be a Galois extension of K, so we know these polynomials are separable. Let Os

be the orbit of s under the action by H. Then we see

[K[s] : K] = deg fs(x) = |Os | = [H : Stab s].

But by Lagrange, we know that [H : Stab s] divides the order of H, which is finite. This means that [K[s] : K] is
bounded above by a finite number as s ranges through E . Pick t ∈ E so that [K[t ] : K] is as large as possible.
Now we also know that E has a primitive element r with respect to K. So E = K[r ]. As a consequence of the
Dimension Formula, we find that E = K[t ] as well. Putting this together with the Fact proved just above, we
get

|GalInvH| = |Gal(E/K)| = [E : K] = [H : Stab t ] ≤ |H |.
But we know H ≤ GalInvH and that these groups are finite. Therefore H = GalInvH, as desired.
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24.2 THE FUNDAMENTAL THEOREM OF GALOIS THEORY

It is traditional to gather together the bits and pieces up to this point and package them into one theorem.
Here it is.

The Fundamental Theorem of Galois Theory. Let E be a Galois extension of F. Then the following hold.

(a) The closed sets on the field side of Galois’ connection are exactly the fields intermediate between F and
E.

(b) The closed sets of the group side of Galois’ connection are exactly the subgroups of the Galois group
Gal(E/F).

(c) Polarities of Galois’ connection, namely Inv and Gal, are inverses of each other and establish an anti-
isomorphism between the two lattices of closed sets.

(d) [E : K] = |GalK| and [K : F] = [GalF : GalK], for each intermediate field K. In particular, |Gal(E/F)| =
[E : F].

(e) Let H be any subgroup of Gal(E/F). Then H/Gal(E/F) if and only if InvH is a normal extension of F.
In this case, Gal(InvH/F) ∼= Gal(E/F)/H.

Proof. The only parts that need attention, perhaps, are (d) and (e).
For (d), notice that GalK = Gal(E/K). We know that E is a Galois extension of K, so by the Fact immedi-

ately preceding the Galois Group Closure Theorem, we see |GalK| = [E : K] as well as |GalF| = [E : F]. The
Dimension Formula tells us

[E : F] = [E : K][K : F]

and Lagrange tells us
|GalF| = [GalF : GalK]|GalK|.

A bit of twiddling extracts [K : F] = [GalF : GalK] from these equations. This secures (d).
For (e), suppose first the H is a normal subgroup of Gal(E/F). Let s ∈ InvH. We need to see that the

minimal polynomial f (x) of s splits in InvH. Now f (x) certainly splits in E since E is a normal extension
of F. Let r ∈ E be a root of f (x). What we need is to show that r ∈ InvH. Relying on Kronecker, we pick
σ ∈ Gal(E/F) so that σ(s) = r . So we must show that τ(r ) = r for every τ ∈ H . But σHσ−1 = H by normality
of the subgroup. This means what we have to show is σ◦τ◦σ−1(r ) = r . But this is immediate:

σ◦τ◦σ−1(r ) =σ(τ(σ−1(r ))) =σ(τ(s)) =σ(s) = r.

So we see that InvH is a normal extension of F.
Now suppose that InvH is a normal extension of F. Letσ ∈ Gal(E/F) and let r ∈ InvH. Let f (x) be the min-

imal polynomial of r over F. Then σ(r ) must also be a root of f (x). But f (x) splits in InvH. So σ(r ) ∈ InvH.
This means that the restriction σ �InvH belongs to Gal(InvH/F). Now define Φ : Gal(E/F) → Gal(InvH/F)
via

Φ(σ) =σ �InvH, for all σ ∈ Gal(E/F).

The eager graduate students will find it easy to show thatΦ is a homomorphism onto the group Gal(InvH/F)
and that its kernel is H (because H is closed). So we see that H is a normal subgroup of Gal(E/F) and, by
the Homomorphism Theorem, that

Gal(E/F)/H ∼= Gal(InvH/F),

as desired.
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24.3 PROBLEM SET 21

ALGEBRA HOMEWORK, EDITION 21

TWENTY SECOND WEEK

GALOIS EXTENSIONS

PROBLEM 104.
Assume that L is a Galois extension of the field Q of rational numbers and that K ⊆ L is the subfield gener-
ated by all the roots of unity in L. Suppose that L =Q[a], where an ∈Q for some positive integer n. Show
that the Galois group Gal(L/Q) is cyclic.

PROBLEM 105.
Let the field L be an algebraic extension of the field K. An element a of L is called Abelian if K[a] is a Galois
extension of K with an Abelian Galois group Gal(K[a]/K). Show that the set of Abelian elements of L is a
subfield of L containing K.

PROBLEM 106.
Let L be a finite extension of a field K and M be a finite extension of L. For each of the extensions L/K,M/L,M/K
is it possible to choose the fields so that the extension in question is not Galois while the other two exten-
sions are each Galois? Explain thoroughly.

PROBLEM 107.
Prove that every finite extension of a finite field has a primitive element.

PROBLEM 108.
LetQ denote the field of rational numbers and C the field of complex numbers.

(a) Suppose K and L are subfields of C, each of which is Galois over Q. Show that the field E generated
by K and L is Galois overQ.

(b) Suppose in part (a), the degrees [K :Q] and [L :Q] are relatively prime. Show that Gal(E/Q) is isomor-
phic to the direct product of the groups Gal(K/Q) and Gal(L/Q). Deduce that [E :Q] = [K :Q][L :Q].

(c) Prove that there exists a subfield F of C such that F is Galois overQwith [F :Q] = 55.
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25
GALOIS’ CRITERION FOR SOLVABILITY BY RADICALS

Given a field F and a polynomial f (x) ∈ F[x] the task of explicitly describing, in some manner, all the roots
of f (x) is a project that is most appropriate carried forward in the splitting field of the polynomial. So let
E be the splitting field of f (x) over F. The set of all roots of f (x) is a finite set, so it would be possible
to simply make a list of all these elements. But it is not apparent, just given f (x) how such a list might be
made. Just trying to use the field operations and the coefficients of f (x) is not even adequate for describing
all the roots of x2 −2. By permitting the extracting of square roots, we can resolve this case and that of all
polynomials of degree no more than 2. By allowing the extraction of cube roots, fourth roots, and so on,
one might hope to succeed, at least with some frequency. The problem of determining when success is
possible is what Galois undertook.

Recall how we approached the notion of a constructible number. We envisioned a tower of field exten-
sions so that later fields in the tower were obtained by adjoining a square root to an earlier field. We simply
expand our horizons by allowing the adjunction of kth roots for any positive integer k. More precisely, we
say that

F = F0 ≤ F1 ≤ ·· · ≤ Fm−1

is a radical tower over F provided for all i < m

Fi+1 = Fi [r ] for some r such that r k ∈ Fi for some positive integer k.

We will say that K is a radical extension of F provided K extends F and K ≤ Fm−1 for some radical tower
F0 ≤ F1 ≤ ·· · ≤ Fm−1 over F.

We say a polynomial f (x) ∈ F[x] is solvable by radicals over F exactly when the splitting field of f (x) over
F is a radical extension of F.

By the Galois group of f (x) we mean the group Gal(E/F), where E is the splitting field of f (x) over F.

Galois’ Criterion for Solvability by Radicals. Let F be a field of characteristic 0 and let f (x) ∈ F[x]. The
polynomial f (x) is solvable by radicals over F if and only if the Galois group of f (x) over F is a solvable
group.

We need a few preliminaries to prepare the way.

Lemma 25.0.1. Over any field F, the polynomial xp −a, with p a prime number and a ∈ F , either has a root
in F or it is irreducible over F.
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Proof. This is clear if a = 0, so we consider that a 6= 0. There are two cases.

Case: p is not the characteristic of F.
In this case we know that xp −a must have distinct roots. Let E be the splitting field of xp −a over F. So

xp −a = (x − r0)(x − r1) . . . (x − rp−1)

where r0, . . . ,rp−1 are the p distinct roots of xp −a. Notice that r0 6= 0. So

1 = r0

r0
,

r1

r0
, . . . ,

rp−1

r0

must be the p distinct pth roots of unity. Let ζ be a primitive pth root of unity in E . This means that

r0,ζr0,ζ2r0, . . . ,ζp−1r0

are the roots of xp −a.
Now consider the possibility that xp −a is reducible in F[x]. We desire to show that xp −a has a root in

F . For some k with 1 ≤ k < p we can render a factor of xp − a as a product of k factors, each of the form
x − ζ j r0. computing the constant term of this product, we find ζ`r k

0 ∈ F for some `. Put b = ζ`r k
0 . Now

bp = ζp`r pk
0 = ak . Since 1 ≤ k < p and p is a prime number, we see that k and p are relatively prime. Pick

integers s and t so that 1 = sk + t p. We get

a = a1 = ask+t p = (ak )s(at )p = (bp )s(at )p = (bs at )p .

This means that a has a pth root in F , namely bs at . Hence xp − a has a root in F . This finishes the first
case.

Case: F has characteristic p.
In the splitting field E pick a root r of xp −a. It follows that xp −a = xp − r p = (x − r )p . Consider the case
that xp − a is reducible in F[x]. This means that for some k with 1 ≤ k < p we will have (x − r )k ∈ F[x].
Computing the constant term, we find r k ∈ F . Put b = r k . Hence bp = (r k )p = (r p )k = ak . As above, we
have integers s and t so that 1 = sk + t p. Just as above, we have a = (bs at )p . This makes bs at a root of
xp −a, as desired.

Theorem 25.0.2. Let p be a prime that is not the characteristic of F and let a ∈ F . The Galois group of xp −a
over F is solvable.

Proof. Let E be the splitting field of xp −a over F. As in the proof of the lemma above, E has p distinct pth

roots of unity. Let ζ be a primitive one. Let r be any root of xp −a. Then we have seen that E = F[ζ,r ]. We
also know that xp −a is separable. So the Fundamental Theorem of Galois Theory applies here.

The field F[ζ] is the splitting field of the separable polynomial xp −1 over F. So F[ζ] is a normal extension
of F. By the Fundamental Theorem, Gal(E/F[ζ] is a normal subgroup of Gal(E/F) and

Gal(F[ζ]/F) ∼= Gal(E/F)/Gal(E/F[ζ]).

Observe that every automorphism belonging to Gal(F[ζ]/F) is determined by what it does to ζ (which it
must map to another root of unity). Thus restriction is actually an embedding of Gal(F[ζ]/F) into the
group of automorphisms of the group of pth roots of unity. But the group of pth roots of unity is just a copy
of the cyclic group Zp . It is an exercise (to be carried out by the diligent graduate students) to prove that
AutZp

∼= Zp−1. In this way we see that Gal(F[ζ]/F) is embeddable into the cyclic group Zp−1. But every
subgroup of a cyclic group is cyclic, so Gal(F[ζ])/F) is cyclic.

Now consider the group Gal(E.F[ζ]). In case xp − a has a root in F[ζ], then all its roots are in F[ζ]. This
means E = F[ζ,r ] = F[ζ]. So Gal(E/F[ζ]) is a trivial group. In case xp −a has no root in F[ζ] we know by the
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lemma that xp −a is irreducible over F[ζ]. So by Kronecker, p = [F[ζ,r ] : F[ζ]] = |Gal(E/F[ζ])|. This means
that Gal(E/F[ζ]) is a cyclic group of order p.

So the normal series Gal(E/F).Gal(E/F[ζ]).1 has cyclic factor groups. Therefore Gal(E/F) is solvable.

Lemma 25.0.3. Let p be a prime number and suppose that the field F contains p distinct pth roots of unity.
Let K extend F so that [K : F] = p and so that Gal(K/F) is cyclic of order p. Then K = F[d ] for some d such that
d p ∈ F .

Proof. Let η generate the cyclic group Gal(K/F) and let ζ be a primitive pth root of unity in F .
Begin by picking c ∈ K \ F . Then K = F[c] because p is prime, by the Dimension Formula there can be no

fields properly intermediate between F and K.
For each i < p, put ci = ηi (c). So we get

c0 = c

ci+1 = η(ci ) for all i < p −1

c0 = η(cp−1)

Put
di = c0 + c1ζ

i + c2ζ
2i +·· ·+cp−1ζ

(p−1)i for i < p. (?)

A straightforward computation shows η(di ) = ζ−i di for all i < p. Hence

η(d p
i ) = (η(di ))p = (ζ−i di )p = 1 ·d p

i

for all i < p. Since the generator of Gal(E/F) fixes each d p
i , we find that each d p

i belongs to the fixed field,
namely to F . (The fixed field must be F, for lack of other intermediate fields.)

It remains to show that di ∉ F for some i , for then we can take that di to be our desired d . Let us render
the system (?) of equations in matrix form.

1 1 1 . . . 1
1 ζ ζ2 . . . ζp−1

1 ζ2 ζ4 . . . ζ2(p−1)

1 ζ3 ζ6 . . . ζ3(p−1)

...
...

...
. . .

...
1 ζp−1 ζ2(p−1) . . . ζ(p−1)(p−1)





c0

c1

c2

c3
...

cp−1


=



d0

d1

d2

d3
...

dp−1


The p × p matrix displayed above is invertible, since it is a Vandermonde matrix. This means that the

column vector of ci ’s can be obtained by multiplying the column vector of di ’s by the inverse of the Van-
dermonde matrix—which is a matrix over F. In particular, this means that c = c0 is an F-linear combination
of the di ’s. Since c ∉ F , we see that at least one of the di ’s must also fail to be in F . This completes the proof
of the lemma.

We need one more lemma.

Lemma 25.0.4. Let F be a field of characteristic 0. Any radical extension of F can be embedded into a
separable normal radical extension of F that has a solvable Galois group over F.

Proof. We do this by induction on the number of intermediate fields in the root tower leading to the rad-
ical extension. The base step (when the number of intermediate fields in 0) is evident. So consider the
inductive step. Suppose the last step in the given radical tower in Fk < Fk [uk ] where up

k ∈ Fk for some
prime p. By the inductive hypothesis, we suppose that we have in hand Lk , which is a normal separable
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radical extension of F such that Lk extends Fk , and that Gal(Lk /F) is solvable. To conserve notation, let
G = Gal(Lk /F) and let G = {σ0, . . . ,σm−1}. Put a = up

k . Let

f (x) = ∏
σ∈G

(xp −σ(a)).

Observe that the coefficients of f (x) are fixed by every τ ∈ G . Since F is the fixed field of G, we see that
f (x) ∈ F [x]. Let Lk+1 be the splitting field of f (x) over Lk . Now, as we saw several times above, each
xp −σ(a) is a separable polynomial, so in Lk+1 we must have a primitive pth root ζ of unity. For each i < m
pick ri ∈ Lk+1 that is a root of xp −σi (a). This entails that Lk+1 = Lk [ζ,r0, . . . ,rm−1]. Now consider the
following root tower of fields:

F ≤ Lk ≤ Lk [ζ] ≤ Lk [ζ,r0] ≤ ·· · ≤ Lk [ζ,r0, . . . ,rm−1] = Lk+1.

The field obtained at each step above Lk is a normal extension of the previous field. Moreover, the Galois
group associated to each step are cyclic. This entails that the associated series of subgroups of G above
Gal(E/Lk ) have cyclic factors. Since we also have that Gal(Lk ,F) is solvable, it follows that Gal(Lk+1/F) is
solvable.

L0[ζ1] = K1

L1[ζ2] = K2

L2[ζ3] = K3

Ln−1[ζn] = Kn

K0 = L0 = F = F0

L1

L2

L3

Ln−1

Ln

F1

F2 = F1[u2]

F3 = F2[u3]

Fn−1

Fn = Fn−1[un]

L1[u2]

L2[u3]

Ln−1[un]

E

p1

p2

p3

pn

Normalizing a Root Tower over E

Here ζi is a primitive pth
i root of unity and upi

i ∈ Fi−1. The blue lines represent root towers in their own right

along which only pth
i roots are extracted, where pi is the prime labelling the parallel edge in the original

root tower. Each Li is a separable normal extension of F . The zigzag path along the left edge of the diagram
is a root tower.

Now we are ready.
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Proof of Galois’ Criterion. First, let us suppose that f (x) is solvable by radicals. Let E be the splitting field
of f (x) over F. We aim to show that Gal(E/F) is a solvable group. Use the lemma just above to obtain a field
L that is a separable normal radical extension of F that also extends E. Observe Gal(L/E)/Gal(L/F), since
E is a normal extension of F. Moreover,

Gal(E/F) ∼= Gal(L/F)/Gal(L/E).

This means that Gal(E/F) is a homomorphic image of the solvable group Gal(L/F). Hence, Gal(E/F) is
solvable.

For the converse, suppose that Gal(E/F) is solvable. Let n = |Gal(E/F)| = [E : F]. Let r0, . . . ,rm−1 be the
roots of f (x) in E . Let ζ be a primitive nth root of unity. (It might not be in E .) Observe that E[ζ] is a
splitting field of f (x) over F[ζ]. Let η ∈ Gal(E[ζ]/F[ζ]). Then η will permute the elements of {r0, . . . ,rm−1}.
The elements generate E over F. This means that restricting η to E produces a member of Gal(E/F). Indeed,
an argument routine by now shows that restriction to E is an embedding of Gal(E[ζ]/F[ζ]) into Gal(E/F).
This latter group is solvable. Since subgroups of solvable groups are themselves solvable, we find that
Gal(E[ζ]/F[ζ]) is solvable. Let

G(E[ζ]/F[ζ]) = H0.H1. · · ·.H`−1

be a composition series. So its factor groups must be cyclic of prime order. Let

F ≤ F[ζ] = K0 ≤ K1 ≤ ·· · ≤ K`−1 = E[ζ]

be the corresponding tower of fixed fields. By our lemmas, each step of this tower is made by adding a kth

root of an element of the previous field, for some k. This means that E[ζ] is a radical extension of F. Since
E ≤ E[ζ], we see that f (x) is solvable by radicals.
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POLYNOMIALS AND THEIR GALOIS GROUPS

In order to take advantage of Galois’ Criterion for Solvability by Radicals we need at least some way to start
with a polynomial f (x) and find its Galois group. With the group in hand, we may be able to determine
whether it is a solvable group. Such a group is, after all, finite and even if no more elegant approach is at
hand it would be possible to undertake, with computational assistance, the brute force examination of its
subgroup lattice. At any rate we see a two step process:

• Given f (x) construct its Galois group G.

• Given a finite group G determine whether it is solvable.

Even over the field of rational numbers this situation has been the focus of very considerable mathemat-
ical effort and is still not well understood.

Here we will see just three results: The determination of which symmetric groups Sn are solvable and two
conditions, each sufficient to ensure that the Galois group of f (x) is not solvable.

The following theorem is due to Galois.

The Solvability of Symmetric Groups. The groups S1,S2,S3, and S4 are solvable. The groups Sn , where
4 < n, are not solvable.

Proof. The groups S1 and S2 have one and two elements respectively. They are evidently solvable. Observe
the S3.A3 (since [S3 : A3] = 2) and that A3 is the three element group, which is simple and Abelian . This
gives us a normal series with Abelian factors, witnessing the solvability of S3. We can try the same thing
with S4:

S4.A4. . . .

Now A4 has twelve elements. Let V be the subgroup of A4 consisting of the identity permutation and the
following three permutations:

(0,1)(2,3), (0,2)(1,3), and (0,3)(1,2).

Direct calculation reveals that these elements constitute an Abelian subgroup of A4 and that this subgroup
is normal. (It is the Sylow 2-subgroup of A4). So we see

S4.A4.V. 1

is a normal series with Abelian factors, witnessing that S4 is solvable.

177
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To see, on the other hand, that Sn is not solvable when n > 4 we will show that An is simple: it has no
proper nontrivial normal subgroups. This will mean that Sn .An . 1 is a composition series. Since An is
not Abelian this will demonstrate that Sn is not solvable. Or we might simply note that An is not solvable,
itself—so neither is Sn , since every subgroup of a solvable group is also solvable.

So let N/An and suppose that N is nontrivial. We have to prove that N = An . We use the following fact:

Fact. An is generated by the set of all 3-cycles, if 3 ≤ n.

The verification of the fact is left as an entertainment for graduate students.
Let us first see that N has at least one 3-cycle. Each element of An is a permutation of {0,1,2,3,4, . . . ,n−1}.

A permutation might have fixed points. (The identity fixes all n points.) Let α ∈ An fix as many points as
possible while still being different from the identity permutation. Consider the decomposition of α into a
product of disjoint cycles. There are three cases.

Let us first suppose that the longest cycle in the decomposition has length 2. Asα is even, it does no harm
to suppose

α= (0,1)(2,3) · · · .

Let β= (2,3,4) ∈ An . Notice that βαβ−1 ∈ N by normality. So βαβ−1α−1 ∈ N as well. Direct computations
show that 0 and 1 are fixed points of βαβ−1α−1. Also direct computation shows that 2 is not fixed, so that
βαβ−1α−1 is not the identity. The only points moved by β are 2,3, and 4. Now any point that is fixed by
both α and β is fixed by βαβ−1α−1. It might be that 4 is a fixed point of α. In that event, it would not be
fixed by βαβ−1α−1. But in any event, βαβ−1α−1 has at least one more fixed point than α. This is contrary
to the choice of α, so we reject this case.

Second, suppose that α is itself a 3-cycle. Well, this is what we want.
The third case remains: the decomposition of α has a cycle of length at least three but α is not itself a

3-cycle. So we consider that
α= (0,1,2, . . . ) . . . .

Since α is even it cannot move just 4 points. That would make α a 4-cycle and 4-cycles are odd. So α

must move at least two points in addition to 0,1, and 2. Call these points 3 and 4. Again let β = (2,3,4)
and consider βαβ−1α−1. For any point d fixed by α, we have 4 < d < n. So d is also fixed by βαβ−1α−1.
But direct computation still shows that 1 is also fixed by the latter permutation, while 2 is not. So that
composite permutation has more fixed points than α. We have to reject this case.

Our conclusion is that α ∈ N is a 3-cycle. Say α= (0,1,2).
Now, suppose that i , j ,k,`, and m are distinct elements of {0,1,2,3,4, . . . }. Let γ be the permutation so

that

γ(0) = i

γ(1) = j

γ(2) = k

γ(3) = `
γ(4) = m

...

Now either γ is even or (`,m)γ is even. Let λ be the one of these that is even. Then direct calculation shows
λαλ−1 = (i , j ,k). This means that N contains all the 3-cycles. That means N = An .

So we conclude that An is simple and that Sn is not solvable.

So how can we ensure that a polynomial f (x) has Galois group Sn?
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The Sp Criterion for Polynomials over Q. Let p be a prime number and let f (x) ∈ Q[x] be of degree p. If
f (x) is irreducible and f (x) has exactly two non-real roots in C, then the Galois group of f (x) over Q is Sp

and f (x) is not solvable by radicals overQ if p > 4.

Proof. Let r0, . . . ,rp−3 be the real roots of f (x) and let rp−2 and rp−1 be the non-real complex roots. Let
E = Q[r0, . . . ,rp−1] be the splitting field of f (x). By Kronecker we know that [Q[r0] : Q] = p. By the Di-
mension Formula, we see that p | [E : Q]. By the Fundamental Theorem of Galois Theory, this means
p | |Gal(E/Q)|. By Cauchy, this Galois group must have an element of order p. On the other hand, complex
conjugation is an automorphism of C that fixes every real. In particular, all the coefficients of f (x) are
fixed by conjugation. So conjugation must permute the roots of f (x). This entails that rp−1 is the complex
conjugate of rp−2. By restricting our group to the p-element set {r0, . . . ,rp−1} we see that this subgroup of
Sp has an element of order p and a transposition (inherited from complex conjugation). It is a fact for the
entertainment of graduate students that for any prime p, that Sp is generated by any transposition and any
element of order p. So the Galois group of f (x) is isomorphic to Sp .

It is easy to devise polynomials of prime degree with integer coefficients that meet these criteria. For
example, suppose we want f (x) to be of degree 5. We want it to have 3 real roots and 2 non-real complex
roots (which we know must be complex conjugates). So we could just pick any three real numbers r0,r1,
and r2 and any non-real complex number s and let

f (x) = (x − r0)(x − r1)(x − r2)(x − s)(x − s̄).

But we have two problems: the coefficients of f (x) might not be rational and even if they were f (x) might
not be irreducible over Q. For this approach to work, r0,r1,r2, and s must at least be algebraic and f (x)
must be their common minimal polynomial. This is harder to arrange, but still possible.

But there is another approach advanced by Richard Brauer. The idea is to use the curve sketching tech-
niques of freshman calculus. The graph of f (x) should cross the X -axis exactly 3 times. This can be ar-
ranged if f (x) has a unique relative maximum (and f (x) has a positive value there) and a unique relative
minimum (and f (x) has a negative value there). This suggests looking at the derivative f ′(x). This deriva-
tive will have degree 4 and we want it to have 2 real roots. Let’s try

f ′(x) = 5x4 −5 ·16 = 5(x2 +4)(x2 −4) = 5(x2 +4)(x −2)(x +2)

This means that f (x) = x5 −5 ·16x + c where c is the constant of integration but is subject to the following
constraints:

0 < f (−2) =−25 +5 ·25 + c = 27 + c

0 > f (2) = 25 −5 ·25 + c =−27 + c

f (x) = x5 −5 ·16x + c is irreducible overQ.

The first two constraints reduce to−27 < c < 27. This is a comfortably sized range. With Eisenstein’s Criteria
in mind, pick c = 5 (and there are other obvious choices). We find

f (x) = x5 −80x +5

is a polynomial of degree 5 that cannot be solved by radicals.
What about the possibility that the Galois group of our polynomial is only a subgroup of Sn? To put it

another way, what can we say about the solvable subgroups of Sn that are Galois groups? One thing that
we can recall from Kronecker is that given any two roots of an irreducible polynomial, there will be an
automorphism in the Galois group that takes one root to another. We could frame this property for any
subgroup of Sn . We will say that a subgroup G of Sn is transitive provided for any i , j ∈ {0,1,2, . . . ,n − 1}
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there is some σ ∈ G so that σ(i ) = j . Then, according to Kronecker, the Galois group of any separable
irreducible polynomial of degree n will be (isomorphic to) a transitive subgroup of Sn . What can we say
about the transitive solvable subgroups of Sn?

Theorem on the Transitive Solvable Subgroups of Sp . Let p be a prime number and let G be a transitive
solvable subgroup of Sp . Then every σ ∈G, except the identity, has no more than one fixed point.

The proof of this theorem relies on two lemmas that are of some interest in their own right.

Lemma on Normal Subgroups of Transitive Groups. Let p be a prime number, let G be a transitive sub-
group of Sp , and let N be a nontrivial normal subgroup of G. Then N is transitive.

Proof. The group N induces a partition of {0,1, . . . , p −1} into orbits. I contend that all the orbits have the
same size. To see this let O and Q be any two orbits. Pick elements a ∈O and b ∈Q and, since G is transitive,
pick β ∈G so that β(a) = b. Let c ∈O. Pick σ ∈ N so that σ(a) = c. Then observe that

β(c) =β(σ(a)) =β(σ(β−1(b))) = (β◦σ◦β−1)(b).

Since N is a normal subgroup of G, we see that β(c) ∈ Q. So β induces a map from O into Q. A similar
argument shows that β−1 induces a map from Q into O. These induced maps invert each other, so the two
orbits are the same size.

Since N is nontrivial, there must be a nontrivial orbit. So all orbits have the same size k > 1. But our set
with p elements is partitioned into sets of size k. So k | p. Since p is prime, we have k = p. That is, there is
only one orbit. This means N is transitive.

Lemma on p-cycles in Solvable Transitive Subgroups of Sp . Let p be a prime number and G be a nontriv-
ial transitive solvable subgroup of Sp . The last nontrivial group in any composition series of G is a cyclic
group of order p and every p-cycle in G belongs to this cyclic group.

Proof. Let G be a solvable transitive subgroup of Sp , where p is prime. Consider a composition series for
G.

G = G0.G1. · · ·.Gn−1.Gn

so that Gn is trivial, Gn−1 is not trivial, and Gk /Gk+1 is of prime order for all k < n. By the lemma above,
Gk is transitive for each k < n. Notice that Gn−1 is a cyclic group of prime order q . Let σ generate this
group. Write the permutation σ as a product of disjoint cycles. These cycles must all have length q since q
is prime. Moreover, every power of σ is the product of the powers of these disjoint cycles. So if there were
more than one cycle in the decomposition of σ we would have that Gn−1 could not be transitive. So there
is only one cycle and it is of length p. So p = q and we infer, with Lagrange’s help, that p | |Gk | for all k < n.

Now let τ be any p-cycle that belongs to G . Since Gn is trivial, we see that τ ∉ Gn . Pick k as large as
possible so that τ ∈ Gk . So τ ∉ Gk+1. Let H be the subgroup of Gk generated by τ. Then |H | = p. Every
element of H other than the identity generates H. So H ∩Gk+1 can contain only the identity element since
τ ∉Gk+1. Since Gk .Gk+1 we see that HGk+1 is a subgroup of Gk . We also know

|HGk+1||H ∩Gk+1| = |H ||Gk+1|.

So we find that |HGk+1| = p|Gk+1|. Now HGk+1 is a subgroup of Sp and this last group has cardinality p !.
So p2 cannot divide the order of HGk+1. But this means that p cannot divide |Gk+1|. This forces k +1 = n.
Therefore, τ ∈Gn−1, as desired.
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Proof of the Theorem on the Transitive Solvable Subgroups of Sp .

Let τ ∈G and suppose that a,b ∈ {0,1, . . . , p −1} with

τ(a) = a

τ(b) = b

Our aim is to show that a = b or that τ is the identity. Letσ be a p-cycle that generates Gn−1. Now τστ−1 ∈G
and it must also be a p-cycle (since it has order p and p is prime). So τστ−1 ∈Gn−1 by the last lemma. With
this in view, pick a positive k < p so that

τστ−1 =σk .

Since Gn−1 is transitive, we can pick a natural number ` < p so that σ`(a) = b. From the displayed equa-
tion we see that τσ(a) = σkτ(a) = σk (a). An easy induction reveals that τσ j (a) = σ j k (a) for every natural
number j . In particular,

σ`(a) = b = τ(b) = τσ`(a) =σ`k (a).

So we find a = σ`k−`(a). But the only permutation in Gn−1 with a fixed point is the identity permutation.
This means p | `(k −1). Since p is prime and 0 ≤ `,k < p and k is positive, we conclude that either `= 0 or
k = 1. In the first alternative we have b =σ`(a) =σ0(a) = a, while in the second alternative we have that σ
and τ commute. In that case,

τ(σ(a)) =σ(τ(a)) =σ(a)

τ(σ2(a)) =σ2(τ(a)) =σ2(a)

...

τ(σ j (a)) =σ j (a)

...

In this way we see that τ must fix each of the elements of {0,1, . . . , p −1}. That is τ is the identity.

As a corollary we arrive at the following result.

Artin’s Criteria for Unsolvability of Polynomials over Q. Every irreducible polynomial of prime degree
with coefficients in Q that has at least two real roots and at least one nonreal root in C is not solvable by
radicals.

Proof. Let E be a subfield of C that is a splitting field of our polynomial. Since the coefficients of our
polynomial are real (even rational) we see that complex conjugation, restricted to E , is a member of the
Galois group. Because the polynomial has a root that is not real, we see that the restriction of complex
conjugation is not merely the identity map. On the other hand, complex conjugation fixes two of the roots
(since two of them are real). So the Galois group of the polynomial cannot be solvable, by the Theorem
on Transitive Solvable Subgroups of Sp . So by Galois’ characterization, our polynomial is not solvable by
radicals.

Notice that the hypotheses of this theorem are weaker than those laid out in the Sp Criterion over Q. On
the other hand, the conclusion is also weaker: that the Galois group is not solvable rather than that the
Galois group is actually Sp .

In applying these new criteria it is enough to show that the graph of f (x) on the X ×Y plane crosses the
X -axis at least twice, but not p times (provided f (x) is irreducible of prime degree p).



Lecture 26 Polynomials and Their Galois Groups 182

Let us devise an example to which Artin’s Criterion applies, but not the earlier criterion. We will find an
irreducible polynomial f (x) of degree 7 with 3 real roots and 4 nonreal roots. The graph of such a polyno-
mial will cross the X -axis 3-times. One way to achieve this is to make sure the leading coefficient is positive
and that the graph has one local maximum (where the function is positive) and one local minimum (where
the function is negative). We hope to use Eisenstein to ensure that f (x) is irreducible, so our polynomial
will have integer coefficients. Given the curve-sketching nature of this idea, we will first create a suitable
derivative f ′(x). This must have degree 6. Here is one to start with:

(x −3)(x +3)(x2 +3)(x2 +9) = x6 +3x4 −34x2 −35.

I have used a lot of 3’s in the hope that this will make the eventual use of Eisenstein easier. Were this the
derivative of our polynomial, we would know that the graph is increasing on (−∞,−3), that it is decreasing
on (−3,3) and that it is increasing again on (3,∞). The next step would be to integrate this polynomial, but
that would introduce some fractional coefficients. To ease this, why not multiply the thing by 7 ·5? So take

f ′(x) = 7 ·5x6 +7 ·5 ·3x4 −7 ·5 ·34x2 −7 ·5 ·35.

Integrating gets us
f (x) = 5x7 +7 ·3x5 −7 ·5 ·33x3 −7 ·5 ·35x + c

where c is the constant of integration. I hope to chose c so that the local maximum (it is at x = −3) is
positive, that the local minimum (it is at x = 3) is negative, and finally, so that Eisenstein will tell us that
f (x) is irreducible. Sheer computation shows

f (−3) = 36 ·48+ c and f (3) =−36 ·48+ c.

Given the desire for f (−3) > 0 and f (3) < 0, it turns out that c must be selected so that

−36 ·48 < c < 36 ·48.

This is a very commodious range of choices. I take c = 3 (but you might like 7 or even 21 better). This
choice gives

f (x) = 5x7 +7 ·3x5 −7 ·5 ·33x3 −7 ·5 ·35x +3.

So Eisenstein applies with 3 as the chosen prime. We could make this more mysterious by saying

f (x) = 5x7 +21x5 −945x3 −8,435x +3.

This polynomial is not solvable by radicals.
The Inverse Galois Problem reverses the concern we have just been pursuing: start with a finite group

G and ask whether it is (isomorphic to) a Galois group. Framed this broadly, the answer is always yes. But
tighten the problem some—for instance ask whether G is a Galois group over the rationals—and you arrive
at a problem that is still open here in 2015. It may well be that every finite group is a Galois group over the
rationals. This is one of the great open problems in mathematics.
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26.1 PROBLEM SET 22

ALGEBRA HOMEWORK, EDITION 22

TWENY THIRD WEEK

SOLVABILITY BY RADICALS AND OTHER THINGS GALOIS MAY HAVE KNOWN

PROBLEM 109.
Let p be prime and let H be a subgroup of Sp . Prove that if H has a transposition and an element of order
p, then H = Sp . Provide an explicit counterexample when p is not prime.

PROBLEM 110.
Prove that x5 −2x3 −8x +2 is not solvable by radicals over the fieldQ of rational numbers.

PROBLEM 111.
Let F be a finite field. Prove that the product of all the nonzero elements of F is −1. Using this, prove
Wilson’s Theorem:

(p −1)! ≡−1 (mod p)

for every prime number p.

PROBLEM 112.
Let E be the splitting field of x5 −2 over the fieldQ of rationals. Find the lattice (draw a picture) of all fields
intermediate betweenQ and E.

PROBLEM 113.
Let F be a field of characteristic p, where p is a prime. Let E be a field extending F . Prove that E is a
normal separable extension of F of dimension p if and only if E is the splitting field over F of an irreducible
polynomial of the form xp −x −a, for some a ∈ F .

PROBLEM 114.
Let p be a prime number. Is x5 −5px −p solvable by radicals overQ?

PROBLEM 115.
Prove that every polynomial with rational coefficients whose splitting field over Q has dimension 1225 is
solvable by radicals.
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27
ALGEBRAIC CLOSURES OF REAL-CLOSED FIELDS

Here we want to obtain the result that the field of complex numbers is the algebraic closure of the field of
real numbers. This assertion, traditionally called the Fundamental Theorem of Algebra, has a storied past
and many proofs—indeed there are whole monographs devoted to the exposition of an array of proofs of
this theorem. Many point of the doctoral dissertation of Gauss for the first fully correct proof. Sadly, even
the proof in Gauss’s dissertation also has a gap—let the dedicated graduate students take note!

The shortest proofs come by way of complex analysis: were f (z) a rootless polynomial of positive degree
then 1

f (z) would be analytic on the whole complex plane (i.e. it is holomorphic) and a simple argument
shows it is bounded. So Liouville tells us that it must be constant—an impossibility. Of course, developing
complex analysis to the point of Liouville’s Theorem (or any of a number of other theorems of complex
analysis that would serve) is not entirely immediate. These proofs have the added feature that they apply
to complex functions other than polynomials of positive degree.

The approach we will take uses the apparatus of Galois theory, and has the advantage that it applies to
fields other than the complex numbers.

The field of real numbers has the following three properties:

(a) Every polynomial of odd degree has a root.

(b) There is a set P of elements with the following properties:

(i) 0 ∉ P .

(ii) If a,b ∈ P , then a +b, ab ∈ P .

(iii) For every nonzero element a of the field exactly one of a ∈ P or −a ∈ P holds.

(c) Every element of P has a square root in the field.

You should note that all these properties have an algebraic flavor. Property (a) follows by the familiar
Intermediate Value Theorem of freshman calculus. The set P is just the set of positive reals. Property (c)
again follows by the Intermediate Value Theorem.

Any field that has properties (a), (b), and (c) is called a real closed field. Of course, R is a real closed field,
but there are other real closed fields, even ones that are countable. Indeed, the curious graduate student
might want to start with the fieldQ of rational numbers and begin adding elements (of the reals) to obtain
in the most parsimonious way a real closed field.

184
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The properties stipulated in (b) allow us to define a linear ordering of the field:

a < b
def⇐⇒ b −a ∈ P.

The demonstration that this defines a linear order that has the expected properties with respect to + and
· is left in the hands of the graduate students. We could, of course, reverse this process: start with a well-
behaved linear order and take P = {a | a > 0} and show that P has the attributes given in (b) and (c).

To get a better grip on this notion, the eager graduate students should try proving that in a real closed field
the square of any nonzero element is positive, that 1 is positive, and that the field must have characteristic
0.

The notion of a real closed field was propounded by Emil Artin around 1924 as a means to bring algebraic
methods into play in what had been a largely analytic enterprise: the investigation of the real and complex
numbers. The theorems here are taken mostly from two papers of Emil Artin and Otto Schreier which
appeared in 1926 and 1927. Artin’s famous solution to Hilbert’s Seventeenth Problem, published also in
1927, was based on theory developed by Artin and Schreier in these two papers.

The proof I give below is the work of Artin and Schreier and uses Galois Theory and Sylow’s Theorem.
Artin and Schreier also provided a second argument that lifts a 1795 proof of Laplace of the Fundamental
Theorem of Algebra to the case of real closed fields. Laplace’s proof depended on Kronecker’s Theorem,
which was unknown at the time. In 1816 Gauss published a proof that filled this gap in Laplace’s proof by
an analysis of symmetric polynomials, circumventing the still unknown result of Kronecker.

The Artin-Schreier Fundamental Theorem of Algebra for Real Closed Fields. If R is a real closed field,
then R

[p−1
]

is algebraically closed.

Proof. First notice that
(p−1

)2 = −1 and −1 is not positive. This means
p−1 ∉ R. So x2 +1 is irreducible

over R and R
[p−1

]
is the splitting field of x2 +1. Let C = R

[p−1
]
. According to Kronecker [C : R] = 2. Of

course the members of C have the form
a +b

p
−1

where a,b ∈ R. Conjugation has its usual definition and it is an automorphism of C that fixes each element
of R.

Now let f (x) ∈ C[x]. By f̄ (x) we mean the polynomial obtained from f (x) by applying conjugation to
each of the coefficients. Then f (x) f̄ (x) ∈ R[x] follows easily from the description of the coefficients of the
product of two polynomials together with the fact that conjugation is an automorphism of C.

Observe that f (x) has a root in C if and only if f (x) f̄ (x) has a root in C . So it is enough for us to prove that
every monic polynomial in R[x] of positive degree has a root in C . We already know this for polynomials of
odd degree—they even have roots in R.

We use the following fact.

Contention. Every element of C has a square root in C .

Proof. Let a +b
p−1 be an arbitrary element of C . In case b = 0, this element will belong to R and, since

every positive element of R already has a square root in R, it is easy to see that every element of R has a
square root in C . So we consider that b 6= 0. Then direct computation shows that c +d

p−1 is a square root
of a +b

p−1, where

c = b

2d
and d 2 = −a +

p
a2 +b2

2
.

Notice that −a+
p

a2+b2

2 is a positive member of R. These constraints came about by twiddling with the
quadratic formula.
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This entails that there is no extension E of C with [E : C] = 2 since every polynomial of degree 2 in C[x] is
reducible using the quadratic formula.

Now let f (x) ∈ R[x] be a monic polynomial. Let E be the splitting field of f (x)(x2 + 1) over R. We can
suppose that E extends C. Since our characteristic is 0, we know that E is a Galois extension of R. Pick
natural numbers ` and m, with m odd, so that

|Gal(E/R)| = 2`m.

By Sylow, Gal(E/R) has a subgroup H with |H | = 2`. Let K = InvH. Then [E : K] = 2` and [K : R] = m,
by the Fundamental Theorem of Galois Theory. Since R has no proper extension of odd dimension (every
polynomial of odd degree has a root—so you get a grumble out of Kronecker and the Dimension Formula),
we must have m = 1 and K = R. But then [E : R] = 2`. But recall that E extends C. So

2` = [E : R] = [E : C][C : R] = [E : C]2.

In this way we find [E : C] = 2`−1. If `= 1 then we find E = C, and we have reached the conclusion we desire.
On the other hand, if `> 1, we see that GalE/C is a group of cardinality 2`−1. By Sylow, there is a subgroup
N of this Galois group so that |N | = 2`−2. So [GalE/C : N] = 2. Now every subgroup of index 2 must be a
normal subgroup. The fixed field of N must be a (normal) extension of C with dimension 2. But we know
that C has no extensions of dimension 2. So we reject the possibility that `> 1.

This means every polynomial over R of positive degree has a root in C . So our proof is complete.
The use of Sylow’s Theorem (unknown until the late 1800’s) above and of the Fundamental Theorem of

Galois Theory to produce the fixed field of N can be avoided by following the line of reasoning proposed
by Laplace in 1795. Here is how.

We still want to show that every polynomial f (x) of positive degree with coefficients in R has a root in
C . Let ` by the natural number so that the degree of f (x) is n = 2`m where m is odd. Call this number `
the 2-index of f (x). Our proof is by induction on the 2-index. In the base step, f (x) is a polynomial of odd
degree, so it even has a root in R. For the inductive step, suppose f (x) has 2-index k +1. Let r0, . . . ,rn−1 be
the roots of f (x) in E. For each a ∈ R define

ga(x) = ∏
i< j<n

(
x − (ri + r j +ari r j )

)
Notice that the degree of ga(x) is

(n
2

)
. But(

n

2

)
= n(n −1)

2
= 1

2
2k+1m(2k+1m −1) = 2k m(2k+1m −1)

so that the 2-index of each ga(x) is k. But observe that the coefficients of ga(x) must be fixed by every
automorphism in Gal(E/R). So each ga(x) ∈ R[x]. (This uses a little bit of Galois theory to say that the fixed
field of E is actually R.) So for each a ∈ R we see by the induction hypothesis that

ri + r j +ari r j ∈C

for some choice of the natural numbers i and j with i < j < n. Now there are only finitely many ways to
pick such i and j but infinitely choices for a. As every pigeon knows, we must have two distinct member
of R, say a and b, so that for some choice of i and j

ri + r j +ari r j and ri + r j +bri r j both belong to C .

Subtracting these and dividing away the nonzero b −a, we find first that ri r j and then ri + r j also belong
to C . But everyone can see that

(x − ri )(x − r j ) = x2 − (ri + r j )x + ri r j ,
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which is a polynomial of degree 2 with coefficients in C . But all polynomials in C[x] of degree 2 have roots
in C . So ri ∈C and it is a root of f (x).

Laplace still needed the (much delayed) aide of Kronecker to obtain the splitting field E, but the little bit
of Galois Theory used here can be finessed.

Artin and Schreier also proved the converse.

Artin and Schreier’s Characterization of Real Closed Fields. A field R is a real closed field if and only if
x2 +1 has no root in R and R

[p−1
]

is algebraically closed.

Proof. We only have to prove one direction. So suppose x2 +1 has no root in R and that R
[p−1

]
is alge-

braically closed. First, observe that if a,b ∈ R then there is some c ∈ R so that c2 = a2 +b2. This follows
since the analog of complex conjugation in R

[p−1
]

is an automorphism whose set of fixed points is just
R (an entertainment for graduate students!). Now using the algebraic closedness, pick u ∈ R

[p−1
]

with
u2 = a +bi . Then

a2 +b2 = (a +bi )(a −bi ) = (a +bi )(a +bi ) = u2u2 = (uu)2.

But uū ∈ R since it is fixed by this analog of complex conjugation. So take c = uū. So we see that in R
the sum of two squares is again a square. It follows that the sum of any finite number of squares in again
a square. Now −1 cannot be a square in R since x2 + 1 has no root in R. This also means that 0 cannot
be the sum of a finite number of nonzero squares. Let us take P to be the set of all those members of R
that can be written as a sum of nonzero squares, which is the same as the set of those members of R that
are themselves nonzero squares. In the definition of real closed fields there are four stipulations our set P
must satisfy. They are all easy (aren’t they?).

So it only remains to show that every polynomial in R[x] of odd degree has a root in R. Now every poly-
nomial of odd degree must have an irreducible factor of odd degree. Such an irreducible polynomial must
have a root r in R

[p−1
]

since that field is algebraically closed. But this is a field of dimension 2 over R.
Consider the Dimension Formula and Kronecker’s Theorem. The degree of our irreducible polynomial
must divide 2. The only odd number that divides 2 is 1. So our irreducible polynomial has degree 1. That
means it has a root in R.

In this way, we see that R is a real closed field.

Actually, Artin and Schreier went on to prove that if R is any field so that [A : R] is finite, where A is
algebraically closed, then R is a real closed field. This is an intriguing result: given a field F and its algebraic
closure A there are only three possibilities: A is infinite dimensional over F or the dimension is just 2 (and
F is a real closed field) or the dimension is just 1 (the field F is algebraically closed already). Why not look
into this matter a bit on your own?

You can see from the proof of the Fundamental Theorem of Algebra for Real Closed Fields, that the prop-
erties of the set P were used only to establish that every polynomial in C[x] of degree 2 has a root in C .
After some tampering, you can see that the following statement can also be proven:

Every field of characteristic 0 in which every polynomial of degree 2 has a root and in which
every polynomial of odd degree has a root, is algebraically closed.

In essence, this is the result of Artin and Schreier (and of Gauss) with the “real” part stripped out. In 2007,
Joseph Shipman proved a wide ranging extension of this result, namely:

Every field in which every polynomial of prime degree has a root is algebraically closed.
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27.1 PROBLEM SET 23

ALGEBRA HOMEWORK, EDITON 23

TWENTY FOURTH WEEK

INTERMEDIATE FIELDS AND REAL CLOSED FIELDS

PROBLEM 116.
Let E be the splitting field over Q of x4 −2. Determine all the fields intermediate between E and Q. Draw a
diagram of the lattice of intermediate fields.

PROBLEM 117.
Prove that the field of real numbers has only one ordering that makes it into an ordered field. In contrast,
prove thatQ[

p
2] has exactly two such orderings.

PROBLEM 118.
Let R be a real closed field and let f (x) ∈ R[x]. Suppose that a < b in R and that f (a) f (b) < 0. Prove that
there is some c ∈ R with a < c < b such that c is a root of f (x).

PROBLEM 119.
Let R be a real closed field, let a0 + a1x + ·· ·+ an−1xn−1 + xn = f (x) ∈ R[x], and put M = |a0| + |a1| + · · · +
|an−1|+1. Prove that every root of f (x) which belongs to R belongs to the interval [−M , M ].

PROBLEM 120.
Prove that every element of a finite field can be written as the sum of two squares.

PROBLEM 121.
Let F be a field. Prove that the following are equivalent.

(a) F is not algebraically closed but there is a finite upper bound on the degrees of the irreducible poly-
nomials in F[x].

(b) F is a real closed field.
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28
GAUSS ON CONSTRUCTING REGULAR POLYGONS BY

STRAIGHTEDGE AND COMPASS

There were two compass-and-straightedge problems from the ancient Greeks left unresolved earlier in
our development: squaring the circle and determining which regular polygons are constructible. Squaring
the circle is handled in a different lecture where it is shown that π is not an algebraic number, and so
the number

p
π, which is the length of side of a square whose area is the same as the unit circle, is not

constructible.
Here we take up the construction of regular polygons.

The drawing above shows how a regular pentagon and a regular decagon are related. Recalling that it is
easy to bisect line segments, it is clear that the regular pentagon is constructible if and only if the regular
decagon is constructible. Here there is nothing special about the numbers 5 and 10. This idea holds for n
and 2n where n is any natural number larger than 2. Noting that squares are constructible, this reduces
the problem of determining which regular polygons are constructible to the constructibility of those with
an odd number of sides.

Euclid knew how to construct regular polygons with 3,5, and 15 sides. But the ancient geometers had
no constructions for 7,9,11, or 13. It turns out that none of those four regular polygons are constructible.
When Gauss was 19 in 1796, he discovered construction for the case of 17—for the regular heptadecagon.

We carried out our earlier development of constructible numbers before we developed Galois theory. We
showed there that a (real) number r was constructible if and only if it is captured in some square root tower
overQ. We can now do a little better.

189
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A Characterization of the Field of Constructible Reals. Let r be a real number. The number r is con-
structible if and only if r is algebraic over Q and [K : Q] is a power of 2, where K is the splitting field of the
minimal polynomial of r .

Proof. First suppose that r is constructible. By the Basic Theorem for the Field of Constructible Reals,
which is our earlier result, we know that Q[r ] is engulfed in a square root tower over Q. Our difficulty is
that K is probably larger than Q[r ]. We apply the same devise to the square root tower that we applied
to the radical tower to get Galois’ Criterion for Solvability by Radicals. In particular, Lemma 25.0.3 works
here—just note that the prime p = 2 in this case. Then K will be engulfed by this enhanced square root
tower.

For the converse, we see that K is a Galois extension ofQ. By the Fundamental Theorem of Galois Theory,
we see that the Galois group has order 2r for some positive natural number r . So the Galois group is a p-
group (with p = 2) and that makes it solvable. A composition series for the Galois group gives us a normal
series with quotient of size 2. By way of the Fundamental Theorem of Galois Theory this normal series is
associate with a series of intermediate fields

Q= L0 ⊆ L1 ⊆ ·· · ⊆ Lr = K

where Lk+1 is a normal extension of Lk and [Lk+1 : Lk ] = 2, for each k < r . We would be finished if we could
see that this tower of fields is a square root tower. So pick k < r and let u ∈ Lk+1 with u ∉ Lk . Since there
are no integers between 1 and 2, we see that Lk+1 = Lk [u]. So the minimal polynomial of u over Lk has
the form x2 +2bx + c. Now just complete the square! x2 +2bx + c = (x +b)2 + c −b2. Let v = u +b. Then
Lk [u] = Lk [v] and v is a root of x2 + (c −b2). This means that Lk+1 is obtained from Lk by adding a square
root of some element of Lk .

We could have easily reframed this characterization in terms of constructible complex numbers. A regu-
lar n-sided polygon is constructible if and only if a primitive nth root of unity is constructible. Considering
n to be odd, we could first factor n into a product of (odd) primes. Then we could tackle the question of
which regular p-sided polygons are constructible for various odd primes p. Gauss discovered that only cer-
tain kinds of odd primes work out, namely the Fermat primes. These are primes that are natural numbers
of the form

22k +1.

In the 1650’s Fermat conjectured that each number of this form is prime. However, Leonard Euler refuted
this conjecture in 1732 by showing

232 +1 = 641 ·6700417.

Eisenstein raised the problem of showing that the number of Fermat primes is infinite. The only Fermat
primes known in 2015 were the ones known to Fermat, namely the first 5:

3,5,17,257, and 65,537.

Fact. Let m be a natural number. If 2m +1 is a prime number, then m = 2n for some natural number n.

Proof. Let us suppose, to the contrary, that b is an odd prime that divides m. Pick the natural number c so
that m = bc. Now since b is odd, it is easy to check that

xb +1 = (x +1)(xb−1 −xb−2 +·· ·−x1 +1).

Plugging 2c in for x we find

2m +1 = (2c )b +1 = (2c +1)(2c(b−1) −·· ·+1).

In this way we see that 2m +1 is not prime since it is divisible by 2c +1.
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So one could say, more easily, that a prime number p is a Fermat prime provided there is a natural num-
ber m so that p = 2m +1.

Gauss’s Characterization of Constructible Regular Polygons. Let n be a natural number larger than 2. A
regular n-sided polygon is constructible if and only if n factors as 2e p0p1 . . . pr−1 where e is a natural number
and p0, p1, . . . , pr−1 are distinct Fermat primes.

To prove this theorem, we need to know more about primitive roots of unity and their minimal polyno-
mials. Fix n. We know the nth roots of unity constitute a subgroup of the multiplicative group C× of the
field of complex numbers. This subgroup has n elements, a finite number, and is therefore cyclic. So this
group is isomorphic with the group 〈Zn ,+,−,0〉. The single elements that can generate this last group we
know to be those natural numbers less than n that are relatively prime to n. (Remember how nice cyclic
groups are?) So the number of primitive nth roots of unity is ϕ(n), Euler’s totient function: the number of
natural numbers less than n that are relatively prime to n. So consider the function

λn(x) := ∏
ζ is primitive

(x −ζ)

where the product is over all the primitive nth roots of unity. Let E be the splitting field of xn − 1 over
the rationals. Of course E =Q[ζ], where ζ is any primitive root of unity. Any automorphism in the Galois
group of E over Q must take one primitve nth root of unity to another. So such an automorphism must
fix each coefficient of λn(x). Since the fixed field of this Galois group is Q, we see that λn(x) has rational
coefficients. The polynomials of the form λn(x) are called cyclotomic polynomials. They are monic.

Now suppose that ξ is an nth root of unity. The subgroup of the group of all nth roots of unity that is
generated by ξ must have an order that divides n, according to Lagrange. Say that order is d . Then ξ is a
primitive d th root of unity and d | n. From this we see

xn −1 = ∏
d |n

λd (x) =λn(x)
∏

d |n, d<n
λd (x).

The diligent graduate student will spot here the key to showing by induction on n, that the cyclotomic
polynomials actually have integer coefficients. The next theorem is due to Gauss.

Theorem on the Irreducibility of Cyclotomic Polynomials. Every cyclotomic polynomial is irreducible
overQ.

Proof. Suppose that λn(x) = f (x)g (x) in Z[x], where f (x) and g (x) are monic and f (x) is irreducible in
Z[x] (and hence irreducible in Q[x]). Let ξ be a root of f (x) and suppose that p is any prime number that
does not divide n. Then ξp is a primitive nth root of unity (what else can its order be?). This means that ξp

is a root of λn(x). So there are two cases.

Case: ξp is a root of f (x) for all primes p not dividing n and all roots ξ of f (x).
In this case, it must be that if r is a natural number relatively prime to n, then ξr is a root of f (x). Since
every primitive nth root of unity looks like ξr where r and n are relatively prime, we see that (x −ξ) divides
f (x) for every primitive nth root ξ of unity. But this means λn(x) | f (x). Since λn(x) = f (x)g (x) and both
f (x) and λn(x) are monic, we get λn(X ) = f (x). In short, λn(x) is irreducible.

Case: ξp is not a root of f (x) for some prime p not dividing n and some root ξ of f (x).
Well, we must reject this case.

Recalling that λn(x) = f (x)g (x), we see that ξp is a root of g (x). This means that ξ is a root of g (xp ). Now
f (x) is the minimal polynomial of ξ so that f (x) | g (xp ). Let us say that g (xp ) = f (x)h(x). Recall that there
is also some k(x) ∈Z[x] so that xn −1 =λn(x)k(x) = f (x)g (x)k(x).

We know the map ρ : Z→Zp that sends each integer to its residue modulo p is a homomorphism. Using
the map extension property for polynomial rings this map extends to a homomorphism fromZ[x] toZp [x].
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To conserve notation, let us use ρ for the extension as well. Now Z×
p , the multiplicative group of nonzero

elements of Zp has p −1 elements. So ap−1 = 1 for every nonzero element of Zp . This means that ap = a
for every element of Zp . A bit of twiddling (do it, why not) shows ρ( f (x))ρ(h(x)) = ρ(g (xp ) = (ρ(g (x)))p .
So ρ( f (x)) and ρ(g (x)) must have an irreducible factor. This means that ρ(xn −1) = xn −ρ(1) must have
multiple roots. On the other hand, the derivative of xn −ρ(1) (in Zp [x]) is ρ(n)xn−1 and ρ(n) is not zero
since p does not divide n. By our criterion for multiple roots, we see that xn −ρ(1) does not have multiple
roots, a contradiction. So we must reject this case.

Proof of Gauss’s Characterization of Constructible Regular Polygons. We need only consider the case when
n is odd. Let n = pe1

1 . . . per−1
r−1 , where p1, . . . , pr−1 are distinct odd primes and e1, . . . ,er−1 are positive natural

numbers. Recalling that ϕ is Euler’s totient function, we get

ϕ(n) =ϕ(pe1
1 ) · · ·ϕ(per−1

r−1 ) = pe1−1
1 (p1 −1) · · ·per−1−1

r−1 (pr−1 −1).

Now ϕ(n) is the degree of λn(x). But now we know that λn(x) is irreducible and so it must be the minimal
polynomial of a primitive nth root of unity. Hence ϕ(n) is the dimension of its splitting field. So we know
that a regular n-sided polygon is constructible if and only if ϕ(n) is a power of 2. From the equation dis-
played above, we see this is equivalent to saying that e1 = ·· · = er−1 = 1 and each pi −1 is a power of 2—that
is each pi = 2mi +1 for some natural number mi .

There is one point above that might have made you nervous. We seem to need that the Euler totient
function ϕ respects multiplication. It really doesn’t. But it is true that if n and m are relatively prime
natural numbers then ϕ(nm) = ϕ(n)ϕ(m). I leave the demonstration of this in the trustworthy hands of
every graduate student who plans to pass those PhD exams.

It would be striking but it is conceivable that the five known Fermat primes exhaust the supply of Fermat
primes. In that case, Gauss’s theorem would tell us that there are only 32 odd numbers n so that the regular
n-sided polygon is constructible by straight-edge and compass.
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29
THE LINDEMANN-WEIERSTRASS THEOREM ON

TRANSCENDENTAL NUMBERS

There are only countably many real numbers that are algebraic over the field of rational numbers. So
almost every real number is transcendental. On the other hand, the real numbers that we can describe,
in one manner or another, appear to be preponderantly algebraic. This is not too surprising, since even
being generous with the notion of description, leads to only countably many descriptions (all of which can
be typed in at a keyboard, say) and hence to only countably many describable reals. Within this smaller
set it may be that algebraic numbers have a more substantial presence.

In 1844, Liouville cooked up the earliest examples of describable reals that are transcendental. These
designer reals are likely interesting only for the property that they are transcendental. It wasn’t until 1873
that Charles Hermite proved that e is transcendental. In 1882, Ferdinand Lindemann built on Hermite’s
methods to prove that π is transcendental. In 1885, Karl Weierstrass reframed Lindemann’s proof to obtain
the general result that is the topic of this lecture.

Lindemann’s finding that π is transcendental settled the millennia-old problem of whether the circle
could be squared using just straightedge and compass—that is whether a square could be constructed
with the same area as the unit circle. Lindemann’s theorem is one of the great victories of mathematics.

29.1 FORMULATION OF THE LINDEMANN-WEIERSTRASS THEOREM

To formulate the theorem, we need a new notion. Let E be a field extending F. Let u0, . . . ,un−1 ∈ E
be distinct. We say that these elements are algebraically independent over F provided that whenever
f (x0, . . . , xn−1) ∈ F[x0, . . . , xn−1] such that f (u0, . . . ,un−1) = 0 then it must be that f (x0, . . . , xn−1) is the zero
polynomial.

The Lindemann-Weierstrass Theorem. If u0, . . . ,un−1 are distinct complex numbers that are algebraic over
the rationals and are also linearly independent over the rationals, then the complex exponentials

eu0 ,eu1 , . . . ,eun−1

are algebraically independent over the field of complex numbers that are algebraic over the rationals.

Recall e s+iθ = e s(cosθ+ i sinθ) for all real numbers s and θ. Or you can define the complex exponential
function in a number of other ways familiar from complex analysis.
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Before trying to prove anything like the Lindemann-Weierstrass Theorem, here are two corollaries.

Hermite says, “e is transcendental”.

Proof. Let u = 1. It is immediate that 1 is algebraic and that {1} is linearly independent over Q. So the
theorem says e1 is algebraically independent over Q. This means that e is not the root of any polynomial
inQ[x] of positive degree. So e is transcendental.

Lindemann says, “π is transcendental”.

Proof. We all know that e iπ =−1. So e iπ is algebraic. This means that {e iπ} is not algebraically independent
over Q. By the theorem iπ cannot be algebraic since {iπ} is certainly linearly independent over Q. But i is
algebraic and we know that the product of algebraic numbers is algebraic, so π is not algebraic. That is, π
is transcendental.

Here is a closely related theorem.

The Lindemann-Weierstrass Theorem, Alternate Version. If u0, . . . ,un−1 are distinct algebraic numbers,
then the complex exponentials eu0 , . . . ,eun−1 are linearly independent over the field of complex numbers that
are algebraic overQ.

Proof of the Lindemann-Weierstrass Theorem from the Alternate Version. Let u0, . . . ,un−1 be distinct com-
plex algebraic numbers that are linearly independent over Q. Let 〈k0, . . . ,kn−1〉 and 〈`0, . . . ,`n−1〉 be two
different sequences of natural numbers. Then∏

i<n
(eui )ki = e

∑
i<n ki ui and

∏
i<n

(eui )`i = e
∑

i<n `i ui .

Notice that
∑

i<n ki ui 6= ∑
i<n `i ui by the linear independence of the ui ’s. So the corresponding products

are also different. Now suppose we are given m distinct sequences of natural numbers. This would re-
sult in m pairwise distinct products of the form above. By the Alternate Version, these products will be
linearly independent over the algebraic numbers. But this is just another way of saying that the complex
exponentials eu0 , . . . ,eun−1 are algebraically independent over the algebraic numbers.

The graduate student in the mood for a challenge should figure out how to derive this alternate version
from the Lindemann-Weierstrass Theorem itself. In any case, a proof of the Alternate Version, which omits
mention of algebraic independence, would give us a proof of the Lindemann-Weierstrass Theorem. The
Alternate Version is also easy to apply. The graduate students should try their hands at establishing the
transcendence of e and π using this Alternate Version.

By way of preparation for proving the Alternate Version of the Lindemann-Weierstrass Theorem, we need
to develop one more notion.

29.2 ALGEBRAIC INTEGERS

Here is a question that may seem, at first glance, to be so obvious that it barely needs to be asked:

“How can one pick out the subset of integers from the set of rationals?”

Of course, we saw how to build the rationals from the integers—we even know how to do this fraction field
trick with any integral domain. However, the question above asks for a reversal of this trick. We could
invent an infinite process that collects the integers: first throw in 0, then throw in 1 and −1, then 1+1 and
(−1)+ (−1), . . . . But is there another way, a finite elementary way?
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We look at one ingenuous way here. Let E be a field and let R be a subring of E. We say that u ∈ E is
integral over R provided u is a root of a monic polynomial belonging to R[x]. When R is actually a subfield
of E the integral elements correspond to the elements that are algebraic over R. When E =C and R =Z we
refer to the integral elements as algebraic integers.

Fact. A complex number u is an algebraic integer if and only if u is algebraic over Q and the minimal
polynomial of u overQ actually belongs to Z[x].

Proof. Let m(x) be the minimal polynomial of u over Q. It is evident that if m(x) ∈ Z[x], then u is an
algebraic integer.

So now suppose that u is an algebraic integer and pick f (x) ∈ Z[x] so that f (x) is monic and u is a root
of f (x). Then we have that m(x) | f (x) in Q[x]. Now f (x) factors (uniquely) into irreducible monic factors
in Z[x]. We also know that every irreducible in Z[x] is irreducible in Q[x]. This means our factorization of
f (x) in Z[x] is also a factorization of f (x) in Q[x] into irreducibles. So m(x) must be an associate (over Q)
of one of the factors of f (x). But the factors of f (x) as well as m(x) are monic. This forces the unit involved
in the association to be 1 and so m(x) must be one of the irreducible factors of f (x), which were all inZ[x].
So m(x) ∈Z[x], as desired.

Theorem on Rational Algebraic Integers. A rational number is an algebraic integer if and only if it is an
integer. A complex number u is algebraic if and only if there is some b ∈ Z with b 6= 0 such that bu is an
algebraic integer.

Proof. Evidently, every member ofZ is an algebraic integer. For the converse, suppose that u is an algebraic
integer that happens to be rational. Then x −u is the minimal polynomial of u overQ. By the fact above, it
belongs to Z[x]. Hence, u ∈Z.

Now let u be a complex number that is algebraic over Q. Let m(x) ∈Q[x] be the minimal polynomial of
u. Let b ∈Z be the product of the denominators of the coefficients of m(x). Suppose

m(x) = a0 +a1x +a2x2 +·· ·+an−1xn−1 +xn .

Let
f (x) = bn a0 +bn−1a1x +bn−2a2x2 +·· ·+ban−1xn−1 +xn .

Then f (x) ∈ Z[x] and f (x) is monic. Every graduate student will check that f (bu) = bnm(u) = 0. So bu
is an algebraic integer. For the converse, if bu is a root of a monic g (x) ∈ Z[x]. Then u is a root of g (bx),
which is certainly a polynomial in Z[x] ⊆Q[x], even if it is not monic. So u is algebraic overQ.

Let E be any algebraic extension ofQ. We make the harmless assumption that C is an extension of E. The
following characterization of algebraic integers proves useful.

Theorem Characterizing Algebraic Integers. Let E be an algebraic extension of Q and let u ∈ E. The ele-
ment u is an algebraic integer if and only if Z[u] is finitely generated as a Z-module. Moreover, if Z[u] is
finitely generated as a Z-module and w ∈Z[u], then w is an algebraic integer.

Proof. First, suppose that u is an algebraic integer. Let m(x) ∈ Z[x] be its minimal polynomial. Say it
is of degree n. Then since m(u) = 0 and m(x) is monic, we can express un as a linear combination of
1,u,u2, . . . ,un−1 using coefficients fromZ. The same applies to um for all m ≥ n. But 1,u,u2, . . . ,un ,un+1, . . .
generate Z[u] as a Z-module. Since we can make do with just the first n powers of u, we find that [u] is
finitely generated.

For the converse and the “moreover” part of the theorem, suppose Z[u] is finitely generated as an Z-
module and that w ∈ Z[u]. Let v0, . . . , vn−1 be such a generating set. Then notice that w vi ∈ Z[u] for
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each i < n. This means that we can find integers ai ,0, ai ,1, . . . , ai ,n−1 so that uw vi = ai ,0v0 + ai ,1v1 + ·· · +
ai ,n−1vn−1. We get a whole system of equations that we can represent in matrix form:

w


v0

v1
...

vn−1

=


a0,0 a0,1 . . . a0,n−1

a1,0 a1,1 . . . a1,n−1
...

...
. . .

...
an−1,0 an−1,1 . . . an−1,n−1




v0

v1
...

vn−1


We write this more compactly as

w v̄ = Av̄ .

So a bit of rearrangement yields
(w I − A) v̄ = 0.

Now v̄ cannot be the zero vector. So it must be that det(w I − A) = 0. But det(xI − A) is the characteristic
polynomial of the integer matrix A—it is a monic polynomial with integer coefficients and w is a root of it.
So w is an algebraic integer, as desired.

While this theorem was framed with reference to the ring Z and its field of fractions Q and an algebraic
extension E of that field of fractions. The proof works quite generally.

Graduate students know the routine that will replace the single element u by a finite system of elements
u0, . . . ,um−1 in this characterization.

Now consider the set OE of all algebraic integers belonging to E . Consider algebraic integers u and v .
Then Z[u, v] will be finitely generated as a Z-module. (You did that routine bit, right?) So each element of
Z[u, v] is an algebraic integer. This means, −u,u + v, and uv are all algebraic integers. In other words, OE

is a subring of E.

29.3 PROVING THE LINDEMANN-WEIERSTRASS THEOREM

There is one more useful idea before we get back to the Lindemann-Weierstrass Theorem.
Suppose that E is a Galois extension ofQ. We devise a ring, RE, which, while it may strike you as peculiar,

has a number of useful features.
The elements of RE are just those functions f : E → E that output the value 0 except at finitely many

inputs. The function that is constantly 0 is one such function and it will serve as the zero of our ring.
Moreover, in our ring we add just the way we added functions in calculus:

( f + g )(u) := f (u)+ g (u).

It is the multiplication in our ring that is peculiar. In the first place, the identity element of this ring will be
the function 1 defined via

1(u) :=
{

1 if u = 0

0 if u 6= 0

Here is how to define the strange product:

( f g )(u) := ∑
v+w=u

f (v)g (w),

and we can get away with this definition since the sum above is finite, there being only finitely many values
of v where f (v) is different from 0. At any rate, we have a system consisting of the nonempty set RE that is
equipped with something we called addition, something we called multiplication, a negation (well, what
else could it be?), and a couple of elements called zero and one. It at least has a chance to be a ring. The
following lemma expresses some basic properties of this construction.
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Lemma. Let E be a Galois extension of Q and let G be its Galois group. Then RE is an integral domain and
for all σ ∈ G and all f ∈ RE both σ◦ f and f ◦σ are elements of RE.

Proof. The graduate students will know the way to check that RE is indeed a commutative ring in which
the zero and the one are distinct. To see that the product of two nonzero elements is again nonzero, we
impose a strict linear ordering@ on E as follows:

a +bi @ c +di if and only if a < c or both a = c and b < d ,

where a,b,c, and d are real. This is usually called the lexicographic order. It respects addition. Now sup-
pose that f and g are nonzero elements of RE. There are only finitely many (but at least one) elements of E
that are assigned nonzero values by f . Let u be the one that is largest with respect to@. Likewise, let v be
the largest element, with respect to@ that g assigns a nonzero value. But then ( f g )(u + v) = f (u)g (v) 6= 0.
So RE is an integral domain.

Now let f be an element of RE, let σ be an element of the Galois group. Plainly, σ◦ f : E → E and since
σ is an automorphism it sends 0 to 0. So σ◦ f can assign nonzero values to only finitely many inputs (in
fact, the same inputs assigned 0 to f ). This means σ◦ f belongs to RE. To handle f ◦σ notice that for each
u ∈ E our polynomial of minimal degree has integer coefficients. Hence, σ fixes all the coefficients of this
minimal polynomial. Thus, σ(u) must be a root of the same minimal polynomial. Therefore σ(u) is again
in E . So f ◦σ : E → E. And once again you can see, if you look hard enough, that this composite function
only assigns finitely many inputs nonzero values.

Proof of the Lindemann-Weierstrass Theorem, alternate Version. The proof is by way of contradiction. At
the outset we assume there is that following kind of set-up: A system 〈u0, . . . ,un−1〉 of distinct algebraic
numbers and a system 〈c0, . . . ,cn−1〉 of algebraic numbers, not all 0, so that

c0eu0 +·· ·+cn−1eun−1 = 0.

We will call such a set-up a contradictory set-up. The theorem we are trying to prove asserts that there are
no contradictory set-ups.

The first part of this proof involves devising contradictory set-ups with better and better properties. Once
we have too many good properties we will have our contradiction—it will be too good to be true.

Suppose we have a contradictory set-up. Each ui in this set-up is the root of some polynomial of minimal
degree that belongs to Z[x] (it may not be monic). Any other root of this polynomial will also be algebraic.
Let us expand our set-up by including all these other roots and do it for each ui . Then this expanded set-up
is again contradictory.

So let us replace our original contradictory set-up with this expanded one. (So we won’t have to introduce
new elements with new indices.) Now the elements u0, . . . ,un−1,c0, . . . ,cn−1 are all algebraic. Let E be a
Galois extension ofQ that includes all these elements. Denote the Galois group of this extension by G.

Define the map Ψ : RE →C via
Ψ( f ) = ∑

u∈E
f (u)eu .

I leave it in the trustworthy hands of the graduate students to prove that this map is a homomorphism.
(The only challenging bit concerns the preservation of the peculiar multiplication—just remember ev+w =
ev ew .)

By letting f ∈ RE be the function that assigns to each ui the value ci and assigns 0 to every thing else, we
see that f belongs to the kernel of Ψ, which is therefore nontrivial. (Indeed, the kernel of Ψ is the place to
look when devising contradictory set-ups.) Now let

g = ∏
σ∈G

(σ◦ f ).
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Observe that each σ ◦ f is a nonzero element of RE. Since RE is an integral domain, we see that g is also
nonzero. On the other hand, since the identity permutation is one of the choices for σ, we see that f itself
is one of the factors that make up g . So g is in the kernel ofΨ. But we also see from the equation displayed
above, that τ◦ g = g for every τ ∈ G. This entails that τ(g (v)) = g (v) for all τ ∈ G and all v ∈ E . As Q is the
fixed field of G by the Fundamental Theorem of Galois Theory, we have that g (v) ∈ Q for all v ∈ E , This
gives us

0 =Ψ(g ) = ∑
u∈E

g (u)eu

So by using those algebraic numbers that g gives nonzero values, we have devised a contradictory set-
up where the linear combination has rational coefficients. By multiplying this linear combination by an
integer to cancel denominators, we obtain a contradictory set-up in which the linear combination has
integer coefficients. For convenience, we redefine g so that it produces these integers, rather than the
original rationals.

Once more it is harmless to suppose our new system u0, . . . ,un−1 of algebraic integers is complete in the
sense that if v is the image under σ of some algebraic number on our list, where σ ∈ G, then v is also on
the list.

Observe that G partitions the set E into orbits.
Now define

h = ∏
σ∈G

(g ◦σ).

You see that h is not the zero of RE and that h belongs to the kernel ofΨ and that all the values assigned by
h are actually integers. But this time h ◦τ = h for all τ ∈ G. That is h(v) = h(w), if v and w lie in the same
orbit. So we find

0 = ∑
u∈E

h(u)eu ,

where all the coefficients are integers and any two algebraic numbers that lie in the same orbit produce
the same coefficient.

We are once more in position to revise our contradictory set-up. We replace our system of algebraic
numbers with those algebraic numbers which h assigns nonzero values, being sure to add all their images
by means of automorphisms in G. So now we have a contradictory set-up in which the coefficients of the
linear combination are all integers and those coefficients that are associated with algebraic numbers in the
same orbit are themselves the same.

We need one more revision. We want 0 to be among the algebraic numbers in our contradictory set-up.
Pick an algebraic number w so that h(w) 6= 0. Now define m : E → E by

m(−v) =
{

h(w) if w and v lie in the same orbit

0 otherwise.

Because the orbits here are finite, we find m belongs to RE. Finally, put t = mh. Since h belongs to the
kernel of Ψ so does the function t . Moreover, t is not the zero function, since neither m nor h are and we
know RE is an integral domain. Now observe

t (0) = (mh)(0) = ∑
u+v=0

m(u)h(v) = ∑
v∈E

m(−v)h(v) = a(h(w))2,

where a is just the number of elements in the orbit of w . To retain that nice feature about orbits, we have
to show that t ◦σ = t for all σ in the Galois group. So let σ be an element of the Galois group and u ∈ E .
Then

t (σ(u)) = (mh)(σ(u)) = ∑
v+z=σ(u)

m(v)h(z) = ∑
σ−1(v)+σ−1(z)=u

m(v)h(z).



29.3 Proving the Lindemann-Weierstrass Theorem 199

But since v =σ(σ−1(v)) and likewise for z, the last sum becomes∑
σ−1(v)+σ−1(z)=u

m(σ(σ−1(v)))h(σ(σ−1(z))) = ∑
q+r=u

m(σ(q))h(σ(r )) = t (u).

So we find indeed that t ◦σ= t for all members σ of the Galois group.
Now as a last revision, consider the contradictory set-up where the system of ui ’s consists of those al-

gebraic numbers to which t assigns nonzero values, as well as all the algebraic numbers that lie in orbits
including one of the algebraic numbers that t assigns a nonzero value. The integer 0 will be among these
ui ’s and the associated linear combination will be Ψ(t ) = 0 and it will have two additional properties: all
its coefficients will be integers and the coefficients associated to ui ’s that belong to the same orbit will be
the same. Also observe that the coefficient associate with 0 will be t (0), which is not 0.

The Galois group G partitions {u0, . . . ,un−1} into orbits. Say there are m of them: U0, . . . ,Um−1. Then the
linear combination in our contradictory set-up looks like

0 = c0 + c1
∑

u∈U0

eu +·· ·+cm−1
∑

u∈Um−1

eu

where each c j is an integer and we know c0 6= 0.
The last stage in our proof is to show that there is a polynomial q(x) with integer coefficients that very

closely approximates ex at each of the ui ’s. (If you have seen such a polynomial approximation, then it is
here that you might suspect the hand of Weierstrass.)

Lemma. For any large enough prime number p there is an integer k not divisible by p and a polynomial
q(x) all of whose coefficients are integers divisible by p such that∣∣keu −q(u)

∣∣< 1

p
for every u listed in our contradictory set-up except u = 0,

and q(u) is an algebraic integer for each u in our contradictory set-up except u = 0.

The threshold for that “large enough” depends on the sequence uo , . . . ,un−1 in our ultimate contradictory
set-up. This lemma is suppose to allow us to take that last linear combination and replace all those eu ’s
by corresponding q(u)’s while keeping the whole mess close to 0. The upshot is intended to be a positive
integer strictly less than 1, certainly a contradiction, as we desired.

Since the proof of the lemma above runs to a couple of pages, let’s finish the proof of the Alternate Version
of the Lindemann-Weierstrass Theorem (and hence the Lindemann-Weierstrass Theorem) first.

0 = c0 + c1
∑

u∈U0

eu +·· ·+cm−1
∑

u∈Um−1

eu

0 = kc0 + c1
∑

u∈U0

keu +·· ·+cm−1
∑

u∈Um−1

keu

Let z := kc0 + c1
∑

u∈U0

q(u)+·· ·+cm−1
∑

u∈Um−1

q(u) (∗)

Subtracting we get

−z = c1
∑

u∈U0

(keu −q(u))+·· ·+cm−1
∑

u∈Um−1

(keu −q(u))

Let λ be the maximum of the integers c1, . . . ,cm−1. Then using the triangle inequality and the lemma, we

get

|z| ≤ nλ

p
recall n is the number of u’s in our contradictory set-up

|z| < 1 since the lemma allows us to pick arbitrarily large p’s.
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On the other hand, each of the sums in (∗), where z was defined, is left fixed by each automorphism in our
Galois group. The fixed field of this Galois group is Q. So each of these sums is an algebraic integer that is
also rational. The only rational algebraic integers are the ordinary integers. Also, because each coefficient
of q(x) is divisible by p, we see that each of the sums is, as well. But kc0 is not divisible by p, provided we
take p large enough that it cannot divide c0. This means that z will be an integer that is not divisible by p.
So the integer z is not 0. This means that |z| is a positive integer that is less than 1. Our contradiction, at
last!

Proof of our Lemma. It is possible to say immediately what the threshold for the “any large enough prime
number” is and also what the value of k is, in terms of p. However, then these values would seem to be
without motivation. Instead, we allow the values to become visible during the course of the proof. So for
now, just image p is some very large prime number.

We will make the polynomial q(x) from the polynomials of minimal degree of our various u’s. Let F (x) be
the product of all the distinct such minimal polynomials, except the minimal polynomial of 0. Then F (x)
will be a polynomial with integer coefficients, its constant term won’t be 0, and it will have all our u’s as
roots, with the exception of 0. We reserve s for the degree of F (x). The polynomial F (x) won’t do for q(x)
because we have no reason to think of it as a good approximation to ex and also because its coefficients
may well not be divisible by p, a property we need. We have another trouble—q(u) is suppose to turn into
a algebraic integer. Pick an integer d so that duk is an algebraic integer for each k ≤ s +1 and for each u
from our contradictory set-up

It is suggestive to recall the Taylor series for the exponential function:

ex = x0

0!
+ x1

1!
+ x2

2!
+ x3

3!
+·· ·

Let us try

G(x) = d p xp−1

(p −1)!
(F (x))p = (d xF (x))p−1 dF (x)

(p −1)!

This, at least, has the look of a term of the Taylor series. We make this into a series:

H(x) :=G (0)(x)+G (1)(x)+G (2)(x)+·· ·

where we are taking formal derivative of the polynomial G(x). Notice that H(x) is really a polynomial, since
G(x) is a polynomial and eventually all those derivative will vanish. The graduate students are welcome to
tackle those derivatives with the help of the Product Rule and the Chain Rule!

To get a better idea, let
(F (x))p = b0 +b1x +b2x2 +·· ·+br−1xr−1 +br xr .

Recall we know that F (x) has integer coefficients. So

xp−1 (F (x))p = b0xp−1 +b1xp +b2xp+1 +·· ·+br−1xp+r−2 +br xr+p−1.

So you can see that G ( j )(0) = 0 for all j < p −1 and G (p−1)(0) = d p b0. A little bit of diligence gives

G (p)(x) = d p

[
p !

(
p +1

1

)
b1 +p !

(
p +2

2

)
b2x +p !

(
p +3

3

)
b3x2 +·· ·

]

So all the coefficients of G (p)(x) are integers divisible by p. The same holds for the coefficients of G ( j )(x)
when j ≥ p.

So let us try
q(x) :=G (p)(x)+G (p+1)(x)+·· ·
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and we will take
k := H(0) =G (0)(0)+G (1)(0)+·· · =G (p−1)(0)+G (p)(0)+·· ·

We have arranged that F (u) = 0 for each nonzero u’s in our contradictory set-up. If you were virtuous
with the Product Rule and the Chain Rule above, you will agree that G ( j )(u) = 0 for each of our nonzero
u’s as long as j < p. [In case, you were wondering, this is the reason we raised F (x) to the pth power when
we defined G(x).] But also, examining the second form given when G(x) was defined you will see that
when one of our u’s is plugged in for x the result will be algebraic integers even before all the terms in the
polynomials are added together. Due diligence with the Product Rule and the Chain Rule should convince
you that the same applies to each derivative of G(x). Hence q(u) will be an algebraic integer whenever u is
an algebraic number from our contradictory set-up.

We must also ensure that H(0) is not divisible by p. Recall that G (p−1)(0) = d p b0, where b0 is the pth power
of the product of the constant terms of those polynomials of minimal degree. On the other hand, G ( j )(0) is
divisible by p whenever j ≥ p. So we can ensure that H(0) is not divisible by p just by insisting that p is a
prime larger than any that divide any of the constant terms of those minimal polynomials or that divide d .

What remains of the proof of the lemma is to contend with the inequality. Reformulate it as∣∣H(0)eu −H(u)
∣∣< 1

p
for all of our u’s.

Establishing this would complete the proof of the lemma. Rewriting a bit we get

|eu ||e−u H(u)−H(0)| < 1

p
for all of our u’s. (?)

Notice

H(x) =G(x)+G (1)(x)+G (2)(x)+G (3)(x)+·· ·
H (1)(x) = G (1)(x)+G (2)(x)+G (3)(x)+·· ·

Now let ϕ(x) := e−x H(x). Observe that ϕ(0) = H(0), so

e−u H(u)−H(0) =ϕ(u)−ϕ(0).

This last is reminiscent of the one side of the Mean Value Theorem from calculus on the reals. Still, an
argument for the Mean Value Theorem in several variables (but applied on the complex plane) yields

|ϕ(u)−ϕ(0)| ≤ |ϕ′(v)||u −0| for some v on the line seqment joining u and 0.

So we see that (?) becomes

|ueu ||ϕ′(v)| < 1

p
for each u, where v is between u and 0. (??)

So consider the derivative.

ϕ′(x) =−e−x H(x)+e−x H (1)(x)

=−e−x [
H(x)−H (1)(x)

]
=−e−xG(x).

Hence

|ϕ′(x) = |e−x ||G(x)|.
Let ρ be the maximum of the |u| as u ranges through the finitely many algbraic integers in our contradic-

tory set-up and let D be the disk in the complex plane about 0 with radius ρ.
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|ϕ′(x)| ≤ eρ|G(x)| for all x ∈ D.

Putting this together, we see that it is enough to establish

ρe2ρ|G(x)| < 1

p
for each x ∈ D . (???)

Now recall

G(x) = d p xp−1

(p −1)!
(F (x))p

where F (x) was the product of the minimal polynomials of the nonzero u’s. So we can rewrite |ρeρG(x)|
as 1

(p−1)! (|K (x)|)p , where K (x) is a function that depends on our u’s, but not on the prime p. Let µ be the
maximum value of |K (x)| on the compact set D .

So finally, the proof of the lemma will be complete if you can prove that for any large enough prime p
that following holds:

µp

(p −1)!
< 1

p
.

Another way to write this is
pµp

(p −1)!
< 1.

Well, does this hold when p is large enough? What do you think?
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29.4 PROBLEM SET 24

ALGEBRA HOMEWORK, EDITON 24

TWENTY FIFTH WEEK

TRANSCENDENTAL NUMBERS, CONSTRUCTIBLE NUMBER, AND OTHER PUZZLES

PROBLEM 122.
Prove that lnu and sinu are transcendental over the field of rational numbers, whenever u is a positive
algebraic real number (and in the case of lnu that u 6= 1).

PROBLEM 123.
Let F,K, and L be fields so that K is a finite separable extension of F and L is a finite separable extension of
K. Prove that L is a finite separable extension of F.

PROBLEM 124.
Prove that no finite field is algebraically closed.

PROBLEM 125.
Archimedes studied cylinders circumscribed around spheres. We say that such a cylinder is constructible
provided the radius of the sphere is a constructible real number. So the cylinder circumscribed around a
sphere of radius 1 is constructible. Call this cylinder the unit cylinder. Let C be a cylinder circumscribed
around a sphere so that the volume of C is twice as larger as the volume of the unit cylinder. Explain in
detail why C is not constructible.
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30
THE GALOIS CONNECTION BETWEEN POLYNOMIAL

RINGS AND AFFINE SPACES

The unit circle in R×R is described by x2 + y2 = 1. Likewise, the unit sphere in R×R×R is described by
x2 + y2 + z2 = 1. More generally, we could consider any field F and any system 〈x0, x1, . . . , xn−1〉 of variables
and any set Γ of equations p(x0, . . . , xn−1) = q(x0, . . . , xn−1), where p(x0, . . . , xn−1) and q(x0, . . . , xn−1) belong
to F[x0, . . . , xn−1]. Such a set of equations describes a set of points in the affine space Fn , namely the set of
all n-tuples ā = 〈a0, . . . , an−1〉 for which all the equations in Γ are true. Sets of points in such n-dimensional
spaces are called affine varieties. Roughly speaking, affine varieties are geometric objects with what might
be thought of as straightforward algebraic descriptions. They are the basic objects of study in algebraic
geometry.

To conserve notation, we will write f (x̄) and F[x̄], meaning that x̄ = 〈x0, . . . , xn−1〉.
There is an immediate way to simplify the presentation of the notion of affine variety. Equations of the

form p(x̄) = q(x̄) can be replaced by equations of the form p(x̄)− q(x̄) = 0. Or more simply, equations
of the form f (x̄) = 0, where f (x̄) is a polynomial. In this way we can even construe Γ has a set of poly-
nomials (rather than a set of equations) and the affine variety described by Γ will then be the points in
n-dimensional space (over our field), that are simultaneous zeros of the polynomials in Γ.

So you can now see the two-place relation
{〈 f (x̄), ā〉 | f (x̄) ∈ F[x̄] and ā ∈ Fn and f (ā) = 0

}
between the

ring F[x̄] and affine space Fn . We can use this relation to establish a Galois connection between the ring of
polynomials and the points in n-dimensional space. The polarities of this Galois connection are denoted
as follows:

V(Γ) := {ā | ā ∈ Fn and f (ā) = 0 for all f (x̄) ∈ Γ}

I(M) := { f (x̄) | f (x̄) ∈ F[x̄] and f (ā) = 0 for all ā ∈ M }

for any Γ⊆ F[x̄] and any M ⊆ Fn .
The closed sets on the geometrical side of this Galois connection will be precisely the affine varieties.

What about the closed sets on the side of the polynomial ring? Well, it is straightforward to check that
I(M) will be an ideal of the polynomial ring (why not check it now?). However, unlike with Galois’ original
connection (every subgroup was closed and every intermediate field was closed. . . ), this time it may not
be that every ideal is closed.

204
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Let ā be in Fn . Suppose f (x̄) ∈ F[x̄] and let k be a positive integer. Observe that
(

f (ā)
)k = 0 if and only if

f (ā) = 0. This entails

If
(

f (x̄)
)k ∈ I(M) for some positve integer k, then f (x̄) ∈ I(M),

for any M ⊆ F n . So we see that the closed ideals must have this special property. This can be recast in an
arbitrary commutative ring R. Suppose J is an ideal of R. It is straightforward to check that

{u | u ∈ R and uk ∈ J for some positive integer k}

is always an ideal of R (this is a consequence of the Binomial Theorem, which holds in commutative rings).
The ideal above, built from the ideal J , is called the nilradical ideal of J . I will denote it by nilrad J (although

I am attracted to
√

J as well). This is a kind of closure operator on ideals in the sense that

J ⊆ nilrad J

nilrad J = nilradnilrad J

for all ideals J of our commutative ring. The ideal J is a nilradical ideal provided J = nilrad J .
Returning to our Galois connection between the polynomial ring F[x̄] and the affine space Fn , we see that

the closed sets of the side on the polynomial ring must all be nilradical ideals. This leaves open the question
of whether some of the nilradical ideals might fail to be closed in the sense of our Galois connection. We
would like to establish that the closed sets are precisely the nilradical ideals.

Hilbert’s Nullstellensatz. For any positive natural number n and any algebraically closed field F, the closed
subsets of F[x0, . . . , xn−1] with respect to the Galois connection are precisely the nilradical ideals of this poly-
nomial ring.

Of course, this means that the polarities of our Galois connection establish a dual isomorphism between
the lattice of nilradical ideals of our polynomial ring F[x̄] and the affine varieties of Fn . Indeed, at this
point it is possible to write down a theorem that looks very much like the Fundamental Theorem of Galois
Theory, except here we are concerned with connecting polynomial rings and their nilradical ideals with
affine spaces and their affine varieties.

Of the many proofs available of Hilbert’s Nullstellensatz, in the next section you will find one that traces
its ancestory back to Oscar Zariski in the late 1940’s. In the section after that, I sketch out a distinctly dif-
ferent proof due to Abraham Robinson in the 1950’s which is framed from the perspective of model theory
and hinges on an interesting theorem from 1910 of Ernst Steinitz concerning uncountable algebraically
closed fields.

Before turning to these proofs of Hilbert’s Nullstellensatz, it proves useful to look a little at nilradical
ideals.

Around 1930 Wolfgang Krull found the following characterization of the nilradical of any ideal.

Theorem Characterizing the Nilradical. Let R be a nontrivial commutative ring and let J be any proper
ideal of R. Then nilrad J is the intersection of all the prime ideals that contain J .

Proof. To see that nilrad J is included in the intersection of all the prime ideals that include J , let u ∈
nilrad J . What we need is to show that u ∈ P for every prime ideal P such that J ⊆ P . So let P be such a
prime ideal. Pick a positive natural number k so that uk ∈ J . Since J ⊆ P , we have uk ∈ P . But P is a prime
ideal, so u ∈ P as desired.

For the converse, suppose that u ∉ nilrad J . Now we must find a prime ideal P with u ∉ P but J ⊆ P . What
we know is that uk ∉ J for every positive integer k. That is

{uk | k is a positive integer} and J are disjoint.
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Let F consist of those ideals that include J and are disjoint from {uk | k is a positive integer}. A routine
application of Zorn’s Lemma shows that F has a maximal member. Let P be a maximal member of F.
Evidently, u ∉ P .

I contend that P is a prime ideal, as we desire. To see this suppose v, w ∈ R with v w ∈ P . For contradiction,
suppose that v ∉ P and w ∉ P . Then the ideals (P ∪ {v}) and (P ∪ {w}) must contain positive powers of u,
by the maximality of P in F. So pick positive integers k and ` so that uk ∈ (P ∪ {v}) and u` ∈ (P ∪ {w}). This
means we can also pick s, t ∈ P and q,r ∈ R so that

uk = s +qv and u` = t + r w.

But then, uk+` = (s +qv)(t + r w) = (s +qv)t + sr w +qr v w . Each term in the latter sum belongs to P . But
then uk+` ∈ P , a contradiction.

30.1 OSCAR ZARISKI PROVES HILBERT’S NULLSTELLENSATZ

Every proper ideal of the ring F[x̄] extends to a maximal ideal and every maximal ideal in a prime ideal.
From Hilbert’s Nullstellensatz, we see that the variety V(I ) of any proper ideal I cannot be the smallest
variety, namely the empty set of points, which corresponds to the improper ideal—the whole of F[x̄]. In
this way, we have for any algebraically closed field F

Every proper ideal of F[x̄] has a solution ā in Fn .

Of course, this is a consequence of Hilbert’s Nullstellensatz. Sometimes it is called the weak Nullstellensatz.
In 1930, George Yuri Rainich published a short paper under his birthname J. L. Rabinowitsch, with the
observation that Hilbert’s Nullstellensatz can be easily deduced from this consequence.

Here is how.
Let I be any ideal of F[x̄]. We already know that

nilrad I ⊆ I(V(I )).

So we only need the reverse inclusion. In the event that I = F[x̄], that inclusion is clear. So we consider the
case when I is a proper ideal. Suppose that f (x̄) ∈ I(V(I )). By Hilbert’s Basis Theorem, we know that F[x̄] is
Noetherian. So I is finitely generated. Let us suppose that I is generated by g0(x̄), . . . , gm−1(x̄). So we know
that if gi (ā) = 0 for each i < m, then we have f (ā) = 0 as well. Let us introduce a new variable y . So the
system

g0(x̄) = 0, . . . , gm−1(x̄) = 0,1− y f (x̄) = 0

of equations has no solutions. Let J be the ideal of F[x̄, y] generated by{
g0(x̄), . . . , gm−1(x̄),1− y f (x̄)

}
.

This ideal has no solution. So by the weak version of the Nullstellensatz we find that J = F[x̄, y]. This means
that there are polynomials hi (x̄, y) ∈ F[x̄, y] for i ≤ m so that

1 = h0(x̄, y)g0(x̄)+·· ·+hm−1(x̄, y)gm−1(x̄)+hm(x̄, y)
(
1− y f (x̄)

)
.

Now F[x̄, y] is an integral domain. Let K be its field of fractions. We consider that K is an extension of
F[x̄, y]. So the elements of K are of the formal ratios s(x̄,y)

t (x̄,y) of polynomials where t (x̄, y) is not the zero
polynomial. We can use our map extension method to obtain a homomorphism from F[x̄, y] into K that
fixes each element of F and sends each xi to itself, but sends y to 1

f (x) . Applying this homomorphism to
the equation displayed above, we find the following equation must hold in K.

1 = h0

(
x̄,

1

f (x̄)

)
g0(x̄)+·· ·+hm−1

(
x̄,

1

f (x̄)

)
gm−1(x̄)+hm

(
x̄,

1

f (x̄)

)(
1− 1

f (x̄)
f (x̄)

)
.
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The last term is 0 and we can drop it. Recalling that the hi (x̄, y) are polynomials, we see that the only
denominators appearing in the displayed equation are just certain powers of f (x̄). So we can multiply the
whole equations by a sufficiently high power of f (x̄) to clear the denominators. We get(

f (x̄)
)q = h∗

0 (x̄)g0(x̄)+·· ·+h∗
m−1(x̄)gm−1(x̄)

where h∗
i (x̄) = (

f (x̄)
)q hi

(
x̄, 1

f (x̄)

)
, for each i < m.

This demonstrates that f (x̄) ∈ nilrad I .
Knowing of this trick of Rabinowitsch (which can be found in the second volume of B. L. van der Wear-

den’s Moderne Algebra 1931), Oscar Zariski set out to prove Hilbert’s Nullstellensatz by devising a proof
that every proper ideal has a solution—a proof that would require little in the way of additional ideas. He
actually gave two new proofs in a paper that appeared in 1949.

Zariski based the proof given here on the following theorem, interesting in its own right.

Zariski’s Theorem on Finite Integral Extensions. Let F be a field and let D be an integral domain extending
F that is generated by a finite set over F. If D is a field, then D is an algebraic extension of F.

Here is how to deduce the weak version of the Nullstellensatz from Zariski’s Theorem. Suppose that I is a
proper ideal of F[x̄]. Let M be a maximal ideal that extends I . So F[x̄]/M is a field. Moreover, it is generated,
as a ring, over F by the elements x0+M , . . . , xn1 +M . By Zariski’s Theorem on Finite Integral Extensions, we
conclude that F[x̄]/M is (isomorphic to) an algebraic extension of F. But under the hypotheses of Hilbert’s
Nullstellensatz (and its weak version) F is algebraically closed. So F[x̄]/M is isomorphic to F. But notice
that 〈x0+M , . . . , xn−1+M〉 is a solution for I since I ⊆ M and M is the kernel of the quotient map from F[x̄]
onto F[x̄]/M . This means that I must also have a solution in F.

So it remains to prove Zariski’s Theorem of Finite Integral Extensions.

Proof of Zariski’s Theorem. The proof is by induction on the number of generators (over F) of the integral
domain D.

Base Step: D = F
There is nothing to prove.

Inductive Step
Here we assume that every integral domain generated, as a ring, over any field by n additional elements
that happens itself to be a field, is an algebraic extension over the ground field. Suppose that D is generated
over F by the n +1 nonzero elements b0, . . . ,bn and D is a field. This means that the elements of D arise as
values, at 〈b0, . . . ,bn〉, of polynomials from F[x0, . . . , xn]. For this reason we denote D by F[b0, . . . ,bn]. The
smallest subfield of D that includes F ∪ {b0} is denoted by F(b0). This field actually consists of the values at
b0 of all the rational functions with coefficients from F (with the exception of those whose denominators
evaluates to 0).

Evidently, D is generated over F(b0) by the n elements b1, . . . ,bn . By the induction hypothesis, D is an
algebraic extension of F(b0).

To complete the proof, we need to see that F(b0) is an algebraic extension of F. That is, we have to show
that b0 is algebraic over F.

We already know that if b0 is algebraic over F, then F[b0] is a field and so F[b0] = F(b0). In the event that
b0 is not algebraic over F the eager graduate student can work out that the homomorphism from F[x] onto
F[b0] that sends x to b0 must be an isomorphism. So in either case, F[b0] will be a unique factorization
domain. In F[x] for any nonzero nonunit polynomial (i.e. a polynomial of positive degree) f (x), it is clear
that f (x) and f (x)+ 1 are relatively prime. This means that if b0 fails to be algebraic over F, then there
is no nonzero element of F[b0] that is divisible by every irreducible element of F[b0]. What Zariski does
is produce a nonzero element of F[b0] that is divisible by every irreducible element of F[b0]. Then the
conclusion that b0 is algebraic over F follows.
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Roughly speaking, Zariski’s argument below amounts to clearing a lot of denominators and making a
crucial finiteness observation.

As each bi , with 1 ≤ i ≤ n, is algebraic over the field F(b0), we see that bi will have a minimal polynomial
over this field. The coefficients of these minimal polynomials will be ratios of polynomials with coefficients
in F that have been evaluated at b0. We can clear the denominators of these minimal polynomials, to
obtain polynomials in x of positive degree whose coefficients lie in the ring F[b0]. Let d(b0) be the product
of the leading coefficients of all these modified minimal polynomials. So d(b0) is not 0 and d(b0) ∈ F [b0].

Consider b1. Let r be the degree of the minimal polynomial of b1 over F(b0). Notice that d(b0)br
1 is a

linear combination of powers of b1 smaller than r using coefficients from F[b0]. The same can be said for
d(b0)2br+1

1 . In fact, any large power of b1 can be dealt with in this way. The same applies to large powers
of b2, . . . ,bn .

Now let w be any element of D = F[b0,b1, . . . ,bn]. This means there is a polynomial in F[x0, . . . , xn] so that

w = p(b0,b1, . . . ,bn).

A particular term of this polynomial looks like cbk0
0 bk1

1 . . .bkn
n , where c ∈ F . But then cbk0

0 is an element of
F[b0]. So there is a positive natural number q , depending on w and probably pretty large, so that d(b0)q w
is a sum of terms of the form

s(b0)b`1
1 . . .b`n

n

where each s(b0) ∈ F[b0] and each `k is smaller than the degree of the minimal polynomial of bk over F(b0).
It is important to notice that there are only finitely many elements of the form b`1

1 . . .b`n
n .

As F[b0, . . . ,bn] = F(b0)[b1, . . . ,bn] is an extension of the field F(b0) by finitely many algebraic elements it
is finite dimensional over F(b0). Let {v0, v1, . . . , vm−1} be a basis, with v0 = 1, for this extension.

We can express each of those finitely many elements of the form b`1
1 . . .b`n

n as a linear combination of
these basis vectors. The coefficients of the finitely many linear combinations arising in the way belong to
F(b0). Let e(b0) ∈ F[b0] be the product of all the denominators occurring in all these linear combinations.
This means that e(b0)b`1

1 . . .b`n
n will be a linear combination of the vk ’s using coefficients from F[b0].

Putting things together, we see that if w is any element of D, then there will be some positive natural
number q , depending on w , so that (e(b0)d(b0))q w is a linear combination of the vk ’s using coefficients
from F[b0].

Now let g (b0) be an irreducible element of F[b0]. So it is not zero. Let w = 1
g (b0) . Pick a natural number q

so that (e(b0)d(b0))q w is a linear combination of the vk ’s using coefficients from F[b0]. But (e(b0)d(b0))q w
belongs to F(b0). By the linear independence of the vk ’s, it must be that there is some s(b0) ∈ F[b0] so that

(e(b0)d(b0))q w = (e(b0)d(b0))q

g (b0)
= s(b0).

But this means
(e(b0)d(b0))q = g (b0)s(b0).

But since g (b0) is irreducible, it is prime. So we discover that our arbitrarily chosen irreducible g (b0) in fact
divides the element e(b0)d(b0) of F[b0]. We know this cannot happen if F[b0] ∼= F[x]. So we find, as Zariski
did, that F[b0] is a field and that b0 is algebraic over F.

This completes the inductive step.

30.2 ABRAHAM ROBINSON PROVES HILBERT’S NULLSTELLENSATZ

Abraham Robinson, in the early 1950’s, provided a proof of the following theorem.
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Theorem on the Power of Algebraic Closures. Let F be any field. Let Γ be any finite system of polynomial
equations and polynomial inequations with coefficients from F. If Γ has a solution in any field extending F,
then Γ has a solution in the algebraic closure of F.

Here is an example of such a system:

x3 +4x y2 +1 = 0, x y z −x2 = 1, and x + y + z 6= 17.

The reason why I have called this the Theorem on the Power of Algebraic Closures is simply that the
definition of the algebraic closure of F amounts to saying that it is the smallest field extending F for which
every system 〈p(x) = 0〉, where p(x) ∈ F[x] has positive degree, has a solution. So the theorem asserts that
this condition concerning systems of one equation in one unknown entails the much broader condition
concerning finite systems of polynomial equations and inequations in many variables.

Before turning to the proof of this theorem, I want to show how it gives rise to a proof a Hilbert’s Nullstel-
lensatz.

Robinson’s proof of Hilbert’s Nullstellensatz. Let J be an ideal of F[x̄]. We already know that

nilrad J ⊆ I(V(J )).

We need the reverse inclusion. So suppose that f (x̄) ∉ nilrad J . We have to show that

f (x̄) ∉ I(V(J )).

That is, we must find some ā ∈ V(J ) so that f (ā) 6= 0. Accord to Hilbert’s Basis Theorem, F[x̄] is a Noetherian
ring. Thus J is a finitely generated ideal. Let the polynomials g0(x̄), . . . , gm−1(x̄) generate J . So what we need
is an n-tuple ā ∈ F n so that

g0(ā) = 0, . . . , gm−1(ā) = 0, and f (ā) 6= 0.

That is ā is a solution to the following system of polynomial equations and inequations.

g0(x̄) = 0, . . . , gm−1(x̄), and f (x̄) 6= 0.

Call this system Γ. In order to invoke that Theorem on the Power of Algebraic Closures, we need only see
that Γ has a solution in some field extending F.

Since f (x) ∉ nilrad J , by Krull’s characterization of nilradicals, there is a prime ideal P so that f (x) ∉ P
but J ⊆ P . Because P is prime, we know that F[x̄]/P is an integral domain, call it D. Let η be the quotient
map. Since all the nonzero elements of F are units, while P is a proper ideal, we see that η embeds F into
D. For each i < n, let bi = η(xi ). Put b̄ = 〈b0, . . . ,bn−1〉. Since each g j (x̄) ∈ P , we see that g j (b̄) = 0 in D.
On the other hand, f (b̄) 6= 0 in D, since f (x̄) ∉ P = kerη. So b̄ is a solution to Γ in D and D extends F.
However, we only know that D is an integral domain and we want a field. However, every integral domain
can be extended to a field E (namely its field of fractions). Now we can invoke the Theorem on the Power
of Algebraic Closures to complete the proof.

So it remains to prove the Theorem on the Power of Algebraic Closures. I give here a sketch of Robinson’s
argument.

Recall the following theorem from Lecture 20.

The Steinitz’s Theorem on Isomorphisms between Algebraically Closed Fields. Let F,A,E and B be al-
gebraically closed fields so that F is a subfield of A and E is a subfield of B. Further suppose that Φ is an
isomorphism from F onto E. If A and B have the same cardinality κ and κ is larger than the cardinality of
F, then there is an isomorphism Φ∗ from A onto B that extends Φ. Thus, any two uncountable algebraically
closed fields of the same characteristic and the same cardinality are isomorphic.
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We require a couple of new notions and one more theorem that come from a branch of mathematical
logic called model theory. We considered polynomials as certain formal strings of symbols (as opposed to
treating them as certain kinds of functions, like they were treated in calculus). Mathematical logic expands
on this idea. We can treat various mathematical statements as formal strings of symbols, but now we want
to have symbols for some words commonly used in mathematics:

∨ for “or”

∧ for “and”

=⇒ for “implies”

¬ for “not”

∀x for “for all x”

∃x for “there exists x”

≈ for “equal”

We should also supply ourselves with symbols to denote the operations we use (like addition and multipli-
cation), as well as symbols to name certain (maybe all) elements in sight. We also need an infinite supply
of symbols to name variables. Then there will be a reasonable way to put these symbols together. For
example,

∀u∀v∃x[x2 +ux + v ≈ 0]

is a formulation of “Every monic polynomial of degree 2 has a root.” and

∃x0∃x1 . . .∃xn−1
[
g0(x̄) ≈ 0∧·· ·∧ gm−1(x̄) ≈ 0∧¬ f (x̄) ≈ 0

]
captures the assertion that a certain system of polynomial equations and inequations has a solution.

It is important to point out that the variables appearing in these formal expressions are meant to range
over the elements of some domain of discourse—here usually a field—rather than, say, sets of such ele-
ments. Because of this restriction, we call such formalized expressions elementary sentences. Notice that
in the last sentences displayed above, we had to have names for the elements of our field in order to write
down the coefficients of the polynomials.

The new notion we need is the notion of elementary extension. In the context of fields it goes like this.
Suppose F is a subfield of K. We will say that K is an elementary extension of F, provided every elementary
sentence in the formal language of fields expanded by names of each element of F , that is true in K is also
true in F.

The theorem we need from model theory was proved by Alfred Tarski in 1928, although he did not intro-
duce the notion of elementary extension until after World War II. We only formulate the theorem for fields,
but it is true for mathematical structures much more broadly.

Tarski’s Upward Theorem. Let F be any infinite field. Then F has an elementary extension of every greater
size.

While we do not give a proof of this theorem here, it should be noted that this theorem, in a more general
guise, is customarily proven early on in any exposition of model theory. It is inviting to see that the standard
methods of one branch of mathematics can play a key role in another branch.

Abraham Robinson actually proved a statement that is stronger than the Theorem on the Power of Alge-
braic Closures.

Robinson’s Theorem on the Model Completeness of Algebraically Closed Fields. Let F and E be alge-
braically closed fields. If E is an extension of F, then it is an elementary extension of F.
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Proof of the Theorem on the Power of Algebraic Closures. Suppose that F is a field and Γ is a finite system
of polynomial equations and inequations that has a solution in a field E that extends F. Of course we can
write down a sentence γ in the language of field enhanced by symbols to name every element of F , so that
γ asserts that Γ has a solution. This means that γ is true in E. Let E be the algebraic closure of E. So γ is also
true in E (in fact, the solution in E is still available). Let F be the algebraic closure of F. We can regard F as
a subfield of E. So E is an elementary extension of F. But this means the sentence γ is true in F. In other
words, Γ has a solution in the algebraic closure of F.

But how to prove that Model Completeness Theorem?

Proof of Robinson’s Model Completeness Theorem of Algebraically Closed Fields. Let F and E be algebraically
closed fields so that E extends F. Then both fields are infinite and have the same characteristic.

Now let κ be any uncountable cardinal at least as large as the sizes of F and E. Use Tarski’s Upward The-
orem to obtain elementary extensions F∗ of F and E∗ of E so that both of these elementary extensions are
of size κ. Above we saw how to express “every polynomial of degree 2 has a root” and the generalization to
polynomials of arbitrary degree is clear. So all these sentences will be true in F and in E. So they are also
true in the elementary extensions. So these extensions are algebraically closed and of the same character-
istic. By Steinitz, they are isomorphic by an isomorphism that fixes each element of F (i.e. that extends the
identity map of F). Consider any sentence γ, perhaps using symbols to name elements of F, that is true in
E. It must also be true in the elementary extension E∗. So it is also true in F∗, via the isomorphism. But
then it must also be true in F, since F∗ is an elementary extension of F. That is E is an elementary extension
of F.

Abraham Robinson called a class K of algebraic systems model complete provided whenever A,B ∈K

and B extends A, then B is an elementary extension of A.
Within a couple of years of Robinson’s proof of the Nullstellensatz, Abraham Seidenberg gave a proof

of the Theorem on the Power of Algebraic Closures using elimination theory. At around the same time,
Robinson described how to use Hilbert’s Nullstellensatz to prove the model completeness of algebraically
closed fields.



AFTERWORD

It is traditional, in works like this, at the beginning to justify the writing of yet another exposition of a
subject already richly supplied with expositions. Not wanting to burden the first year graduate students
with such things before they got to the actual mathematics, I am putting my excuses here at the end.

Of the fine books appropriate for first year graduate students, most follow the lead of B. L. van der Waer-
den’s 1931 Moderne Algebra, which extends to more than 500 pages. More recent expositions, like David
Dummit and Richard Foote’s Abstract Algebra, Nathan Jacobson’s Basic Algebra I, II, Serge Lang’s Algebra,
and Joseph Rotman’s Advanced Modern Algebra come to about a thousand pages each. Even the shorter
books like Michael Artin’s Algebra, Pierre Grillet’s Abstract Algebra, Thomas Hungerford’s Algebra, and Mar-
tin Isaacs Algebra: a graduate course extend to more than 500 pages each. Every mathematician should
have at least one of these on their bookshelf, since you never know how much you should really know! But
I have never been able to get through more than 150 pages of this material in any semester. Even Larry
Grove’s Algebra, terse at 300 pages, is pushing it some.

My purpose: present those parts of algebra most likely to appear on PhD exams in the United States and
keep it short.

By good fortune, Israel Herstein had just published his Topics in Algebra when it was my turn to take an
undergraduate abstract algebra course. By another piece of luck, Nathan Jacobson’s Basic Algebra I had
just become available when it was my turn to teach this material for the first time. As with seemingly all
expositions of algebra, the whole conceptual framework owes much to Emmy Noether. After her, the influ-
ence of Emil Artin is profound. I hope that some part of the penetrating insight of Noether, the elegrance
of mind of Artin, and the good sense of Jacobson and Herstein can be found here.

In some ways this exposition is idiosyncratic. I put ring theory first, where most expositors have followed
van der Waerden’s lead and presented group theory first. Students come to the course richly supplied
with examples of rings—making ring theory less of a leap than group theory, where the examples they
know are few and not very typical. Group theory hardly enters into the development of ring theory at the
beginning. But ring theory supplies an understanding of divisibility that is useful early in the development
of group theory in getting hold of the theorems of Lagrange and Sylow. Also, I framed the initial notions
like homomorphism from the point of view of the general theory of algebraic systems, just so they would
apply equally well to rings, modules, and groups. With regret, I omitted an excursion into lattice theory.

Finally, after getting through Galois theory and the Artin-Schreier proof of the Fundamental Theorem of
Algebra, there was always time in the spring semester for another topic or two. At times, I have included,
for example, the rudiments of the theory of finite fields or some exposition of Hilbert’s Theorem 90 or the
work of Steinitz on algebraically closed fields. But the ones I like the best are the three topics you find here:
Gauss’s work on the constructibility of regular polygons, the Lindemann-Weierstrass Theorem (which has
the transcendence of π as a consequence—something every mathematician knows but few of us have
seen a proof), and Hilbert’s Nullstellensatz, which establishes the link between commutative algebra and
algebraic geometry. Concerning the latter, I first learned about Abraham Robinson’s proof in 1969, while I
was a graduate student. But in 1971, Abraham Robinson explained his approach to me over a beer at the
Cheshire Cat, a bar off Euclid Avenue north of the campus in Berkeley. For me, anyway, it is a proof, as
Uncle Paul would say, for THE BOOK. So I have put it here at the end of my little book.

George F. McNulty
June 2016
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