Theory of Computable Functions

Problem Set 2
27 September 2017

Problem 0.
Let $a_{0}, a_{1}, \ldots, a_{n}$ be a sequence of integers of $n+1$ integers. Prove that there are integers u and v so that

$$
R(u, 1+v(i+1))=a_{i} \text { for all } i=0, \ldots, n
$$

Here $R(x, y)$ is the remainder of x divided by y, if $y \neq 0$ and is x if $y=0$. If a_{0}, \ldots, a_{n} are natural numbers what can you say about u and v ? [Hint: Use the Chinese Remainder Theorem.]

The next sequence of problems is intended to replicate Chapter 2 in the book of Martin Davis. However, our Turing machines are not quite the same as his, so things have to be adjusted.

Problem 1.

First give a definition of what it means for a Turing machine to be n-regular. Then prove that for every Turing machine Z there is a Turing machine Z^{\prime} that is n-regular for every n and which has the same input-output behavior as Z, except that the initial state of Z^{\prime} is $q_{\theta(Z)}$.

Problem 2.

Given any n-regular Turing machine Z and any $p>0$, there is an $n+p$-regular Turing machine Z_{p} so that when Z_{p} is started on $k_{0}, \ldots, k_{p-1}, m_{0}, \ldots, m_{n-1}$, the computation results in $k_{0}, \ldots, k_{p-1}, H$, where the string H is the result of Z started on m_{0}, \ldots, m_{n-1}. So Z_{p} halts on its input if and only if Z halts on its input.

Problem 3.
For each positive integer n and each natural number p, there is am $n+p$-regular Turing machine C_{p} such that the output of C_{p} on input $k_{0}, \ldots, k_{p-1}, m_{0}, \ldots, m_{n-1}$ is $m_{0}, \ldots, m_{n-1}, k_{0}, \ldots, k_{p-1}, m_{0}, \ldots, m_{n-1}$. The machine C_{p} is called a copy machine.

Problem 4.
For each n-regular Turing machine Z, there is an n-regular Turing machine Z^{\prime} so that Z halts on an input if and only if Z^{\prime} halts on that input, and If r_{0}, \ldots, r_{s-1} is the output of Z started on m_{0}, \ldots, m_{n-1}, then $r_{0}, \ldots, r_{s-1}, m_{0}, \ldots, m_{n-1}$ is the output of Z^{\prime} started on m_{0}, \ldots, m_{n-1}.

Problem 5.

Let Z_{0}, \ldots, Z_{p} be Turing machines. There is an n-regular Turing machine Z so that Z halts on input m_{0}, \ldots, m_{n-1} if and only if each Z_{i} halts on that input, and the output of Z started on m_{0}, \ldots, m_{n-1} is r_{0}, \ldots, r_{p-1}, where r_{j} is the output of Z_{j} started on m_{0}, \ldots, m_{n-1}.

Problem 6.
Prove that the class of Turing computable functions is closed under composition.

Problem 7.
Prove that the class of Turing computable functions is closed under minimization.

