Theory of Computable Functions Problem Set 2 27 September 2017

Problem 0.

Let a_0, a_1, \ldots, a_n be a sequence of integers of n+1 integers. Prove that there are integers u and v so that

$$R(u, 1 + v(i + 1)) = a_i$$
 for all $i = 0, ..., n$.

Here R(x, y) is the remainder of x divided by y, if $y \neq = 0$ and is x if y = 0. If a_0, \ldots, a_n are natural numbers what can you say about u and v? [Hint: Use the Chinese Remainder Theorem.]

The next sequence of problems is intended to replicate Chapter 2 in the book of Martin Davis. However, our Turing machines are not quite the same as his, so things have to be adjusted.

Problem 1.

First give a definition of what it means for a Turing machine to be *n*-regular. Then prove that for every Turing machine Z there is a Turing machine Z' that is *n*-regular for every n and which has the same input-output behavior as Z, except that the initial state of Z' is $q_{\theta(Z)}$.

Problem 2.

Given any *n*-regular Turing machine Z and any p > 0, there is an n + p-regular Turing machine Z_p so that when Z_p is started on $k_0, \ldots, k_{p-1}, m_0, \ldots, m_{n-1}$, the computation results in k_0, \ldots, k_{p-1}, H , where the string H is the result of Z started on m_0, \ldots, m_{n-1} . So Z_p halts on its input if and only if Z halts on its input.

Problem 3.

For each positive integer n and each natural number p, there is am n + p-regular Turing machine C_p such that the output of C_p on input $k_0, \ldots, k_{p-1}, m_0, \ldots, m_{n-1}$ is $m_0, \ldots, m_{n-1}, k_0, \ldots, k_{p-1}, m_0, \ldots, m_{n-1}$. The machine C_p is called a copy machine.

Problem 4.

For each *n*-regular Turing machine Z, there is an *n*-regular Turing machine Z' so that Z halts on an input if and only if Z' halts on that input, and If r_0, \ldots, r_{s-1} is the output of Z started on m_0, \ldots, m_{n-1} , then $r_0, \ldots, r_{s-1}, m_0, \ldots, m_{n-1}$ is the output of Z' started on m_0, \ldots, m_{n-1} .

Problem 5.

Let Z_0, \ldots, Z_p be Turing machines. There is an *n*-regular Turing machine Z so that Z halts on input m_0, \ldots, m_{n-1} if and only if each Z_i halts on that input, and the output of Z started on m_0, \ldots, m_{n-1} is r_0, \ldots, r_{p-1} , where r_j is the output of Z_j started on m_0, \ldots, m_{n-1} .

PROBLEM 6.

Prove that the class of Turing computable functions is closed under composition.

Problem 7.

Prove that the class of Turing computable functions is closed under minimization.