Problem Set 0
 Due Monday 11 February 2019

Problem 0

In each part below the given lanugage is the intersection of two simpler languages. In each part construct DFA's that recognize the simpler languages and then combined these DFA's to obtain a DFA recognizing the given language. In each part, $\Sigma=\{a, b\}$.
(a) $\{w \mid w$ has an even number of a 's and one or two b 's $\}$.
(b) $\{w \mid w$ starts with an a and has at most one $b\}$.

Problem 1
In each part below, the given language is the complement of a simpler language. In each part, construct a DFA for the simpler language and use it the construct a DFA for the given language. In each part $\Sigma=\{a, b\}$.
(a) $\left\{w \mid w\right.$ is not in $\left.a^{*} b^{*}\right\}$.
(b) $\left\{w \mid w\right.$ is any string not in $\left.a^{*} \cup b^{*}\right\}$.

Problem 2
Give diagrams of DFA's recognizing the languages given in each part below. In each part $\Sigma=\{0,1\}$.
(a) $\{w \mid w$ contains the substring 0101$\}$.
(b) $\{w \mid w$ starts with 0 and has odd length or it starts with 1 and has even length $\}$.

Problem 3
For each part below provide a diagram of an NFA with the specified number of states that recognizes the given language. Here $\Sigma=\{0,1\}$.
(a) The language given in Problem 2 (a) with five states.
(b) $\{w \mid w$ contains an even number of 0's or it contains exactly two 1's $\}$ with six states.

Problem 4
Convert the NFA diagrammed below into a DFA.

