## Problem 0 (Essential)

Consider the following DFA $A$ over the alphabet $\{0,1\}$ :

(1) Give the table $T$ of distinguishabilities for $A$. Show only the proper lower triangle of $T$, that is, fill in the following table with $X$ in each entry corresponding to a pair of distinguishable

(2) Draw the minimal (4-state) DFA equivalent to $A$.

## Problem 1

Consider the following two languages over $\{a, b\}$ :

$$
\begin{aligned}
& L_{1}=\{w \mid w \text { contains an odd number of } b \text { 's }\} \\
& L_{2}=\{w \mid \text { there exist two } b \text { 's in } w \text { with an } a \text { somewhere in between }\} .
\end{aligned}
$$

(1) Give transition diagrams for DFAs recognizing $L_{1}$ and $L_{2}$ with 2 and 4 states, respectively.
(2) Using the product construction on your answer to (a), give an 8-state DFA recognizing $L_{1} \cap L_{2}$. Do not perform any optimizations (e.g., removing unreachable states or transitions, or merging equivalent states).

## Problems 2 (Essential)

The alphabet in this problem contains the symbol 0 . For any word $w$ on our alphabet let NoZero $(w)$ result from $w$ by deleting all the 0's in $w$ and then closing up the gaps. For any language $L$ let NoZero $(L)=$ $\{\operatorname{NoZero}(w) \mid w \in L\}$. Prove that if $L$ is a regular language, then so is $\operatorname{NoZero}(L)$.

## Problem 3

Show that the language

$$
L=\left\{w \in \Sigma^{*} \mid \text { no prefix of } w \text { has more 0's than 1's }\right\}
$$

is not pumpable (hence not regular). [Note: a string $w$ is always a prefix of itself.]

## Problem 4 (Essential)

Consider a standard, one-tape Turing machine $M$ with input alphabet $\{0,1\}$, tape alphabet $\{0,1, x, \sqcup\}$ where $\sqcup$ is the blank symbol, and the following transition diagram:


Give the sequence of IDs (configurations) of the complete computation of $M$ on each of the three inputs 011, 10 , and 0 . (Hint: $M$ decides the language of all binary strings of odd length whose middle symbol is 1 , so the first input is accepted while the other two are rejected.)

## Problem 5

Fix some enumerator $E$ that enumerates an infinite language. Let $A$ be the language of all strings $w$ so that

- $E$ prints $w$ at least once, and
- when $w$ is first printed, it is longer than any string $E$ has printed before.

Show that $A$ is infinite and decidable. For the latter, give an explicit decision procedure for $A$.

## Problem 6 (Essential)

Let $f$ be a function that has the following property: for any TM $M$ and string $w$ such that $M$ accepts $w$, $f(\langle M, w\rangle)$ outputs a number $t$ such that $M$ accepts $w$ in less than $t$ steps. (If $M$ does not accept $w$, then $f(\langle M, w\rangle)$ could be any natural number.)

Show that no such $f$ can be computable. [Hint: Show that if $f$ were computable, then one can decide ATM.]

## Problem 7

Let $f$ be a computable function. Show that range $(f)$ is Turing-recognizable. (Here, range $(f)$ is defined as $\{y \mid(\exists x) f(x)=y\})$.

## Problem 8 (Essential)

Let $B:=\{\langle M\rangle \mid M$ is a TM and $010 \in L(M)$ and $011 \notin L(M)\}$. Construct a mapping reduction from $\overline{\mathrm{A}_{\mathrm{TM}}}$ to $B$.

## Problem 9

Let

$$
L:=\left\{w|\langle M, w\rangle| M \text { is a DFA that accepts } w^{n} \text { for all natural numbers } n\right\} .
$$

Show that $L \in \mathbf{P}$ by giving a polynomial time decision procedure for $L$.
Problem 10 (Essential)
The language
VERTEXCOVER $:=\{\langle G, k\rangle \mid G$ is a graph that has a vertex cover of size $k\}$.
Show that VERTEXCOVER is NP-complete.
Problem 11
Prove that if TBFQ $\in \mathbf{N P}$, then $\mathbf{N P}=\mathbf{P S P A C E}$.

