Homework: pp. 240-241 (4, 6, 10, 18)

In problem 4 and 6 calculate the Riemann sum \(\sum \limits_{i=1}^{n} f(\bar{x}_i) \Delta x_i \) for the given data.

4) \(f(x) = \frac{-x}{2} + 3 \); \(x_1 = 2, x_2 = -0.5, x_3 = 0, x_4 = 2 \)
\[\sum \limits_{i=1}^{4} f(\bar{x}_i) \Delta x_i = f(-2)(-1.3+3) + f(0.5)(0+1.3) + f(0.9-0) + f(2)(2-0.9) \]
\[= 4(1.7) + 3.25(1.3) + 3(0.9) + 2(1.1) = 15.925 \]

6) \(f(x) = 4x^3 + 1 \); \([0, 3] \) is divided into six equal subintervals, \(\bar{x}_i \) is the right endpoint.
\[\sum \limits_{i=1}^{6} f(\bar{x}_i) \Delta x_i = [f(0.5) + f(1) + f(1.5) + f(2) + f(2.5)] + f(3)](0.5) \]
\[= [1.5 + 5 + 14.5 + 33 + 63.5 + 109](0.5) = 113.25 \]

In problem 10, use the given values of \(a \) and \(b \) and express the given limit as a definite integral.

10) \(\lim \limits_{n \to 0} \sum \limits_{i=1}^{n} (\sin \bar{x}_i)^2 \Delta x_i \); \(a = 0, b = \pi \)
\[= \int_{0}^{\pi} (\sin x)^2 \, dx \]
In 18, calculate \(\int_a^b f(x) \, dx \), where \(a \) and \(b \) are the left and right endpoints for which \(f \) is defined, by using the Interval Additive Property and the appropriate area formulas from plane geometry. Begin by graphing the given function,

\[
 f(x) = \begin{cases}
 2x & \text{if } 0 \leq x \leq 1 \\
 2(x-1)+2 & \text{if } 1 < x \leq 2
\end{cases}
\]

See the sketch of the graph. It is a triangle.

\[
 A = \frac{1}{2} \cdot b \cdot h \\
\frac{1}{2} \cdot (2) \cdot 4 = 4
\]