Homework: pp. 91-93 (4, 6, 20, 38)

4) \(g(t) = \sqrt{t-4} \)

\(g(t) \) is not continuous because \(\lim_{t \to 3} \sqrt{t-4} \) and \(g(3) \) do not exist.

Therefore, \(g(t) \) is not continuous at 3.

6) \(h(t) = \frac{1}{\sqrt{(t-3)^4}} \)

\(h(t) \) is not continuous because \(h(3) \) does not exist. Therefore, \(h(t) \) is not continuous at 3.

20) \(g(\theta) = \frac{\sin \theta}{\theta} \)

\(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \) So, define \(g(0) = 1 \) to make the function continuous.

38) Let \(f(x) = x^3 + 3x - 2 \). The function is continuous on the interval \([0, 1]\).

\(f(0) = -2 \Rightarrow f(0) < 0 \)

\(f(1) = 2 \Rightarrow f(1) > 0 \)

So, there must be at least one number \(c \) between 0 and 1 such that \(x^3 + 3x - 2 = 0 \).